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Abstract—Graph contrastive learning (GCL) has emerged as an effective tool to learn representations for whole graphs in the absence
of labels. The key idea is to maximize the agreement between two augmented views of each graph via data augmentation. Existing
GCL models mainly focus on applying identical augmentation strategies for all graphs within a given scenario. However, real-world
graphs are often not monomorphic but abstractions of diverse natures. Even within the same scenario (e.g., macromolecules and
online communities), different graphs might need diverse augmentations to perform effective GCL. Thus, blindly augmenting all graphs
without considering their individual characteristics may undermine the performance of GCL arts. However, it is non-trivial to achieve
personalized allocation since the search space for all graphs is exponential to the number of graphs. To bridge the gap, we propose the
first principled framework, termed as Graph contrastive learning with Personalized Augmentation (GPA). It advances conventional GCL
by allowing each graph to choose its own suitable augmentation operations. To cope with the huge search space, we design a tailored
augmentation selector by converting the discrete space into continuous, which is a plug-and-play module and can be effectively trained
with downstream GCL models end-to-end. Extensive experiments across 10 benchmark datasets from different types and domains
demonstrate the superiority of GPA against state-of-the-art competitors. Moreover, by visualizing the learned augmentation
distributions across different types of datasets, we show that GPA can effectively identify the most suitable augmentations for each
graph based on its characteristics. The code is available at https://github.com/qiaoyu-tan/GPA.

Index Terms—Graph Contrastive Learning, Personalized Augmentation, Graph Neural Networks.

✦

1 INTRODUCTION

G RAPH contrastive learning (GCL) could learn effective
representations of graphs [1] in a self-supervised man-

ner. It attracts considerable attention [2], [3], [4], [5], given
that labels are not available in many real-world networked
systems. The core idea of GCL is to generate two augmented
views for each graph by perturbing it, and then learn repre-
sentations via maximizing the mutual information between
the two views [6], [7]. Existing efforts can be roughly di-
vided into two categories, i.e., node-level [8], [9] and graph-
level [10]. In this paper, we focus on the latter.

The performance of GCL is known to be heavily affected
by the chosen augmentation types [1], [11], [12], since dif-
ferent augmentations may impose different inductive biases
about the data. Intensive recent works have been devoted
to exploring effective augmentations for different graph
scenarios [8], [10], [13], [14]. Typical augmentation strategies
include node dropping, edge perturbation, subgraph sam-
pling, and attribute masking. The best augmentation option
is often data-driven and varies in graph scales or types [11],
[12]. For example, [11] reveals that edge perturbation may
benefit social networks but hurt biochemical molecules.
Therefore, manually searching augmentation strategies for
a given scenario would involve extensive trials and efforts,
hindering the practical usages of GCL. Several studies have
been proposed to address this issue by automating GCL.

Despite the recent advances, existing GCL might be sub-
optimal for augmentation configuration, since they apply a
well-chosen but identical augmentation option to all graphs

Augmenta)on Strategies:
1  →  Original
2 →  Node Dropping
3 →  Edge Perturba)on
4 →  Subgraph Sampling
5 →  AAribute Masking

E.g., 𝐴!,# means Edge Perturba)on 
vs AAribute Masking

Fig. 1. The effect of different augmentation strategies toward four ran-
domly sampled graphs from MUTAG. X-axis denotes the id of augmen-
tation pair. Y-axis is the graph id. The color represents the performance.
The darker the color is, the better performance GCL achieves under the
corresponding augmentation strategies.

in a dataset. The rationale is: graphs in a scenario usually
have different properties because the characteristics of real-
world graphs are complex and diverse [15], [16], [17]. For
example, by slightly changing the structure of a molecular
graph, its target function could be completely different [18].
Similar observations have also been found in many other
graph domains, such as social communities and protein-
protein interaction networks [19]. Motivated by these ob-
servations, a natural question arises: What are the impacts of
different augmentation strategies on a given graph (an instance
in a graph dataset)? Can we build a stronger automated GCL by
allowing each graph instance to choose its favorable augmentation
types?

To understand the first question, we conduct a pilot
study on the MUTAG dataset to test how different augmen-
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tation types impact the GCL results. Results in Fig. 1 show
that different graphs favor distinct perturbation operations
to achieve their best performance. For example, graph 1
performs better when using edge perturbation vs. attribute
masking, while graph 2 prefers original vs. node dropping.
Such personalized phenomenon of graph instances, in terms
of their desirable augmentation strategies, has never been
explored in GCL. To bridge the gap, in this paper, we
propose to develop an effective augmentation selector to
identify the most informative perturbation operators for
different graphs when performing GCL on a specific dataset.

However, it is a non-trivial and challenging task to
perform personalized augmentations in GCL because of two
major reasons. First, unlike the traditional GCL setting, the
search space in our personalized scenario grows exponen-
tially with the number of graphs N in a dataset. This search
space is intolerable in practice since N could be thousands
or even tens of thousands [20]. As a result, the conventional
trial-and-error approach cannot be directly applied because
each trail itself (i.e., testing an augmentation option for
a dataset) is time-consuming. Second, the augmentation
choices and GCL model naturally depend on and reinforce
each other since the contrastive loss consists of augmented
views and GCL encoder. That is, learning a better GCL
requires well-chosen augmentation strategies [11], while
selecting suitable augmentation operators needs the signals
of GCL as feedback [10]. Thus, how to perform the effective
personalized augmentation selector on a premise of such
mutual effect is another challenge.

To tackle the aforementioned challenges, we propose a
novel contrastive learning framework, dubbed GPA. Specif-
ically, we aim to investigate two research questions. 1) What
are the impacts of different augmentation strategies on a
given graph (an instance in a graph dataset)? 2) Can we
build a stronger automated GCL by allowing each graph
instance to choose its favorable augmentation types? GPA
works by iteratively updating a personalized augmentation
selector and the GCL method, where the former aims to
identify optimal augmentation types for each graph in-
stance, and the latter is trained according to an instance-
level contrastive loss defined on those assigned augmen-
tation options. Our main contributions are highlighted as
follows.

