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200

Use a predicate learning model to take a question as the input
and return a vector that lies in the KG predicate embedding + 205
space as the predicted predicate representation

\ J

Use a head entity learning model to predict a vector that lies in
the KG entity embedding space as the predicted head entity |~ 210
representation
Y
Use a Head Entity Detection model to reduce the candidate
215

head entities by identifying one or more tokens in the question
as the predicted head entity name

y

Given the relation function defined by the KG embedding

algorithm, compute predicted tail entity representation based on | ~ 220

the defined function from the predicate representation and
head entity presentation

Based on a joint distance metric, select a fact in KG with 225
minimum distance to the predicted fact as the question's answer

FIG. 2



Patent Application Publication  Jul. 30,2020 Sheet 3 of 8 US 2020/0242444 A1

A
]
L=

Predicate/Head Entity
Representation Py / &y,
335

Target Vectors of
Tokens r;
330

Weighted h;
Conggtenation

Attention Weights
320

h; = h;;h;
/ 3}5 4

.

Bidirectional LSTM
M0

Word Embedding S % 3
of T%{sens Xj “which” “Olympics” <o “Australia”

FIG. 3



Patent Application Publication  Jul. 30,2020 Sheet 4 of 8 US 2020/0242444 A1

40

Given a question with length L, map L tokens into a sequence of | 495
word embedding vectors

Y

Employ a bidirectional LSTM to learn a forward hidden state | - 41p
sequence and a backward hidden state sequence

\ J

Concatenate the forward and backward hidden state vectors | ~ 415
and obtain a concatenated hidden state vector

'

Apply an attention weight to the concatenated hidden state | - 420
vector to obtain a weighted hidden state vector

'

Concatenate the weighted hidden state vector with theword |~ 425
embedding to obtain a hidden state (s;)

Apply a fully connected layer to the hidden state (s;), and denote | - 430
the result (r) as the target vector of the ji token

Compute the mean of all tokens’ target vectors as the predicted | - 435
predicate representation

FIG. 4
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600

Given a question with length L, map L tokens into a sequence of | - 605
word embedding vectors

Employ a bidirectional LSTM to learn a forward hidden state | ~ 610
sequence and a backward hidden state sequence

Concatenate the forward and backward hidden state vectors | ~ 615
and obtain a concatenated hidden state vector

Y
Apply a fully connected layer and a Softmax function to the
concatenated hidden state vector to obtain a target vector (v)
for the jih token, each target vector has two probability values
corresponding to probabilities that the token belongs to entity
name token and non-entity name token

620

Select one or more tokens as the head entity name basedon | ~ 625
probability value of each token belonging to entity name token

FIG. 6
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input one or more head entites identified by the HED mode!
into the KG (for head entity name comprising muttiple tokens, |-~ 710
a single combined entity vector may be formed)

Return results comprising entity |~ 720

code of the matched string and
sets of synonyms

Direct string match?

Return results comprising entity 730
code of the string with partial |~
match

Partial string match?

When no string matches are found, employ embedding | - 735
similarities to identity synonyms

il

Establish a candidate fact set from the KG, each candidate
fact’s head entity being a synonym to one of the one or more 740
head entities identified as HEDeny
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KNOWLEDGE-GRAPH-EMBEDDING-BASED
QUESTION ANSWERING

BACKGROUND

A. Technical Field

[0001] The present disclosure relates generally to systems
and methods for question answering. More particularly, the
present disclosure relates to systems and methods for ques-
tion answering over knowledge graph.

B. Background

[0002] Question answering over knowledge graph (QA-
KG) aims to use facts in a knowledge graph (KG) to answer
natural language questions. It helps end users more effi-
ciently and more easily access the substantial and valuable
knowledge in the KG, without knowing its data structures.
QA-KG is a nontrivial problem since capturing the semantic
meaning of natural language is difficult for a machine. Many
knowledge graph embedding methods have been proposed.
One key idea is to represent each predicate/entity as a
low-dimensional vector, such that the relation information in
the KG could be preserved. However, this remains a chal-
lenging task since a predicate could be expressed in different
ways in natural language questions. Furthermore, the ambi-
guity of entity names and partial names makes the number
of possible answers large.

[0003] Accordingly, what is needed are systems and meth-
ods that can be used to make question answering over
knowledge graph more effective and more robust.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] References will be made to embodiments of the
invention, examples of which may be illustrated in the
accompanying figures. These figures are intended to be
illustrative, not limiting. Although the invention is generally
described in the context of these embodiments, it should be
understood that it is not intended to limit the scope of the
invention to these particular embodiments. Items in the
figures are not to scale.

