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ABSTRACT
Knowledge graphs (KGs) could effectively integrate a large number
of real-world assertions, and improve the performance of various
applications, such as recommendation and search. KG error detec-
tion has been intensively studied since real-world KGs inevitably
contain erroneous triples. While existing studies focus on develop-
ing a novel algorithm dedicated to one or a few data characteristics,
we explore advancing KG error detection by assembling a set of
state-of-the-art (SOTA) KG error detectors. However, it is nontrivial
to develop a practical ensemble learning framework for KG error
detection. Existing ensemble learning models heavily rely on labels,
while it is expensive to acquire labeled errors in KGs. Also, KG error
detection itself is challenging since triples contain rich semantic
information and might be false because of various reasons. To this
end, we propose to leverage active learning to minimize human
efforts. Our proposed framework - KAEL, could effectively assemble
a set of off-the-shelf error detection algorithms, by actively using a
limited number of manual annotations. It adaptively updates the
ensemble learning policy in each iteration based on active queries,
i.e., the answers from experts. After all annotation budget is used,
KAEL utilizes the trained policy to identify remaining suspicious
triples. Experiments on real-world KGs demonstrate that we can
achieve significant improvement when applying KAEL to assem-
ble SOTA error detectors. KAEL also outperforms SOTA ensemble
learning baselines significantly.

CCS CONCEPTS
• Information systems→Data cleaning; •Computingmethod-
ologies → Ensemble methods; Active learning settings.
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1 INTRODUCTION
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Figure 1: Overlaps(%) among three detectors on UMLS.

Error detection is essential to knowledge graphs (KGs), since
real-world KGs inevitably contain considerable false triples [1, 2].
KGs are an efficient data structure that could integrate numerous
real-world assertions as a network [3]. By embedding KGs [4], we
could incorporate them into various intelligent systems and en-
hance the prediction performance, such as recommender systems
and conversational agents [5, 6]. Real-world KGs are too large to be
manually constructed. Instead, heuristic algorithms were employed
to extract triples from unstructured information sources, such as
crowd-sourcing websites. During this process, considerable errors
were inevitably introduced. For example, (Fred_Goodwin, ceoof, Scot-
land) is an erroneous triple extracted from the sentence “Former
Royal Bank of Scotland boss Fred Goodwin has had his knighthood
removed” [7]. To rectify these errors, intensive KG error detection
algorithms have been proposed [8, 9]. Early studies mainly focus on
defining golden rules that correct triples should not violate [10, 11].
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Recent efforts have been devoted to embedding KGs and learning
regulations that correct triples tend to match [12, 13]. A few studies
explore to train suitable classifiers based on randomly generated
negative samples [14]. However, their empirical performance still
can not meet the demands in practice.

While existing knowledge graph error detectors focus on ex-
ploiting a novel algorithm to model one or a few types of errors,
according to particular data characteristics [1, 9], we explore ap-
plying ensemble learning to integrate state-of-the-art (SOTA) KG
error detectors. It is motivated by the successful applications of en-
semble learning in several learning tasks, such as classification [15],
regression [16] and anomaly detection [17]. Figure 1 illustrates
an interesting observation demonstrating that ensemble learning
could potentially advance KG error detection. We apply three detec-
tors, i.e., TransE [12], CKRL [18], and KGTtm [1] on a medical KG
named UMLS [19] to detect 326 errors. The percentages of overlap
between the suspicious triples identified by different models are
shown in Figure 1, where only a portion of suspicious triples are
real errors. The percentage of real anomalies to 326 is shown in ‘(
)’. TransE is based on KG embedding, and its overlap with CKRL
only contain 19.94% real errors among 326, while there are 40.64%
errors in the overlap between CKRL and KGTtm since they are both
path-based. In total, TransE, CKRL, and KGTtm find 92, 169, and
174 real errors, respectively, while there are only 36 overlaps among
them. Thus, different detectors focus on different groups of errors.
This motivates us to assemble different off-the-shelf algorithms to
combine their strengths for effective error detection.

