

Temporal Augmented Graph Neural Networks for Session-Based Recommendations

Huachi Zhou,[†] Qiaoyu Tan,[†] Xiao Huang, [†] Kaixiong Zhou[‡] and Xiaoling Wang[§]

[†] The Hong Kong Polytechnic University, Kowloon, HK

^{*} Texas A&M University, College Station, TX, USA

[§] East China Normal University, Shanghai, CHN

Emails: huachi.zhou@connect.polyu.hk, {qiaoytan,xiao.huang}@polyu.edu.hk, zkxiong@tamu.edu, xlwang@cs.ecnu.edu.cn

Dynamic User Interest

- Definition : Session-based recommendation aims to predict the next item clicked by an anonymous user.
- Numerous historical session records have been accumulated, and user interests would drift when the time span is large

Dynamic User Interest

- Modeling all historical sessions at one time or conducting offline retraining regularly is not efficient.
- $\blacktriangleright \quad \text{We aim to} \quad$
 - Propose a memory efficient model which could process continuously growing session records.
 - Track the latest overall user interest in time.

TASREC Framework

- > To infer the target item for a session in day t (e.g., t = 3), we construct the session graph and apply GGNN on it.
- To utilize day 1 and day 2 data, we construct a temporal graph in an iterative way and GCN is utilized to learn the high-order item interactions.

TASREC Framework

- ➢ Given two embeddings for an item, we add them together and the attention mechanism is utilized to summarize the session.
- The prediction layer will generate scores for each candidate item.

Experimental Settings

- Remove sessions with less than 2 interacted behaviors and delete items with less than 5 interactions.
- ➢ Given a session record s = {i₁, i₂, ..., i₁}^l_{t=2}, we generate a set of training samples {(i₁, ..., i_{t-1}), i_t}.
- To simulate the temporal training environment, we split data of the first $\frac{5}{6}$ and the last $\frac{1}{6}$ days into training and testing sets.
- > Two categories of baselines
 - Static model: GRU4REC, SR-GNN, and LESSR
 - Temporal model: CSRM

Experimental Results

Method	Aotm			Diginetica			Retailrocket		
	Recall@20	Recall@50	NDCG@100	Recall@20	Recall@50	NDCG@100	Recall@10	Recall@20	NDCG@100
GRU4REC	1.70	3.64	1.32	28.90	40.02	15.66	17.41	23.11	12.75
SR-GNN	3.82	6.94	2.73	48.74	65.37	28.41	36.34	45.58	28.93
CSRM	3.97	7.30	2.86	48.88	66.90	28.34	37.43	47.56	28.43
LESSR	3.11	5.58	2.31	49.59	66.12	29.03	37.97	46.59	29.84
TASRec	4.42	7.71	3.08	50.39	67.27	29.48	39.08	48.16	30.36
Improv.	11.34%	5.62%	7.69%	1.61%	0.55%	1.55%	2.92%	1.26%	1.74%
		Mode	el Recalle	@10 Recal	l@20 Reca	all@50 NDC	CG@100		
		TASRec-t	temp 36.7	3 46.	.65 58	8.40 2	7.55		
		TASRec-base 36.0		0 45.	.45 50	6.49 2	8.84		
		TASR	ec 39.0	8 48.	.16 59	9.48 3	0.36		

- TASRec performs consistently better than other baselines across three datasets.
- TASRec achieves significantly better performance than its two variants