[0005] FIG. (“FIG.”) 1 graphically depicts a knowledge
embedding based question answering (KEQA) framework,
according to embodiments of the present disclosure.
[0006] FIG. 2 depicts a method for question answering
with a KEQA framework, according to embodiments of the
present disclosure.

[0007] FIG. 3 graphically depicts architecture of predicate
and head entity learning models, according to embodiments
of the present disclosure.

[0008] FIG. 4 depicts a method for predicting predicate of
an input question using a predicate and head entity learning
model, according to embodiments of the present disclosure.
[0009] FIG. 5 depicts a structure of a Head Entity Detec-
tion (HED) model, according to embodiments of the present
disclosure.

[0010] FIG. 6 depicts a method for identifying one or more
head entities of an input question using a HED model,
according to embodiments of the present disclosure.
[0011] FIG. 7 depicts a method for searching head entity
synonyms in a KG using head entity names identified by a
HED model, according to embodiments of the present
disclosure.
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[0012] FIG. 8 depicts a simplified block diagram of a
computing device/information handling system, in accor-
dance with embodiments of the present document.

DETAILED DESCRIPTION OF EMBODIMENTS

[0013] In the following description, for purposes of expla-
nation, specific details are set forth in order to provide an
understanding of the present disclosure. It will be apparent,
however, to one skilled in the art that embodiments may be
practiced without these details. Furthermore, one skilled in
the art will recognize that embodiments of the present
disclosure, described below, may be implemented in a
variety of ways, such as a process, an apparatus, a system,
a device, or a method on a tangible computer-readable
medium.

[0014] Components, or modules, shown in diagrams are
illustrative of exemplary embodiments of the invention and
are meant to avoid obscuring the present disclosure. It shall
also be understood that throughout this discussion that
components may be described as separate functional units,
which may comprise sub-units, but those skilled in the art
will recognize that various components, or portions thereof,
may be divided into separate components or may be inte-
grated together, including integrated within a single system
or component. It should be noted that functions or operations
discussed herein may be implemented as components. Com-
ponents may be implemented in software, hardware, or a
combination thereof.

[0015] Furthermore, connections between components or
systems within the figures are not intended to be limited to
direct connections. Rather, data between these components
may be modified, re-formatted, or otherwise changed by
intermediary components. Also, additional or fewer connec-
tions may be used. It shall also be noted that the terms
“coupled,” “connected,” or “communicatively coupled”
shall be understood to include direct connections, indirect
connections through one or more intermediary devices, and
wireless connections.

[0016] Reference in the specification to “one embodi-
ment,” “preferred embodiment,” “an embodiment,” or
“embodiments” means that a particular feature, structure,
characteristic, or function described in connection with the
embodiment is included in at least one embodiment of the
invention and may be in more than one embodiment. Also,
the appearances of the above-noted phrases in various places
in the specification are not necessarily all referring to the
same embodiment or embodiments.

[0017] The use of certain terms in various places in the
specification is for illustration and should not be construed
as limiting. A service, function, or resource is not limited to
a single service, function, or resource; usage of these terms
may refer to a grouping of related services, functions, or
resources, which may be distributed or aggregated. An
image may be a still image or from a video.

[0018] The terms “include,” “including,” “comprise,” and
“comprising” shall be understood to be open terms and any
lists the follow are examples and not meant to be limited to
the listed items. Any headings used herein are for organi-
zational purposes only and shall not be used to limit the
scope of the description or the claims. Each reference
mentioned in this patent document is incorporated by ref-
erence herein in its entirety.

[0019] Furthermore, one skilled in the art shall recognize
that: (1) certain steps may optionally be performed; (2) steps

2 <
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may not be limited to the specific order set forth herein; (3)
certain steps may be performed in different orders; and (4)
certain steps may be done concurrently.

A. Introduction

[0020] With the rise of large-scale knowledge graphs such
as Wikidata, Freebase, Dbpedia, and YAGO, question
answering (QA) over knowledge graph has become a crucial
topic and attracts massive attention. A knowledge graph
(KG) typically is a directed graph with real-world entities as
nodes and their relations as edges. In this graph, each
directed edge, along with its head entity and tail entity,
constitute a triple, i.e., (head entity, predicate, tail entity),
which is also named as a fact. Real-world knowledge graphs
may contain millions or billions of facts. Their large volume
and complex data structures make it difficult for regular
users to access the substantial and valuable knowledge in
them. To bridge the gap, Question Answering over Knowl-
edge Graph (QA-KG) is proposed. It targets trying to
automatically translate the end users’ natural language ques-
tions into structured queries such as SPARQL, and returning
entities and/or predicates in the KG as answers. For
example, given the question “Which Olympics was in Aus-
tralia?”, QA-KG aims to identify its corresponding two
facts, i.e., (Australia, olympics_participated_in, 1952/2004
Summer Olympics).