• We focus on augmentation selection for graph con-
trastive learning, and propose an effective personal-
ized augmentation framework (GPA). To the best of
our knowledge, GPA is the first to assign personal-
ized augmentation types to each graph based on its
own characteristic when performing GCL. Moreover,
we automate the personalized augmentation process,
equipping GPA with broader applicability and prac-
ticability.

• To cope with the huge search space, we develop
a personalized augmentation selector to effectively
infer optimal augmentation strategies by relaxing the
discrete space to be continuous. To exploit the mutual
reinforced effect between augmentation strategies
and GCL, GPA is formulated as a bi-level optimiza-
tion, which learns the augmentation selector and
GCL method systematically.

• We conduct extensive experiments to evaluate GPA
on multiple graph benchmarks of diverse scales and
types. Empirical results demonstrate the superiority
of GPA against state-of-the-art GCL competitors.

2 RELATED WORK

There are three lines of research that are closely related
to our work, namely, graph representation learning, con-
ventional graph contrastive learning and automated graph
contrastive learning. In this section, we briefly review some
related works in these three fields. For comprehensive re-
view, please refer to [21], [22] and [23].

2.1 Graph Representation Learning

With the rapid development of graph neural networks
(GNNs), a large number of GNN-based graph representa-
tion learning frameworks have been proposed [23], [24],
[25], [26], [27], [28], [29], which exhibit promising perfor-
mance. Typically, these methods can be divided into su-
pervised and unsupervised categories. While supervised
methods [25], [30], [31], [32], [33], [34] achieve empirical
success with the help of labels, reliable labels are often scarce
in real-world scenarios. Thus, unsupervised graph learning
approaches [35], [36], [37], [38] have broader application
potential. For example, one of the well-known methods is
GAE [35] which learns graph representations by reconstruct-
ing the network structure under the autoencoder approach.
Another popular approach GraphSAGE [37] aims to train
GNNs by a random-walk based objective.

2.2 Conventional Graph Contrastive Learning

Graph contrastive learning (GCL) has attracted significant
attention in the past two years for self-supervised graph
learning [39], [40]. It learns GNN encoder by maximizing
the agreement between representations of a graph in its
different augmented views, so that similar graphs are close
to each other, while dissimilar ones are spaced apart. Many
GCL efforts have been devoted to node level [7], [9], [41],
subgraph level [42], [43], and graph level [11], [44] scenarios,
where the key challenge lies in designing effective graph
augmentations. Recently, GraphCL [11] introduced four
types of graph augmentations, including node dropping,
edge perturbation, sub-graph sampling, and node attribute
masking, and showed that different graph applications may
favor different augmentation combinations. However, the
optimal augmentation configuration for a given dataset is
mainly determined by either domain experts or extensive
trial-and-errors, thus it limits the broader applications of
GCL in practice. In parallel, some studies focus on other
types of graphs, such as Knowledge Graph [45], [46].

2.3 Automated Graph Contrastive Learning

Recently, some automated GCL methods have been pro-
posed to seek the optimal augmentation without repetitive
trials. These methods can be roughly categorized into two
types.

One is GCL with view generation, which targets to train
a view generator to predict the edge or node probabilities
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of the original graph and then generate augmented views
by sampling edges or nodes based on the possibilities [47].
Two SOTA models in this type are AD-GCL [48] and Au-
toGCL [49]. Despite its effectiveness, this type of work is
limited to simple augmentation strategies, i.e., edge drop-
ping or node masking, and further loses its applicability
to complex graphs and scenarios. In our experiments, we
include AD-GCL and AutoGCL as representatives of this
type since their empirical results are generally better than
the work in [47].

The other type, GCL with augmentation selection,
avoids the limitation of applicability by adopting prede-
fined augmentation strategies. Specifically, the predefined
augmentation strategies include simple ones such as node
dropping and edge masking and complicated ones like
sampling subgraph and motif-based augmentation. Thus,
instead of training view generators, this category of work
focuses on selecting optimal strategies. A typical model in
this category is JOAO [10]. It automatically selects the ideal
augmentation strategies for each dataset via assigning each
augmentation strategy a projection head and learning the
importance of each head.

2.4 Comparison of GPA and JOAO

While JOAO and GPA all focus on training GraphCL in an
automated fashion, they differ in two crucial ways: 1) The
research problem is different. In general, JOAO’s primary
goal is to find the optimal augmentation strategies for a
dataset, focusing on a dataset-level perspective. In contrast,
GPA addresses the challenge at the graph level, aiming
to identify the most suitable augmentation strategies for
individual graphs within a dataset. This distinction allows
GPA to achieve greater granularity and adaptability, as it
tailors augmentation strategies according to the specific
characteristic of each graph instance. By focusing on indi-
vidual graphs, GPA achieves a level of customization that is
pivotal in enhancing the performance of GraphCL models
in diverse graph datasets. Specifically, JOAO learns a shared
sampling distribution for a given dataset, but GPA learns a
sampling vector for each instance (i.e., graph) in the dataset.
Notably, due to randomness, JOAO can sample different
augmentations to different graphs to some extent. However,
since the sampling distribution is fixed, it is “fake” person-
alization because it does not consider the characteristics of
different graphs. In contrast, GPA could explicitly generate
the personalized sampling vector to each graph, which is
tailored and more challenging as the augmentation space
grows exponentially to the dataset size. 2) The sampler
optimization process is different. JOAO adopts a sampling-
based approach to directly train a K-dimensional sampling
distribution parameters. However, such a solution cannot
be applied to our personalized scenarios because i) the
total trainable parameters will be linear to the size of the
dataset, i.e., K × |V|, where V is the dataset; and ii) it is
restricted to transductive settings and cannot generate dis-
tribution vectors for new graphs, i.e., unseen graphs during
training. To this end, we adopt a new approach to achieve
personalized augmentation allocation by parameterizing the
sampler as a neural network taking the topology structure
and node attributes of a graph as input. It reduces the

trainable parameters of the sampler to be independent of
the size of the dataset.