However, it is challenging to develop an effective ensemble learn-
ing framework for knowledge graph error detection. (𝑖) KG error
detection itself is difficult, given that triples have rich semantic
meanings. A deviant triple could be caused by various factors [20].
For example, we could have erroneous relations, e,g., (Will_Smith,
actor_of, The_Karate_ Kid), or incorrect tail/head entities. (𝑖𝑖) Most
off-the-shelf ensemble learning models are supervised [21], while
it is expensive to obtain labeled errors in KGs. Labels are essential
for the evaluation and integration in ensemble learning [22]. Real-
world KGs often contain millions of triples [23]. It is impossible
to manually check the entire KG. Thus, we propose to perform
active ensemble learning on KGs. Given a specific triple, an expert
could determine its correctness on the grounds of their understand-
ing and references. A small number of active annotations might
facilitate error detection, but also bring additional challenges to
ensemble learning. (𝑖𝑖𝑖) It requires the ensemble learning model to
conduct assembling actively and iteratively. The model needs to
balance the exploration and exploitation. (𝑖𝑣) The search space of
active queries is large in KGs. In each active learning iteration, only
one triple is selected for experts to annotate [24]. The annotation
budget is considerably less than potential false triples, while the
latter is further significantly less than correct triples.

To this end, we investigate the active ensemble learning for
knowledge graph error detection, aiming tominimize human efforts.
We propose an effective framework - Knowledge graph Active
Ensemble Learning (KAEL). In particular, we aim to answer two
research questions as follows. (𝑖) Given a set of SOTA KG error
detection algorithms, how to perform effective ensemble learning
and integrate them to detect more erroneous triples? (𝑖𝑖) How
to utilize the opportunity of actively querying experts/oracle to

Notation Description

(ℎ, 𝑟, 𝑡 ) a triple, i.e., (head, relation, tail)
(eℎ, e𝑟 , e𝑡 ) ∈ R3𝑑 embedding representation of (ℎ, 𝑟, 𝑡 )
𝑏 ∈ [1, 2, ...,𝑚] index of base KG error detector

x ∈ R3𝑑 embedding of a triple
𝑓𝑏 (x) suspicious score of a triple in 𝑏

X(𝑏) (𝑘 ) ∈ R𝑢×3𝑑 embedding matrix of detector 𝑏 in 𝑘 steps
𝑟 (𝑖,𝑏) a reward for triple 𝑖 from base detector 𝑏

r(𝑏) (𝑘 ) ∈ R𝑢 reward vector for detector 𝑏 in 𝑘 steps
𝑄 query budget
𝑝 triple expectation of being false
V detected triple embedding matrix

Table 1: Major notations and definitions.

optimize the ensemble learning policy? We summarize our major
contributions.
• We formally define the problem of active ensemble learning for
knowledge graph error detection.

• We propose an effective framework - KAEL. It takes multiple sets
of top suspicious triples returned by multiple SOTA detectors as
input, and integrates them by using a novel and active ensemble
learning model.

• We design a tailored active learning algorithm to adaptively
update the ensemble learning policy of KAEL in each iteration,
based on the feedback from the oracle. It uses a dedicated multi-
armed bandit algorithm to take full advantage of the limited
active annotations to optimize the ensemble learning.

• We conduct experiments on real-world KGs and empirically
demonstrate that KAEL outperforms SOTA KG error detectors
and SOTA ensemble learning models. KAEL achieves better per-
formance when more or better base detectors are integrated.

2 PROBLEM STATEMENT
Notations: We denote scalars as lowercase alphabets (e.g., 𝑥 ), vec-
tors as boldface lowercase alphabets (e.g., x) and matrices as bold-
face uppercase alphabets (e.g., V). We list main notations in Table 1.
Let G be a knowledge graph with 𝑛 triples. Each triple (ℎ, 𝑟, 𝑡) con-
sists of a head entity ℎ, a relation 𝑟 , and a tail entity 𝑡 . We involve
human annotations as oracle and formally define the problem of
active ensemble learning for KG error detection as follows.

Given a KG G and𝑚 off-the-shelf error detection algorithms, we
aim to apply ensemble learning to identify top 𝐾 suspicious de-
viant triples. Meanwhile, it is allowed to query the oracle about
the correctness of any one triple for 𝑄 times (𝑄 < 𝐾 ). The perfor-
mance is evaluated based on the number of real errors in the 𝐾
suspicious triples identified by the proposed framework.

