Temporal Augmented Graph Neural Networks for Session－Based Recommendations

Huachi Zhou，${ }^{\dagger}$ Qiaoyu Tan，${ }^{\dagger}$ Xiao Huang，${ }^{\dagger}$ Kaixiong Zhou ${ }^{\ddagger}$ and Xiaoling Wang ${ }^{\S}$

${ }^{\dagger}$ The Hong Kong Polytechnic University，Kowloon，HK
${ }^{\ddagger}$ Texas A\＆M University，College Station，TX，USA
§ East China Normal University，Shanghai，CHN
Emails：huachi．zhou＠connect．polyu．hk，\｛qiaoytan，xiao．huang\}@ polyu.edu.hk, zkxiong＠tamu．edu，xlwang＠cs．ecnu．edu．cn

Dynamic User Interest

$>$ Definition : Session-based recommendation aims to predict the next item clicked by an anonymous user.
$>$ Numerous historical session records have been accumulated, and user interests would drift when the time span is large

This man now prefer fashionable clothes with patterns.

Dynamic User Interest

> Modeling all historical sessions at one time or conducting offline retraining regularly is not efficient.
$>$ We aim to

- Propose a memory efficient model which could process continuously growing session records.
- Track the latest overall user interest in time.

TASREC Framework

$>$ To infer the target item for a session in day $t(e . g ., t=3)$, we construct the session graph and apply GGNN on it.
$>$ To utilize day 1 and day 2 data, we construct a temporal graph in an iterative way and GCN is utilized to learn the high-order item interactions.

TASREC Framework

$>$ Given two embeddings for an item, we add them together and the attention mechanism is utilized to summarize the session.
$>$ The prediction layer will generate scores for each candidate item.

Experimental Settings

$>$ Remove sessions with less than 2 interacted behaviors and delete items with less than 5 interactions.
$>$ Given a session record $s=\left\{i_{1}, i_{2}, \ldots, i_{l}\right\}_{t=2}^{l}$, we generate a set of training samples $\left\{\left(i_{1}, \ldots, i_{t-1}\right), i_{t}\right\}$.
$>$ To simulate the temporal training environment, we split data of the first $\frac{5}{6}$ and the last $\frac{1}{6}$ days into training and testing sets.
$>$ Two categories of baselines

- Static model: GRU4REC, SR-GNN, and LESSR
- Temporal model: CSRM

Experimental Results

Model	Recall@10	Recall@20	Recall@50	NDCG@100
TASRec-temp	36.73	46.65	58.40	27.55
TASRec-base	36.60	45.45	56.49	28.84
TASRec	$\mathbf{3 9 . 0 8}$	$\mathbf{4 8 . 1 6}$	$\mathbf{5 9 . 4 8}$	$\mathbf{3 0 . 3 6}$

$>$ TASRec performs consistently better than other baselines across three datasets.
$>$ TASRec achieves significantly better performance than its two variants