3 PROBLEM STATEMENT

Notation. Let G = {Gn : 1 ≤ n ≤ N} denote a graph
set with N sample graphs, where Gn = (V, E) ∈ G stands
for an undirected graph with nodes V and edges E . Each
node v ∈ V in Gn is described by an F -dimensional feature
vector Xv ∈ RF . We use A = {Ak : 1 ≤ k ≤ K} to
denote a set of data augmentation operators, where K is the
maximum number of augmentation types of interest. Each
augmentation operator Ak : Gn → G̃n transforms a graph
into its conceptually similar form with certain prior. In
previous GCL studies, they focus on identifying two optimal
augmentation types for the whole dataset G, such as the
augmentation pair Ai,j = (Ai, Aj), where Ai, Aj ∈ A. The
optimal augmentation pair here is often manually picked
via rules of thumb or trial-and-error. However, as shown
in Fig. 1, different graphs within the dataset may favor
different augmentation combinations. Therefore, we study
personalized augmentation selection, i.e., to identify the op-
timal augmentation strategies for each graph, and formally
define the research problem as below.
Definition 1. Personalized augmentation selection. Given

a set of graphs G = (Gn : 1 ≤ n ≤ N), and the
augmentation space A = {Ak : 1 ≤ k ≤ K} consisting
of K different augmentation types, to perform GCL,
personalized augmentation selection aims to find the
optimal augmentation pair An

i,j = (An
i , A

n
j ) for each

graph Gn ∈ G. The values of i and j are determined
by the characteristic of the n-th sample graph Gn.

4 METHODOLOGY

In this section, we present the details of the proposed
GPA shown in Fig. 2. In a nutshell, it contains two critical
components: the personalized augmentation selector and the
GCL model. The former module aims to infer augmentation
choices for the downstream GCL methods when training
them on the training set, while the latter provides reward
to update the augmentation selector based on the validation
set. In the following, we first illustrate the exponential selec-
tion space of our personalized augmentation setting. Then,
we elaborate the details of the augmentation selector and
the GCL method. Finally, we show how to jointly optimize
the two components in a unified perspective.

4.1 Personalized Augmentation Selection Space
Given the graph dataset G = {Gn : 1 ≤ n ≤ N} and a
pool of augmentation operators A = {A1, A2, · · · , AK},
existing GCL efforts aim to select two informative operators
(e.g., (Ai, Aj | 1 ≤ i, j ≤ K)) for N graphs to create
their augmented views. Since the augmentation operators
are shared for the whole dataset, the total selection space
is

(K+1
2

)
, i.e., sampling two operators with replacement.

This collective selection strategy is widely adopted in
existing GCL works. However, as discussed before, various
sample graphs may favor different augmentation operators
owing to the diversity of graph-structured data. Therefore,
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Fig. 2. Illustration of our GPA framework. The personalized augmentation selector infers the two most informative augmentation operators, and the
GCL model trains GNN encoder based on the sampled augmented views. Specifically, the personalized augmentation selector is learned to adjust
its selection strategy to infer optimal augmentations on each graph, according to the characteristic of each graph and the GCL model ’s performance,
i.e., loss.

we propose to adaptively choose two augmentation
strategies for different graphs. Following Definition 1,
we define the selected augmentations for each graph Gn

as An
i,j = (An

i , A
n
j ). Then, the potential augmentation

selection size for each graph is
(K+1

2

)
, and the total

selection space for the whole dataset equals to
(K+1

2

)N
.

Although K is empirically small (e.g., K = 5) in GCL
domain, the total selection space in our personalized setting
is still huge and intractable, since the complexity grows
exponentially to the number of graphs. For instance, when
K = 5 and N = 100, we already have 15100 selection
configurations roughly. The situation is more serious
in real-world scenarios where N is thousands or even
tens of thousands. In this paper, we adopt five essential
augmentation operators (i.e. K = 5), denoted by A =
{Identical,NodeDrop,EdgePert,Subgraph,AttMask}.
These augmentations are initially proposed by the
pioneering work [11], and have been demonstrated to
be effective for contrastive learning [10]. The augmentation
pairs are shown in Table 1, and the details of these
augmentations are listed below.

• NodeDrop. Given the graph Gn, NodeDrop ran-
domly discards a fraction of the vertices and their
connections. The dropping probability of each node
follows the i.i.d. uniform distribution. The underly-
ing assumption is that missing part of vertices does
not damage the semantic information of Gn.

• EdgePert. The connectivity in Gn is perturbed
through randomly adding or dropping a certain
portion of edges. We also follow the i.i.d. uniform
distribution to add/drop each edge. The underlying
prior is that the semantic meaning of Gn is robust to
the variance of edges.

• AttMask. AttMask masks the attributes of a certain
proportion of vertices. Similarly, each node’s mask-
ing possibility follows the i.i.d. uniform distribution.
Attribute masking implies that the absence of some
vertex attributes does not affect the semantics of Gn.

TABLE 1
Distinct graph augmentation pairs.

Ai,j Ai, Aj Augmentation Augmentation
A1,1 A1,A1 Identical Identical
A1,2 A1, A2 Identical Node Dropping
A1,3 A1, A3 Identical Edge Perturbation
A1,4 A1, A4 Identical Subgraph
A1,5 A1, A5 Identical Attribute Masking
A2,2 A2, A2 Node Dropping Node Dropping
A2,3 A2, A3 Node Dropping Edge Perturbation
A2,4 A2, A4 Node Dropping Subgraph
A2,5 A2, A5 Node Dropping Attribute Masking
A3,3 A3, A3 Edge Perturbation Edge Perturbation
A3,4 A3, A4 Edge Perturbation Subgraph
A3,5 A3, A5 Edge Perturbation Attribute Masking
A4,4 A4, A4 Subgraph Subgraph
A4,5 A4, A5 Subgraph Attribute Masking
A5,5 A5, A5 Attribute Masking Attribute Masking

• Subgraph. This augmentation method samples a
subgraph from the given graph Gn based on random
walk. It believes that most of the semantic meaning
of Gn can be preserved in its local structure.