[0021] Question answering over knowledge graph pro-
vides a way for artificial intelligence systems to incorporate
knowledge graphs as a key ingredient to answer human
questions, with applications ranging from search engine
design to conversational agent building. However, the QA-
KG problem is far from solved since it involves multiple
challenging subproblems such as semantic analysis and
entity linking.

[0022] The effectiveness of knowledge graph embedding
in different real-world applications motivates exploring its
potential usage in solving the QA-KG problem in this patent
document. Knowledge graph embedding targets learning a
low-dimensional vector representation for each predicate/
entity in a KG, such that the original relations are well
preserved in the vectors. These learned vector representa-
tions may be employed to complete a variety of downstream
applications efficiently. Examples include KG completion,
recommender systems, and relation extraction. In this patent
document, embodiments of the knowledge graph embedding
are presented to perform QA-KG. The KG embedding
representations may advance the QA-KG in several ways.
They not only are within a low-dimensional space, but also
could promote the downstream applications to take the
entire KG into consideration, because even a single predi-
cate/entity representation is a result of interactions with the
whole KG. In addition, similar predicates/entities tend to
have similar vectors. This property may be used to help the
downstream algorithms handle predicates or entities that are
not in the training data.

[0023] However, it remains a nontrivial task to conduct
QA-KG based on the knowledge graph embedding. There
are three major challenges. First, a predicate often has
various expressions in natural language questions. These
expressions could be quite different from the predicate
names. For instance, the predicate person.nationality can be

expressed as “what is . . . ’s nationality”, “which country is
» <

... from”, “where is . . . from”, etc. Second, even assuming
that the entity names could be accurately identified, the
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ambiguity of entity names and partial names would still
make it difficult to find the correct entity, since the number
of candidates is often large. As the size of KG keeps
increasing, many entities would share the same names. Also,
end users could use partial names in their utterances. For
example, in the question “How old is Obama?”, only part of
the entity name Barack Obama is indicated. Third, the
domains of end users’ questions are often unbounded, and
any KG is far from complete. New questions might involve
predicates that are different from the ones in the training.
This makes demands on the robustness of the QA-KG
algorithms.

[0024] To bridge the gap, this patent document discloses
how to take advantage of the knowledge graph embedding
to perform question answering. In the present disclosure, a
focus is on the most common type of questions in QA-KG,
i.e., simple questions. A simple question is a natural lan-
guage question that only involves a single head entity and a
single predicate. Through analyzing the problem, three
research questions are answered: (i) How to apply the
predicate embedding representations to bridge the gap
between the natural language expressions and the KG’s
predicates?; (ii) How to leverage the entity embedding
representations to tackle the ambiguity challenge?; and (iii)
How to take advantage of the global relations preserved in
the KG embedding representations to advance the QA-KG
framework? Following these questions, the present docu-
ment discloses embodiments of a framework named Knowl-
edge Embedding based Question Answering (KEQA). In
summary, some key contributions of the present document
are as follows:

[0025] Formally define the knowledge graph embed-
ding based question answering problem.

[0026] Disclosure of embodiments of an effective
framework KEQA that answer a natural language ques-
tion by jointly recovering its head entity, predicate, and
tail entity representations in the knowledge graph
embedding spaces.

[0027] Design a joint distance metric that takes the
structures and relations preserved in the knowledge
graph embedding representations into consideration.

[0028] Empirically demonstrate the effectiveness and
robustness of KEQA embodiments on a large bench-
mark, i.e., SimpleQuestions.

B. Some Related Work

[0029] Some related works in various aspects are summa-
rized in this Section.