3 ACTIVE ENSEMBLE LEARNING - KAEL
This section elaborates on the KAEL framework, which leverages
active learning for an ensemble learning based KG error detection.
Figure 2 illustrates the core idea with a toy example. There are
totally ten triples in the inputted KG, labeled from 1 to 10. We
aim to detect five potential anomalies within query budget 𝑄 = 3.
Starting from sub-figure (a), i.e., the initialization stage, we assemble



Active Ensemble Learning for Knowledge Graph Error Detection WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

�Ⅰ, �Ⅰ

Find Overlaps for 
Initial Active Learning

Oracle

$$$

8
3

3

1

6

5

9

7

9

2
4

8

3

Answers

YES

NO

6

Detected 
Errors

1 5 8 93

Error?

Answer:       YES
1

5 8
9

3

8 6

3

3

86

2

9 0.9

6 0.8

4

1 0.7

7

Rank and Query Oracle

Detector I

Detector II

Detector III

�(��, �Ⅰ, �Ⅰ)

�(��, �Ⅱ, �Ⅱ)

�(��, �Ⅲ, �Ⅲ)

f (x9)=0.9
f (x1)=0.7
f (x5)=0.1

f (x6)=0.8
f (x10)=0.7
f (x7)=0.2

f (x2)=0.6
f (x6)=0.5
f (x4)=0.3

f (x5)=0.2

f (x6)=0.8
f (x10)=0.6
f (x7)=0.1

f (x6)=0.4
f (x4)=0.3

�Ⅰ, �Ⅰ
0 0

0 0 �Ⅰ, �Ⅰ
1 1

2 3

1

3 7 86

2 4 63

Base Detectors & 
Detected False Triples 

Multi-armed 
Bandit Model 

Detector I

�ⅠI,  �ⅠI
0 0

Detector II

�ⅠII, �ⅠII
0 0

Detector III

Initialize Parameters 
for Three Arms

$$$

10

10

…

9Update � & �
1

5 8
9

3

8 6

3

3

86

2

4

7

10

$$$

After Using Q = 3 Budget

Trained

1

Use Trained Model to 
Predict Remaining Errors

6

Initialized

(b) Training Stage With Tailored MAB (c) Application Stage With Trained MAB

(a) Initialization Stage With Overlaps

10

10

10

8

CKRL

Figure 2: By assembling detectors 𝑏 =[I, II, III], we reduce the search space from entire 𝑛 triples to three sets of suspicious ones.
A tailored multi-armed bandit (MAB) model is then designed to perform active ensemble learning. We adaptively update it
based on the answers from oracle in each iteration.

three detectors 𝑏 ={I, II, III} with three sets of top five suspicious
triples they detected respectively, i.e., {1, 3, 5, 8, 9}, {3, 6, 7, 8, 10},
and {2, 3, 4, 6, 8}. We use two of the budget to query the oracle
with all overlaps among these candidates, i.e., {3, 8}, and initialize
the multi-armed bandit (MAB) with answers. In sub-figure (b),
we further train the policy with the remaining lists, i.e., {1, 5, 9},
{6, 7, 10}, and {2, 4, 6}, and expend the remaining one budget on
the highest suspicious triple {9} detected by MAB. While in sub-
figure (c) with no oracle involved, we directly apply a trained MAB
on the rest of three sets of triples and output two triples with the
highest scores, i.e., {6, 10} to supplement the error list. We first
introduce how we conduct ensemble learning with SOTA base
detectors in a unified and concentrated space (Section 3.1). We
then present an active ensemble policy learning algorithm based on
the tailored MAB (Section 3.2). Finally, we propose a three-stage
active ensemble scheme by combining absolute majority voting
and MAB to maximally exploit the human feedback for ensemble
policy learning (Section 3.3).

3.1 Ensemble Learning for KG Error Detection
The core idea is to integrate multiple SOTA unsupervised detectors
to obtain multiple initially ranked lists of top 𝐾 suspicious triples.
We consider these prioritized triples as valuable candidates for er-
rors. Through concentrating on this significantly shrunk training
space, we boost the ensemble learning on KGs. However, integrat-
ing various base detectors is nontrivial due to two reasons. First,
different detectors extract features in various means. For exam-
ple, [12] learns the embedding in a real space while [25] represents

triples on the complex space with both real and imaginary parts.
Recent efforts trend to dedicate more on non-euclidean spaces, such
as a hyperbolic space [26]. Second, the compiling environments of
detectors are also different, i.e., [18] experimentalizes based on C++.
To tackle these challenges, we resort to representing the returned
triples uniformly in the same embedding space and compiling en-
vironment before the ensemble policy training. Specifically, we
adopt the popular translation-based embedding model TransE [12]
to encode triples as follows.