In summary, by considering personalized augmenta-
tion, the search space per dataset increases from

(K+1
2

)
to(K+1

2

)N
. Therefore, common selection techniques such as

rules of thumb or trial-and-errors adopted by prior GCL
approaches [10], [11] are no longer appropriate. Thus, a
tailored augmentation selector is needed to effectively tackle
the challenging personalized augmentation problem.

4.2 Personalized Augmentation Selector
In order to assign different augmentation operators to var-
ious sample graphs when performing GCL on a specific
dataset, random selection is the intuitive solution. Its key
idea is to randomly sample two augmentation types for each
graph from the candidate set. Despite the simplicity, the ran-
dom selection approach fails to control the quality of sam-
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pled augmentation operators. Therefore, directly coupling
the existing GCL framework with random augmentation
selection would lead to performance degradation (shown
as the variant: GPA-random in Sec. 5.4).

To address this issue, we focus on data-driven search by
making the augmentation selection process learnable. The
principle idea is to parameterize our personalized augmen-
tation selector with a deep neural network, which takes a
query graph as input and outputs its optimal augmentation
choices. There are two main hurdles to achieve this goal:
(i) given the exponential augmentation space, how can we
make our personalized augmentation selector scale to the
real-world dataset with thousands of graphs; (ii) since the
topology structure and node attributes are crucial to graph-
structured data, how can our personalized augmentation
selector exploit this information to produce a more precise
augmentation choice? We illustrate our dedicated solutions
below.

Given the augmentation pool A = {Ai : 1 ≤ i ≤ K}
and a query graph Gn, our augmentation selector is required
to select the most two informative augmentations, e.g.,
(An

1 , A
n
3 ), from the candidate set. This selection problem is

well-known to be discrete and non-differentiable. Although
enormous efforts based on evolution or reinforcement learn-
ing have been proposed to address the discrete selection
problem, they are still not suitable for such a large selection
space (illustrated in Sec. 4.1) and are far from utilizing the
properties of graphs. Therefore, we propose to make the
search space learnable by relaxing the discrete selection
space to be continuous inspired by [50] and further make
this relaxation consider the characteristic of graphs. Specifi-
cally, given the sampled augmentation pair An

i,j = (An
i , A

n
j )

of Gn, its importance score α̂n
i,j is computed as

α̂n
i,j =

exp(αn
i,j)∑

i′j′ exp(α
n
i′,j′)

αn
i,j = gθ(fw(A

n
i (Gn)) ∥ fw(A

n
j (Gn))),

(1)

where gθ denotes the score function that takes the represen-
tations of augmented views An

i (Gn) and An
j (Gn) as input.

This design enforces the score estimation to take into ac-
count the topology and node attributes of Gn. In practice, gθ
is parameterized as a two-layer MLP with a ReLU activation
function. fw is the GNN encoder for graph representation
learning. ∥ indicates the concatenation operation. Through
Eq. (1), the discrete augmentation selection process reduces
to learning a score function gθ under the consideration of
graph characteristic.

After the personalized selector is well-trained, let αn =
[α̂n

1,1, · · · , α̂n
i,j , · · · , α̂n

K,K ] denote the vector of importance
scores associated with all different augmentation pairs of
the graph Gn. The optimal augmentation choice of Gn can
be obtained by selecting the augmentation pair with the
maximum score in αn. For example, An = (An

i , A
n
j ) if

α̂n
i,j = argmaxi′,j′ α̂

n
i′,j′ .

To summarize, the above equation provides a principled
solution to our personalized augmentation setting. On one
hand, it allows augmentation selection in such a large search
space via the simple forward propagation of a shallow
neural network, i.e., gθ . On the other hand, it can also
infer the most informative augmentations for each graph

based on its own characteristic for downstream GCL model
training(discussed in Sec. 4.3).

4.3 GCL Model Learning

After the personalized augmentation selector is plugged in,
we can adopt it to train the GCL model. Notice that our
model is applicable to arbitrary GCL methods that rely on
two augmented views as input. In this section, we mainly
focus on the most popular and generic GCL architecture
- GraphCL [11] as the backbone and leave other specific
architectures for future work.

Assume (An
i , A

n
j ) is the optimal augmentation pair of

graph Gn identified by our personalized augmentation se-
lector, and fw(·) is the GNN encoder. GraphCL proposes to
learn fw(·) by maximizing the agreement between the two
augmented views, i.e., An

i (Gn), A
n
j (Gn). The GNN encoder

can encode the whole graph into a hidden space RD. In
practice, a shared projection head function p : RD → RD is
often applied upon the output of GNN encoder to improve
the model capacity. In the following sections, we abuse the
notation fw to denote both the GNN encoding function
and the projection function. Based on this notation, we
can formally calculate the instance-level contrastive loss as
follows:

L(Gn) = − log
(
exp(sim(fw(A

n
i (Gn)), fw(A

n
j (Gn)))/τ)

/

N∑
n′=1,n′ ̸=n

exp(sim(fw(A
n
i (Gn)), fw(A

n′
j (Gn′)))/τ)

)
,

(2)

where sim(·, ·) denotes the cosine similarity function and
τ is the temperature parameter. By minimizing Eq. (2), it
encourages the two augmented views of the same sample
graph to have similar representations, while enforces the
augmented representations of disparate graphs to be highly
distinct. As the sum operation over all graphs G in the
denominator of Eq. (2) is computationally prohibitive, GCL
is often trained under minibatch sampling [11], where the
negative views are generated from the augmented graphs
within the same minibatch.

Although Eq. (2) looks similar to the traditional con-
trastive loss, the key difference between them is that the
augmentation operators An

i , A
n
j are closely related to the

sample graph Gn in our formulation. That is, the augmen-
tation operators learned by our model vary from one graph
to another according to their own characteristics, which are
previously enforced to be the same regardless of the graph’s
diverse nature. Benefiting from considering the graph’s per-
sonality, the GCL method can learn the basic but essential
features of graphs and thus achieve more expressive repre-
sentations for downstream tasks, as empirically verified in
Sec. 5.