[0030] Embedding-based question answering over KG
attracts lots of attention recently. It is related to, but different
from, the presented KG embedding based question answer-
ing problem. The former relies on low-dimensional repre-
sentations that are learned during the training of the QA-KG
methods. The latter performs KG embedding to learn the
low-dimensional representations first, and then conducts the
QA-KG task. Yih et al. (Semantic Parsing via Staged Query
Graph Generation: Question Answering with Knowledge
Base. In ACL-IJCNLP) and Bao et al. (Constraint-Based
Question Answering with Knowledge Graph. In COLING.
2503-2514) reformulated the question answering problem as
the generation of particular subgraphs. A series of work
proposed to project questions and candidate answers (or
entire facts) into a unified low-dimensional space based on
the training questions, and measure their matching scores by
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the similarities between their low-dimensional representa-
tions. Some achieved this projection by learning low-dimen-
sional representations for all words, predicates, and entities,
based on the training questions and paraphrases of ques-
tions. Some achieved this projection by using the logical
properties of questions and potential facts, such as semantic
embedding and entity types. Several deep learning based
models achieved this projection by feeding words in ques-
tions into convolutional neural networks, LSTM networks,
or gated recurrent units neural networks. Das et al. (Question
Answering on Knowledge Bases and Text using Universal
Schema and Memory Networks. In ACL, 2017) achieved
this projection by using matrix factorization to incorporate
the corpus into the KG, and LSTM to embed a question.
Most of these models rely on the margin-based ranking
objective functions to learn the model weights. Several
works explored leveraging the character-level neural net-
works to advance the performance. Most recently, Moham-
med et al. (Strong Baselines for Simple Question Answering
over Knowledge Graphs with and without Neural Networks,
NAACL-HLT. 291-296) and Ture et al. (No Need to Pay
Attention: Simple Recurrent Neural Networks Work,
EMNLP. 2866-2872) considered each predicate as a label
category, and performed predicate linking via deep classi-
fication models.

[0031] Knowledge graph embedding targets at represent-
ing the high-dimensional KG as latent predicate and entity
representations P and E. Bordes et al. (Learning Structured
Embeddings of Knowledge Bases. 2011 AAAI) achieved
this goal by constructing two transform matrices M,,,,, and
M,,; for each type of predicate ¢, and minimizing the
distance between projections M,,,, £, and M, e, for all facts
(h,£t) with ¢ as predicate. Bordes et al. (Translating
Embeddings for Modeling Multi-relational Data. 2013
NIPS. 2787-2795) designed a translation-based model
TransE. It trains two matrices P and E, aiming to minimize
the overall distance Zlje,+ Ps —e/l,> for all facts (b, ,1).
Motivated by TransE, a series of translation-based models
have been explored. Wang et al. (Knowledge Graph Embed-
ding by Translating on Hyperplanes. 2014 AAAI) proposed
TransH to handle one-to-many or many-to-one relations.
Instead of measuring the distance between e, and e, directly,
TransH projects them into a predicate-specific hyperplane.
Lin et al. (Learning Entity and Relation Embeddings for
Knowledge Graph Completion. 2015 AAAI 2181-2187)
proposed TransR, which defines a transform matrix M, for
each predicate £ and targets at minimizing X|je, My + Pz —e,
M, |,>. Lin et al. (Modeling Relation Paths for Represen-
tation Learning of Knowledge Bases, 2015 EMNLP. 705-
814) proposed PTransE, which advances TransE via taking
multi-hop relations into consideration.

[0032] Efforts have also been devoted to incorporating the
semantic information in a corpus into KG embedding. Some
demonstrated that using pre-trained word embedding to
initialize KG embedding methods would enhance the per-
formance. Several work explored trying to advance TransE,
either via taking relation mentions in corpus into consider-
ation, or via projecting predicate/entity representations into
a semantic hyperplane learned from the topic model.
Attempts have also been made to apply TransE and
word2vec to model a KG and a corpus respectively, and then
fuse them based on anchors in Wikipedia, entity descrip-
tions, or contextual words of predicates/entities learned from
the corpus. Zhang et al. (Joint Semantic Relevance Learning
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with Text Data and Graph Knowledge. In Workshop on
Continuous Vector Space Models and their Compositional-
ity. 32-40) jointly embedded the KG and corpus via negative
sampling (Distributed Representations of Words and Phrases
and Their Compositionality, 2013 NIPS. 3111-3119). Xie et
al. (Representation Learning of Knowledge Graphs with
Entity Descriptions. 2016 AAAI 2659-2665) and Fan et al.
(Distributed Representation Learning for Knowledge
Graphs with Entity Descriptions, Pattern Recognition Let-
ters 93 (2017), 31-37) explored the semantic information in
entity descriptions to advance KG embedding.

C. Problem Statement

[0033]

[0034] In this patent document, an uppercase bold letter is
used to denote a matrix (e.g., W) and a lower case bold letter
to represent a vector (e.g., p). The i” row of a matrix P is
denoted as p,. The transpose of a vector is denoted as p”. The
£2 norm of a vector is denoted as |jp|l,. {p,} is used to
represent a sequence of vectors p,. The operation s=[x; h]
denotes concatenating column vectors x and h into a new
vector s.

[0035] Definition 1 (Simple Question) If a natural lan-
guage question only involves a single head entity and a
single predicate in the knowledge graph, and takes their tail
entity/entities as the answer, then this question is referred as
a simple question.

[0036] Some symbols in this patent document are sum-
marize in Table 1. (h,? ,t) is used to represent a fact, which
means that there exists a relation £ from a head entity h to
a tail entity t. Let § be a knowledge graph that consists of
a large number of facts. The total numbers of predicates and
entities are represented as M and N. The names of these
predicates and entities are given. In one or more embodi-
ments, a scalable KG embedding algorithm, such as TransE
and TransR, is applied to §, and the embedding represen-
tations of its predicates and entities denoted as P and E,
respectively, are obtained. Thus, the vector representations
of the i” predicate and j* entity are denoted as p, and €
respectively. The relation function defined by the KG
embedding algorithm is f(*), i.e., given a fact (h,?.,t), one
may have e~f(e,,P¢). Letting Q be a set of simple ques-
tions. For each question in Q, the corresponding head entity
and predicate are given.

Notations:

TABLE 1

Some symbols and their definition;

Notations Definitions

g a knowledge graph

(h,?,t) a fact, i.e., (head entity, predicate, tail entity)

Q a set of simple questions with ground truth facts
M total number of predicates in §

N total number of entities in §

d dimension of the embedding representations

P et M embedding representations of all predicates in§
E €4 Mxd embedding representations of all entities in§

£(®) relation function, given (h,? , t), = e, = f(e;, P¢)

Bect x4 predicted predicate representation

&, € x4 predicted head entity representation

HED Head Entity Detection model

HED.,. s, head entity name tokens returned by the HED
HED,,,, non entity name tokens returned by the HED
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[0037] The terminology simple question is defined in
Definition 1. A simple question may be answered by the
machine straightforwardly if its single head entity and single
predicate are identified. Given the conditions described
above, the knowledge graph embedding based question
answering problem is now formally defined as follows:

[0038] Given a knowledge graph § associated with all its
predicates” and entities’ names and embedding representa-
tions P & E, the relation function f(*), as well as a set of
simple questions Q associated with corresponding head
entities and predicates, embodiments of an end-to-end
framework are disclosed to take a new simple question as
input and automatically return the corresponding head entity
and predicate. Performance of the framework is evaluated by
the accuracy of predicting both head entity and predicate
correctly.

D. Embodiments of Knowledge Embedding Based
OA-KG

[0039] Simple questions constitute the majority of ques-
tions in the QA-KG problem. Each of them may be
answered by the tail entity/entities if the correct head entity
and predicate are identified. To accurately predict the head
entity and predicate, this patent document discloses embodi-
ments of a Knowledge Embedding based Question Answer-
ing (KEQA) framework, which is illustrated in FIG. 1. The
KG § 160 is already embedded into two low-dimensional
spaces (Predicate Embedding Space 140 and Entity Embed-
ding Space 150), and each fact (h, ,t) may be represented
as three latent vectors, ie., (e,, P¢, e). Thus, given a
question 110, as long as its corresponding fact’s e, and
P: may be predicted, this question may be answered 170
correctly. Instead of inferring the head entity and predicate
directly, KEQA embodiments target jointly recovering the
question’s head entity, predicate, and tail entity representa-
tions (&,,, P, &,) in the knowledge graph embedding spaces.

[0040] FIG. 2 depicts a method for question answering
with a KEQA framework, according to embodiments of the
present disclosure. In one or more embodiments, KEQA
achieves an answer via the following steps. (i) Based on the
questions in Q and their predicates’ embedding representa-
tions, KEQA trains (205) a predicate learning model 120 that
takes a question 110 as the input and returns a vector P that
lies in the KG predicate embedding space 140 as the
predicted predicate representation. Similarly, a head entity
learning model 130 is constructed to predict (210) the
question’s head entity representation &, in the KG entity
embedding space 150. (ii) Since the number of entities in a
KG is often large, KEQA employs a Head Entity Detection
model to reduce (215) the candidate head entities. A main
goal is to identify one or more tokens in the question as the
predicted head entity name, then the search space in § is
reduced from the entire entities to a number of entities with
the same or similar names. Then, &, is mainly used to tackle
the ambiguity challenge. (iii) Given the relation function ()
defined by the KG embedding algorithm, the KEQA
embodiment computes (220) the predicted tail entity repre-
sentation &,=f(&,, Pr ). The predicted predicate representation
P:, the predicted head entity representation ¢&,, and the
predicted tail entity representation &, form predicted fact (&,
P: ¢&,). Based on a carefully-designed joint distance metric,
the predicted fact (&,, P, , €,)’s closest fact in G is selected
(225) and returned as the question’s answer 170.
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1. Embodiments of Knowledge Graph Embedding