4.4 Model Optimization

Until now, we have illustrated the detailed personalized
augmentation selector as well as the downstream GCL
framework, the remaining question is how to effectively
train the two modules. The naive solution is to first train
the personalized augmentation selector separately, and then
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optimize the GCL method using the identified personal-
ized augmentations as input. However, such a task-agnostic
approach is sub-optimal, since it does not take the mu-
tual reinforced effect between augmentation and the GCL
method into consideration. This is because learning a better
GCL method requires optimal augmentation strategies since
they can augment more personalized features to distin-
guish it from other objects. Meanwhile, obtaining suitable
augmentation strategies also needs the signals of a better
GCL method as guidance for optimization. As a result,
without linking the two modules in a principled way, it
is almost infeasible to enforce the personalized augmentation
selector to accurately infer optimal augmentation strategy for
improving the performance of the GCL method. To this end,
we propose to tackle this problem by jointly training the two
modules under a bi-level optimization, expressed as:

argmin
θ

Lvalid(w
∗(θ), θ)

s.t. w∗(θ) = argmin
w

Ltrain(w, θ),
(3)

where θ denotes the trainable parameters of the person-
alized augmentation selector, and w is the parameters for
the GCL method. The upper-level objective Lvalid(w

∗(θ), θ)
aims to find θ that minimizes the validation rewards on
the validation set given the optimal w∗, and the lower-level
objective Ltrain(w, θ

∗) targets to optimize w by minimizing
the contrastive loss based on the training set with θ fixed.
We want to remark that GPA only exploits the signals
from the self-supervisory task itself without accessing labels.
Thus, compared with conventional supervised methods, the
validation set here only contains a set of graphs without
label information, which is much easier to construct, e.g.,
randomly sampling 10% of the training set.

By optimizing Eq. (3), the personalized augmentation
selector and the target GCL model will be jointly trained
to reinforce their reciprocal effects. Since deriving exact
solutions for this bi-level problem is indeed analytically
intractable, we adopt the alternating gradient descent algo-
rithm to solve it as follows.

4.4.1 Lower-level optimization.

With θ fixed, we can update w with the standard gradient
descent procedure as below.

w′ = w − ξ∇wLtrain(w, θ), (4)

where Ltrain = EGtrainL(Gn) with L(Gn) is instance-level
contrastive loss defined in Eq. (2), Gtrain denotes the train-
ing set, and ξ is the learning rate.

4.4.2 Upper-level optimization.

Since it is not intuitive to directly calculate the gradient w.r.t.
θ over all augmentation options, we first define the upper-
level objective based on Eq. (2) as below:

Lvalid(w
∗(θ), θ) =

∑
Ai,Aj∈A

∑
Gn∈Gvalid

α̂n
i,jL(Gn), (5)

where α̂n
i,j is the selecting score computed by the score

function gθ with parameter θ defined in Eq. (1). Gvalid

denotes the validation set. Based on the above loss function,
we can update θ by fixing w, expressed as:

θ′ = θ − ξ∇θLvalid(w
∗(θ), θ). (6)

However, evaluating the gradient w.r.t. θ exactly is in-
tractable and computationally expensive, since it requires
solving for the optimal w∗(θ) whenever θ gets updated.
In other words, whenever θ gets updated, the low-level
objective Ltrain(w, θ) needs to be trained until convergence
in order to obtain the optimal w∗(θ) and further calculate
the gradient ∇θLvalid(w

∗(θ), θ), which is computationally
intensive. Therefore, to approximate the optimal solution
w∗(θ), we propose to take one step of gradient descent
update for w, without solving the lower-level optimization
completely by training until convergence. To further com-
pute the gradient of θ, we apply chain rule to differentiate
Ltrain(w

′(θ), θ) with respect to θ via w′, where w′ is defined
in Eq. (4). Therefore, the gradient of θ can be approximated
as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

≈ ∇θLvalid(w − ξ∇wLtrain(w, θ), θ).
(7)

Applying chain rule to Eq. (7), we further obtain the gradi-
ent of θ as:

∇θLvalid(w
∗(θ), θ) ≈ ∇θLvalid(w

′, θ)

≈ ∂Lvalid(w
′, θ)

∂θ

∂θ

∂θ
+

∂Lvalid(w
′, θ)

∂w′
∂w′

∂θ
≈ ∇θLvalid(w

′, θ)

−∇w′Lvalid(w
′, θ)ξ∇2

θ,wLtrain(w, θ).
(8)

Since the computation cost of the second term in Eq. (8)
is still high, it can be further approximated by the finite
difference method:

ξ∇2
θ,wLtrain(w, θ)∇w′Lvalid(w

′, θ)

≈ ∇θLtrain(w
+, θ)−∇θLtrain(w

−, θ)

2ϵ

(9)

where w± = w ± ϵ∇w′Lvalid(w
′, θ) and ϵ denotes a small

scalar.
By alternating the update rules in Eq. (4) and Eq. (6), we

are able to progressively learn the two modules. Although
an optimizer with the theoretical guarantee of convergence
for the bi-level problem in Eq. (3) remains an open challenge,
alternating gradient descent algorithm has been widely
adopted to solve similar objectives in Bayesian optimiza-
tion [51], automatic differentiation [52], and adversarial
training [53]. The complete optimization procedure of GPA
is shown in the Algorithm 1. We also show some level of
empirical convergence in Fig. 3.