[0041] In one or more embodiments, the disclosed frame-
work KEQA employs the embedding representations of all
predicates P and entities E as the infrastructure. In one or
more embodiments, an existing KG embedding algorithm
may be utilized to learn P and E. Examples of existing KG
embedding methods that may be used include, but are not
limited to, TransE, TransR, TransH, etc.

[0042] Knowledge graph embedding aims to represent
each predicate/entity in a KG as a low-dimensional vector,
such that the original structures and relations in the KG are
preserved in these learned vectors. A core idea of most of the
existing KG embedding methods could be summarized as
follows. For each fact (h, €, t) in G, its embedding repre-
sentations is denoted as (e,, Ps, e,). The embedding algo-
rithm initializes the values of e;,, P¢, and e, randomly or
based on the trained word embedding models. Then, a
function f(-) that measures the relation of a fact (h, £, t) in
the embedding spaces is defined, i.e., e~f(e;, P¢). For
example, TransE defines the relation as eq~e,+Pys and
TransR defines it as e,Mp~e, My +Pyg, where M; is a
transform matrix of predicate €. Finally, the embedding
algorithm minimizes the overall distance between e, and
f(e,, Pe), for all the facts in §. A typical way is to define
a margin-based ranking criterion and train on both positive
and negative samples, i.e., facts and synthetic facts that do
not exist in G .

[0043] As shown in FIG. 1, the surface is defined where
the learned predicate representations {p,} fori=1, ..., M lie
in, as the predicate embedding space. The surface where
{e,} fori=1, ..., Nlie in is denoted as the entity embedding
space.

2. Embodiments of Predicate and Head Entity
Learning Models

[0044] Given a simple question, the objective is to find a
point in the predicate embedding space as its predicate
representation P, , and a point in the entity embedding space
as its head entity representations &,

[0045] In one or more embodiments, for all the questions
that can be answered by §, their predicates’ vector repre-
sentations should lie in the predicate embedding space.
Thus, an aim is to design a model that takes a question as the
input and returns a vector P, that is as close as possible to
this question’s predicate embedding representation P¢ . To
achieve this goal, a neural network architecture embodi-
ment, as shown in FIG. 3, is employed. In one or more
embodiments, the architecture mainly comprises a bidirec-
tional recurrent neural network layer 310 and an attention
layer 325. In one or more embodiments, the bidirectional
recurrent neural network layer 310 is a bidirectional long
short-term memory (LSTM). A core idea is to take the order
and the importance of words into consideration. Words with
different orders could have different meanings, and the
importance of words could be different. For example, the
entity name related words in a question often have less
contribution to the predicate learning model.

[0046] Neural Network Based Predicate Representation
Learning.
[0047] To Predict the Predicate of a question, a traditional

solution is to learn the mapping based on the semantic
parsing and manually-created lexicons, or simply consider
each type of predicate as a label category to transform it into
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a classification problem. However, since the domains of end
users’ questions are often unbounded, a new question’s
predicate might be different from all the ones in the training
data. The traditional solutions could not handle this scenario.
In addition, it is observed that the global relation information
preserved in P and E is available and could be potentially
used to improve the overall question answering accuracy. To
bridge the gap, embodiments of a predicate learning model
based on neural networks are set forth herein.

[0048] With the long short-term memory (LSTM) as a
typical example of the recurrent neural network, FIG. 3
illustrates the architecture of predicate and head entity
learning models, according to one or more embodiments of
the present disclosure. FIG. 4 depicts a method for predict-
ing a predicate of an input question using a predicate and
head entity learning model, according to embodiments of the
present disclosure. Given a question with length L, its L
tokens are first mapped (405) into a sequence of word
embedding vectors {x,} 305, for j=1, . . ., L, based on a
pre-trained model, such as GloVe (Pennington, et al., GloVe:
Global Vectors for Word Representation, In EMNLP. 1532-
1543), although other embedding techniques may be
employed. Then, a bidirectional LSTM 310 is employed

(410) to learn a forward hidden state sequence (IZ, I;, .

—> — —
, hy) and a backward hidden state sequence (h,, h;, .. .,

by ). Taking the backward one as an example, {ilj} are
computed via the following equations.

JroW, i+ thilj +1+b) (D

=W X+ Wy i‘j +1+b)) 2)

o0=0(W, x+W,, i‘j +1+b,) 3)

€T 0C; 1+ tanh(I/VXij+thilj 1+b,) 4

ilJ' =0,0 tanh(c)) ®
[0049] where f, i, and o, are the forget, input, and output

gates’ activation vectors respectively. c; is the cell state
vector. 0 and tanh are the sigmoid and Hyperbolic tangent
functions. o denotes the Hadamard product. Concatenating
(415) the forward and backward hidden state vectors, one

may obtain concatenated hidden state vector hj:[Hj; i1]']
315.

[0050] In one or more embodiments, the attention weight
320 of the j* token, i.e., o, is calculated based on the
following formulas:

__explg)) (6)
Tz explg))
q; = tanh(w" [xj; h;]+ by) €]

[0051] where b, is a bias term. The attention weight o
may be applied (420) to h, to obtain a weighted hidden state
vector, which is then concatenated (425) with the word
embedding x, resulting a hidden state s =[x; ah] 325. A
fully connected layer is then applied (430) to s, and its

result, rER !, is denoted as the target vector 330 of the j”
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token. The predicted predicate representation P, 335 may
be computed (435) as the mean of all tokens” target vectors,
that is:

1 ®

-

s L
Pe= zzjzlrj

[0052] In one or more embodiments, all the weight matri-
ces, weight vector w, and bias terms are calculated based on
the training data, i.e., questions Q in and their predicates’
embedding representations.

[0053] Neural Network based Head Entity Learning
Model.
[0054] In one or more embodiments, given a question,

instead of inferring the head entity directly, a target is
recovering its representation in the KG embedding space.
Thus, a goal of the head entity learning model is to compute
a vector &, that is as close as possible to this question’s head
entity embedding representation. Similar to the computation
of P, , the same neural network architecture in FIG. 3 may
be used to obtain the predicted head entity representation &,,.
[0055] However, the number of entities in a KG is often
large, and it could be expensive and noisy when comparing
¢, with all entity embedding representations in E. To make
the learning more efficient and effective, KEQA embodi-
ments may employ a head entity detection model to reduce
the number of candidate head entities.

3. Embodiments of Head Entity Detection Model

[0056] In this step, the goal is to select one or several
successive tokens in a question, as the name of the head
entity, such that the search space could be reduced from the
entire entities to a number of entities with the same or
similar names. Then the main role of &, would become
handling the ambiguity challenge.

[0057] In one or more embodiments, to make the frame-
work simple, a bidirectional recurrent neural network (e.g.,
LSTM) based model is employed to perform the head entity
token detection task. FIG. 5 shows an architecture of a Head
Entity Detection (HED) model, according to one or more
embodiments of the present disclosure. As shown in FIG. 5,
the HED model comprise a bidirectional LSTM 510 and a
fully connected layer 520. The HED model has a similar
structure to the one in predicate/head entity learning models,
but without the attention layer.

[0058] FIG. 6 depicts a method for identifying one or more
head entities of an input question using a HED model,
according to one or more embodiments of the present
disclosure. In one or more embodiments, the question is first
mapped (605) into a sequence of word embedding vectors
{x;},forj=1,...,L, and then a bidirectional recurrent neural
network is applied (610) to x; to learn a forward hidden state

sequence Hl and a backward hidden state sequence i1j . The
forward and backward hidden states are concatenated (615)

into a concatenated hidden state hj:[Hj; ]. A fully connected
layer and a softmax function are then applied (620) to h,,
resulting the target vector v ER 2*1 The two values in v, are
corresponding to the probabilities that the j” token belongs
to the two label categories, i.e., entity name token and
non-entity name token. In such a way, each token is classi-
fied and one or several tokens are recognized as the head
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entity name. These tokens are denoted as HED,,,,,,,,, and the
remaining tokens in the question are denoted as HED, .
One or more tokens are selected (625) as the head entity
name based on probability value of each token belonging to
entity name token.

[0059] In one or more embodiments, the questions in Q
and their head entity names are used as the training data to
train the HED model. Since entity name tokens in these
questions are successive, the trained model would also
return successive tokens as HED,, ... with a high probability.
If discrete HED,, ;... is returned, then each successive part
would be considered as an independent head entity name. It
should be noted that HED,,,,;,, might be only part of the
correct head entity name. Thus, all entities that are the same
as or contain HED,, ;,, would be included as the candidate
head entities, which might still be large since many entities
would share the same names in a large KG.