4.5 More Discussions on GPA
In addition to augmentation selection, another line of re-
search focuses on generating views via a trainable genera-
tor, such as AutoGCL [49] and AD-GCL [48]. Specifically,
the augmented view is obtained by sampling the original
one based on the edge or node probabilities predicted by
the generator. As such, these methods could limit their
applications to simple augmentation strategies (e.g., edge
dropping and node masking) and cannot be adopted for
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Algorithm 1: The framework of GPA
Input: A graph dataset G, the personalized

augmentation selector gθ(·), and a GCL
model fw(·);

Output: The well-trained GCL model;
1 Split the input graph dataset G into train Gtrain and

validation Gvalid set;
2 Initialize the selector parameter θ and the GCL

model parameter w;
3 while not converge do
4 Randomly sample a minibatch of graphs from

the training set;
5 Infer the optimal augmentation pairs for

sampled graphs using the personalized
augmentation selector gθ(·);

6 Update parameters w of the GCL model based on
the sampled graphs and the identified
augmentation types according to Eq. (4);

7 Randomly sample a batch of graphs from
validation set;

8 Compute the rewards based on the sampled
validation graphs using the updated w′

according to Eq. (5);
9 Update parameters θ of the personalized

augmentation selector according to Eq. (6) and
Eq. (9);

10 Return The well-trained GCL model.

Fig. 3. Empirical training curves of approximate gradient scheme in GPA
on datasets PROTEINS and NCI1 with different GNN encoders.

applications that require complex augmentation strategies,
such as subgraph sampling and motif-based augmentations
(e.g., graphon [54]). In contrast, as an augmentation selec-
tion method, GPA has broad applicability, i.e., it is flexible to
incorporate new augmentation strategies created by domain
experts that might be useful by modifying the augmentation
pool without extra effort. We summarize the difference in
Table 2.

4.5.1 Complexity analysis of GPA

We analyze the complexity of GPA and illustrate its im-
pact on the GCL backbone –GraphCL [11]. Given a graph
G = (V, E) and the GNN encoder fw. The time complexity
for the GNN backbones used in common graph learning
tasks is O(|V|+|E|). Since the proposed GPA method is built
upon GraphCL [11] and the personalized augmentation se-
lector gθ , the additional cost is mainly caused by the selector.

For GraphCL, it performs two encoder computations per
iteration plus a prediction head. If we assume the backward
cost is similar to that of the forward pass, the complexity of
GraphCL is 4Cencoder(|V| + |E|) + 2Chead(Nbatch) + Closs +
2Caug, where C. are constants which rely on the neural
architectures, and Nbatch is the batch size. For the selector gθ ,
it takes K encoder computations per iteration to generate
graph representations and simple multilayer perceptrons
(MLPs) to estimate the sampling probability. Thus its com-
plexity is KCencoder(|V| + |E|) + Cselector(Nbatch) + KCaug.
Therefore, the total complexity for GPA and GraphCL are
(2K+4)Cencoder(|V|+|E|)+(2K+2)Caug and 4Cencoder(|V|+
|E|) + 2Caug, respectively, since the costs of GNN encoder
and data augmentation are significantly higher than others.
Assume the time cost for data augmentation is 5 times of
GNN encoder, i.e., Caug = 5Cencoder, then the time com-
plexity of GPA is 2K+4+(2K+2)∗5

4+2∗5 = 12K+14
14 times that

of GraphCL. Given that K = 5 in our experiments, the
complexity of GPA is around 6 times of GraphCL in the-
ory. However, due to the inefficient implementation of our
current code (e.g., for loop in the loss function and perform
K augmentations in series), the empirical complexity of
GPA is less than 7 times of GraphCL. It is noteworthy that
parallel techniques such as multiprocessing could be used
to accelerate the training.

5 EXPERIMENTS

We evaluate the performance of GPA on multiple graph
datasets with various scales and types. We focus on explor-
ing the following research questions.

• Q1: How effective is GPA in performing graph repre-
sentation learning against state-of-the-art GCL meth-
ods in unsupervised and semi-supervised evaluation
tasks?

• Q2: How effective is the proposed personalized
augmentation selector in identifying augmentations
across various datasets?

• Q3: Compared with random selection, how effective
is our proposed personalized augmentation selector?

• Q4: What are the impacts of hyperparameters on
GPA, such as the embedding dimension d of the score
function?

5.1 Datasets and Experiment Settings

Datasets. For a comprehensive comparison, we evaluate
the performance of GPA on ten widely used benchmark
datasets. Specifically, we include two small molecules net-
works (NCI1 and MUTAG), two bioinformatics networks
(DD and PROTEINS), and five social networks (COLLAB,
REDDIT-BINARY, REDDIT-MULTI-5K, IMDB-BINARY,
and GITHUB) from TUDatasets [18]. To evaluate the scal-
ability of our model, we also use one large-scale OGB [20]
dataset ogbg-molhiv. The data statistics are summarized in
Table 5.

Learning protocols. Following common protocols [2],
[11], we aim to evaluate the performance of GPA in unsuper-
vised and semi-supervised settings. In our model training
phase, we randomly split 10% of graphs in each dataset into
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TABLE 2
An overview of graph contrastive learning methods. Our GPA model is the first automated GCL effort that supports personalized augmentation in

terms of various augmentation types.

Auto Simple Augmentation Complex Augmentation Applicability Personalized
GraphCL - ✓ ✓ ✓ -

JOAO ✓ ✓ ✓ ✓ -
AD-GCL ✓ ✓ - - ✓
AutoGCL ✓ ✓ - - ✓

Ours ✓ ✓ ✓ ✓ ✓

TABLE 3
Unsupervised learning performance for graph classification in TUdatasets (Averaged accuracy ± std. over 10 runs). The bold numbers denote the

best performance and the numbers with underline represent the second best performance

Dataset NCI1 PROTEINS DD MUTAG COLLAB RDT-B RDT-M5K IMDB-B Avg.Rank

InfoGraph 76.20± 1.06 74.44± 0.31 72.85± 1.78 89.01± 1.13 70.65± 1.13 82.50± 1.42 53.46± 1.03 73.03± 0.87 4.75
GraphCL 77.87± 0.41 74.39± 0.45 78.62± 0.40 86.80± 1.34 71.36± 1.15 89.53± 0.84 55.99± 0.28 71.14± 0.44 3.88
JOAO 78.07± 0.47 74.55± 0.41 77.32± 0.54 87.35± 1.02 69.50± 0.36 85.29± 1.35 55.74± 0.63 70.21± 3.08 5.00
JOAOv2 78.36± 0.53 74.07± 1.10 77.40± 1.15 87.67± 0.79 69.33± 0.34 86.42± 1.45 56.03± 0.27 70.83± 0.25 4.50