4. Embodiments of Joint Search on Embedding
Spaces

[0060] For each new simple question, with its predicate
and head entity representations P, and &,, as well as its
candidate head entities being predicted, the goal is to find a
fact in G that matches these learned representations and
candidates the most.

[0061] Joint Distance Metric.

[0062] Ifa fact’s head entity belongs to the candidate head
entities, it is named as a candidate fact. Let C be a set that
collects all the candidate facts. To measure the distance
between a candidate fact (h,? .t) and the predicted represen-
tations (&, Py ), an intuitive solution is to represent (h, € .t)
as (e,, P¢ ) and define the distance metric as the sum of the
distance between e, and €;, and distance between P¢ and Pe .
This solution, however, does not take the meaningful rela-
tion information preserved in the KG embedding represen-
tations into consideration.

[0063] In one or more embodiments, a joint distance
metric used that takes advantage of the relation information
e~f(e,, Pr ). Mathematically, the proposed joint distance
metric may be defined as:

minimize||p; — P,ll, + en —&yll, + en, —2l, — %
ninimiz [1pe = Poll, + Billen = éxlly + Ball fens pe) —&illy

Basim[n(h), HED ensiry]| — Basim[n({), HEDyon)

[0064] where é=f(€,,Ps). Function n(-) returns the name
of the entity or predicate. HED,,,;,, and HER,,,,, denote the

HON

tokens that are classified as entity name and non-entity name
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by the HED model. Function sim].,.] measures the similarity
of two strings. B, B2, B3, and p, are predefined weights to
balance the contribution of each term. In one or more
embodiments, £ 2 norm is used to measure the distance, and
it is straightforward to extend to other vector distance
measures.

[0065] The first three terms (which may be referred to as
vector distance terms in Eq. (9) measure the distance
between a fact (h, £ .t) and the prediction in the KG embed-
ding spaces. In one or more embodiments, f(e,, P¢ ) is used
to represent the tail entity’s embedding vector, instead of e,.
In other words, the tail entity embedding vector of the
candidate fact used in the joint distance metric is calculated
using the defined function f(-) defined by the KG, from a
head entity embedding vector and a predicate embedding
vector of the candidate fact. This is because in a KG, there
might be several facts that have the same head entity and
predicate, but different tail entities. Thus, a single tail entity
e, might not be able to answer the question. Meanwhile, f(e,,
Pz ) matches the predicted tail entity €, since it is also
inferred based on f(*). It is tended to select a fact with head
entity name exactly the same as HED,,,,;,,, and with predi-
cate name mentioned by the question. In one or more
embodiments, these two goals are achieved via the fourth
and fifth terms (referred as string similarity terms in Eq. (9)
respectively. In one or more embodiments, the string simi-
larity terms are incorporated in the joint distance metric to
help select a fact with the head entity name exactly the same
as HED,,,,,, and with predicate name mentioned by the
question. The fact (h*, £ *,t*) that minimizes the objective
function is returned.

[0066] Knowledge Embedding based Question Answer-
ing.
[0067] The entire processes of a KEQA embodiments is

summarized in Methodology 1. Given a KG § and a ques-
tion set Q with corresponding answers, a predicate learning
model, a head entity learning model, and a HED model are
trained, as shown from line 1 to line 9. Then, for any new
simple question Q, it is input into the trained predicate
learning model, head entity learning model, and HED model
to learn its predicted predicate representation Pr head entity
representation &,, entity name tokens HED,,, . and non-
entity name tokens HED, . Based on the learned entity
name/names in HED,, ..., the entire § is searched to find the
candidate fact set C. For all facts in C, their joint distances
to the predicted representations (€,,P,8,) are computed
based on the objective function in Eq. (9). The fact (h*, £ ,t*)
with the minimum distance is selected. Finally, the head
entity h* and predicate € * are returned as the answer of Q.

Methodology 1: A KEQA framework embodiment

Input: G, predicates’ and entities’ names, P, E, Q, a new simple question Q.

Output: head entity h* and predicate &

/*Training the predicate learning model: */

1 for Q;in Q do

2 Take the L tokens of Q, as the input and its predicate € as the label to train, as
| shown in Figure 3;

3 | Update weight matrices {W}, w, {b}, and b, to minimize the predicate objective

function

1L
P — ZZ'{
=

2

/*Training the head entity learning model: */

4 for Q;in Q do