AD-GCL 69.67± 0.51 73.59± 0.65 74.49± 0.52 88.62± 1.27 73.32± 0.61 85.52± 0.79 53.00± 0.82 71.57± 1.01 5.13
AutoGCL 82.00± 0.29 75.80± 0.36 77.57± 0.60 88.64± 1.08 70.12± 0.68 88.58± 1.49 56.75± 0.18 73.30± 0.40 2.38

GPA 80.42± 0.41 75.94± 0.25 79.90± 0.35 89.68± 0.80 76.17± 0.10 89.32± 0.38 53.70± 0.19 74.64± 0.35 2.38

TABLE 4
Semi-supervised learning performance for graph classification in TUdatasets (Averaged accuracy ± std. over 10 runs). The bold numbers denote

the best performance and the numbers with underline represent the second best performance

Dataset NCI1 PROTEINS DD RDT-B RDT-M5K GITHUB ogbg-molhiv Avg.Rank

GAE 74.36± 0.24 70.51± 0.17 74.54± 0.68 87.69± 0.40 53.58± 0.13 63.89± 0.52 - 6.67

InfoGraph 74.86± 0.26 72.27± 0.40 75.78± 0.34 88.66± 0.95 53.61± 0.31 65.21± 0.88 - 4.50
GraphCL 74.63± 0.25 74.17± 0.34 76.17± 1.37 89.11± 0.19 52.55± 0.45 65.81± 0.79 55.48± 1.32 4.29
JOAO 74.48± 0.25 72.13± 0.92 75.69± 0.67 88.14± 0.25 52.83± 0.54 65.00± 0.30 56.83± 1.39 5.71
JOAOv2 74.86± 0.39 73.31± 0.48 75.81± 0.73 88.79± 0.65 52.71± 0.28 66.60± 0.60 57.39± 1.39 4.00

AD-GCL 75.18± 0.31 73.96± 0.47 77.91± 0.73 90.10± 0.15 53.49± 0.28 67.13± 0.52 - 2.33
AutoGCL 73.75± 2.25 75.65± 2.40 77.50± 4.41 79.80± 3.47 49.91± 2.70 62.46± 1.51 - 5.83

GPA 75.50± 0.14 74.27± 1.11 76.68± 0.81 89.99± 0.32 54.92± 0.35 68.31± 0.13 60.76± 1.01 1.57

TABLE 5
Statistics of the datasets.

| G | Avg.Nodes Avg.Edges #Label
NCI1 4, 110 29.87 32.30 2

PROTEINS 1, 113 39.06 72.82 2
DD 1, 178 284.32 715.66 2

MUTAG 188 17.93 19.79 2
COLLAB 5, 000 74.49 2, 457.78 3

IMDB-BINARY 1, 000 19.77 96.53 2
REDDIT-BINARY 2, 000 429.63 497.75 2

REDDIT-MULTI-5K 4, 999 508.52 594.87 5
GITHUB 12, 725 113.79 234.64 2

ogbg-molhiv 41, 127 25.5 27.5 2

the validation set and use the remaining for training. After
the model is trained, in unsupervised setting, we train an
SVM classifier on the graph representations generated by
the trained GCL model, and apply 10-fold cross-validation
to evaluate the performance. For semi-supervised setting,
we finetune the GCL model (its GNN encoder) with a
logistic regression layer for semi-supervised learning, where

the labeled sample ratio is 0.1. To avoid randomness, we
repeat the process for ten times and report the averaged
results.

Implementation details. Our model is built upon Py-
torch and PyG (PyTorch Geometric) library [55]. We train
our model with Adam optimizer using a fixed batch size
of 128. Similar to GraphCL [11], the default augmentation
ratio is set to 0.2 for all augmentation types. In unsuper-
vised setting, we adopt a three-layer GIN [56] encoder with
hidden dimension 128 for all datasets. In semi-supervised
scenarios, we employ a five-layer ResGCN [57] encoder
with dimension 128 for TUDatasets [18], while a five-layer
GIN [56] encoder with dimension 300 for OGB datasets
as suggested in [20]. There is one hyper-parameter in our
model, i.e., the hidden dimension d of score function gθ . We
search d within the set {128, 256, 512}. The impact of the
hidden dimension is analyzed in Sec. 5.5.

Baseline methods. To validate the effectiveness of GPA,
we compare against three categories of state-of-the-art com-
petitors. First, to evaluate the effectiveness of contrastive
learning, we include one traditional network embedding
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method GAE [35]. Second, to study why we need per-
sonalized augmentation, we include classic GCL methods
that assign identical augmentation strategies for all graphs
InfoGraph [2], GraphCL [11], JOAO [10] and its variant
JOAOv2 [10]. Note that JOAO and JOAOv2 are two sample-
based automated GCL methods that focus on selecting
the most suitable predefined augmentation strategies for
each dataset. They are the most relevant baselines to our
proposed GPA. Third, we also include two view-generated
automated GCL methods: AD-GCL [48] and AutoGCL [49].
Ordinarily, they should not be considered as our baselines
since GPA belongs to GCL with augmentation selection, not
view generation. We add them to comprehensively show the
power of GPA.

5.2 Comparison with Baselines

We start by comparing the performance of GPA with the
state-of-the-art baseline methods under two settings (Q1).
Table 3 & Table 4 report the results of all methods on diverse
datasets under unsupervised and semi-supervised settings,
respectively. We have the following Observations.

Obs.1. With personalized augmentations for each
graph, GPA outperforms vanilla GCL methods with fixed
augmentation per dataset. By identifying different augmen-
tations for different sample graphs, GPA performs gener-
ally better than vanilla GCL methods on two evaluation
scenarios (Table 3 and Table 4). Specifically, in the semi-
supervised evaluation task, GPA consistently outperforms
GAE, InfoGraph, GraphCL, JOAO, and JOAOv2 on all
datasets. In the unsupervised setting, GPA outperforms the
vanilla GCL methods on 6 out of 8 datasets. In particular,
GPA improves 7.8%, 9.9%, 9.6%, and 6.7% over InfoGraph,
JOAOv2, JOAO, and GraphCL on COLLAB in Table 3,
respectively. This observation validates the effectiveness of
performing personalized augmentation in GCL training.

Obs.2. Across diverse datasets, GPA performs better
than (or on par with) the view-generated GCL methods
on two evaluation settings. On all datasets originating
from diverse domains, GPA generally performs better or
sometimes on par with the state-of-the-art AD-GCL and
AutoGCL methods, as shown in the average rank. In unsu-
pervised setting, GPA outperforms AD-GCL on all datasets
while GPA beats AutoGCL on 6 out of 8 datasets. In
semi-supervised setting, GPA outperforms both AD-GCL
and AutoGCL on NCI1, RDT-B, RDT-M5K, and GITHUB
datasets and achieves the second best on PROTEINS.

Obs.3. GPA scales well on large datasets. To study the
scalability of our model, we further conduct experiment on
the large-scale OGB dataset: ogbg-molhiv. View-generated
GCL methods are excluded for this dataset since they are
not officially tested on OGB datasets. From the Table 4, GPA
consistently performs better than GraphCL and JOAO. To
be specific, GPA improves 9.5% and 5.9% over GraphCL
and JOAOv2 on ogbg-molhiv, respectively.

5.3 Personalized Augmentation Analysis

To study the effectiveness of our model in identifying in-
formative augmentation types for various graphs (Q2), we
visualize the learned augmentation distribution on Fig. 4.

TABLE 6
Ablation study of GPA under unsupervised setting in terms of mean

classification accuracy

GPA-random GPA

NCI1 77.71± 0.60 80.42± 0.41
PROTEINS 74.21± 0.39 75.94± 0.25

DD 77.25± 0.69 79.90± 0.35
MUTAG 86.08± 2.93 89.68± 0.80
IMDB-B 71.80± 1.13 74.64± 0.35

By comparing across different types of datasets, we observe
the following.

Obs.4. By learning from the data, GPA can effectively
assign different augmentations for various datasets. Our
model GPA can identify different augmentations for differ-
ent sample graphs, and allow different datasets to have their
own augmentation distributions (see Fig. 4). Specifically, on
MUTAG, 19 graphs prefer (Identical, NodeDrop) augmen-
tations, while 30 graphs favor (Subgraph, Subgraph) aug-
mentation combinations. Notice that (Subgraph, Subgraph)
will generate two different subgraph-perturbation-induced
augmented views, owning to sample randomness. Besides,
COLLAB more likes the (AttMask, AttMask) augmentation
pair, while DD prefers (EdgePert, EdgePert) operations. These
observations empirically echo the necessity of performing
personalized augmentation for GCL methods.

Another promising observation is that our model can
assign (Identical, Identical) choice (i.e., two identical views)
to some portion of graphs over all datasets. Given that
the mutual information between two identical views (i.e.,
representations) is always maximized, such pure identical
augmentations can be regarded as a skip operation. That is,
these graphs abandon themselves during the GCL model
training. The possible reason is that the existing augmenta-
tion strategies are not suitable to capture their characteristics
or damage their semantic meanings. In this case, blindly
selecting any combination of other augmentation types may
incur huge performance degradation or noise. This observa-
tion sheds light on designing more advanced augmentation
strategies beyond the current basic augmentations. On the
other hand, it verifies the effectiveness of the proposed aug-
mentation selector in skipping noisy graphs during model
training by providing identical augmentations.

5.4 Ablation Study
To further investigate the effectiveness of the proposed per-
sonalized augmentation selector (Q3), we compare it with
a random-search based variant, i.e., GPA-random. GPA-
random replaces the personalized augmentation selector
with a random mechanism. Specifically, it assigns one ran-
dom augmentation pair to each graph. Noticed that GPA-
random still assigns different augmentations to each graph
while GraphCL assigns one pre-defined pair of augmen-
tation strategies to the whole dataset. Table 6 shows the
results in terms of unsupervised setting. From the table,
we can observe that GPA consistently performs better than
GPA-random in all cases. In particular, GPA improves 3.5%,
2.3%, 3.4%, 4.2%, and 4.0% over GPA-random on NCI1,
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Fig. 4. Augmentation distribution learned by GPA over molecules, bioinformatics, and social networks, in terms of the unsupervised setting.
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Fig. 5. Personalized augmentation selector dimension analysis of GPA

PROTEINS, DD, MUTAG, and IMDB-B, respectively. This
comparison validates our motivation to develop a tailored
and learnable personalized augmentation selector for GCL
methods.

5.5 Parameter Sensitivity Analysis
We now study the impact of the parameter, i.e., the hidden
dimension d of the score function to answer Q4. Specifically,
we search d from the set {64, 128, 256, 512} and plot the
results of GPA on three representative datasets in Fig. 5.
Similar observations are obtained by other datasets. From
the figure, we can see that GPA generally performs stably
across various dimension choices.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we study the augmentation selection problem
for graph contrastive learning. Existing GCL efforts mainly

focus on employing two shared augmentation strategies for
all graphs in the dataset based on the assumption that they
contain similar nature. Here, we argue that such collective
augmentation selection is suboptimal in practice due to
the heterogeneity of graph structure data. Different graphs
should have different augmentation preferences. To bridge
the gap, we propose a novel graph contrastive learning
framework with personalized augmentation termed as GPA.
GPA not only allows each graph to select its optimal aug-
mentation types, but also automates the selection via a
personalized augmentation selector, which can be jointly
trained with downstream GCL models under a bi-level
optimization. Empirical results on the graph classification
task demonstrate the superiority of GPA against state-of-
the-art GCL methods in terms of unsupervised and semi-
supervised settings, across multiple benchmark datasets
with various types such as molecules, bioinformatics, and
social networks.

In the future, we will explore how to extend our per-
sonalized augmentation idea to the node-level contrastive
learning task. Moreover, it would be interesting to investi-
gate whether our model works for other data types, such as
image or text data.
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