eℎ + e𝑟 ≈ e𝑡 , (1)

where eℎ ∈ R𝑑 (or e𝑡 ∈ R𝑑 ) denotes the head (or tail) entity
embedding, and e𝑟 ∈ R𝑑 is the embedding of relation. After TransE
is well-trained, we generate the triple representation for triple
(ℎ, 𝑟, 𝑡) by concatenating its three embedding vectors, i.e., x ∈
R3𝑑 = [eℎ, e𝑟 , e𝑡 ].

These triple representations will be used to perform active en-
semble learning in the following section. Following this principle,
we can not only unify the outputs of different types of base detec-
tors, but also pay our best attention to those informative suspicious
triples.

3.2 Active Ensemble Policy Learning with MAB
To facilitate the training of ensembles, we design an active query
strategy to label the most expected candidate in each iteration.
Given that the query budget is often limited in practice as human
annotation is laborious and expensive, the proposed active ensemble
learning framework suffers from a dilemma during the learning
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process. On one hand, we want to make full use of prior knowledge
by greedily selecting the most suspicious triple in each iteration, i.e.,
exploitation. On the other hand, we also want to collect feedback
from the candidate sets that are under-explored at the moment,
i.e., exploration. To tackle this challenge, we develop a novel active
ensemble learning algorithm based on a tailoredmulti-armed bandit
to trade-off for valuable selections.

Specifically, we formulate our active ensemble learning objective
as a reward maximization problem. Let 𝑟 (𝑖,𝑘) ∈ {0, 1} denotes the
reward determined by the feedback from the oracle, where 𝑖 is a
triple from𝑚×𝐾 . In the current iteration 𝑘 , if the selected query, i.e.,
triple 𝑖 , is a true error, we will get a reward, denoted as 𝑟 (𝑖,𝑘) = 1,
otherwise, 0. Our learning objective is to maximize the cumulative
rewards in 𝐾 iterations as follows:

max
𝐾∑
𝑘=1

𝑟 (𝑖,𝑘) . (2)

The query function and error detection function is coherently com-
bined with an expectation function 𝐸 (·) below to capture the linear
correlation between triple embedding x(𝑏)

𝑖
and 𝑟 (𝑖,𝑏) , measuring

the suspicion of a triple 𝑖 from detector 𝑏 being anomalous and
indicating the expectation of obtaining a reward 𝑟 (𝑖,𝑏) .

𝐸 (𝑟 (𝑖,𝑏) |x(𝑏)
𝑖

) = x(𝑏)
𝑖

× 𝜷 (𝑏) + [ (𝑏) , (3)

where 𝜷 (𝑏) is a non-negative parameter vector for 𝑏 learned
in former 𝑘 − 1 steps and [ (𝑏) is a trade-off noise satisfying the
Gaussian distributionN(0, (𝜎 (𝑏) )2). Sincemaximizing the x(𝑏) (𝑘)×
𝜷 (𝑏) (𝑘) term can encourage exploitation [27], we could effectively
update 𝜷𝑏 by modeling the correlations among the anchor triple
x(𝑏)
𝑖

∈ R3𝑑 and all selected triplesX(𝑏) (𝑘) ∈ R𝑢×3𝑑 for base detector
𝑏 in 𝑘 steps, as well as all the historically obtained rewards r(𝑏) (𝑘) ∈
R𝑢 by choosing the current detector 𝑏. Notably, 𝑢 ≤ 𝑘 indicates
the number of triples that the model has selected from the current
detector 𝑏. To be specific, we update 𝜷𝑏 as below.

𝐽 (X(𝑏) (𝑘) , r(𝑏) (𝑘) ) =
𝐾∑
𝑘=1

(r(𝑖,𝑏) − X(𝑏) (𝑘)𝜷 (𝑏) )2

→ 𝜷 (𝑏) = ((X(𝑏) (𝑘) )⊤X(𝑏) (𝑘) )−1 (X(𝑏) (𝑘) )⊤r(𝑏) (𝑘) ,

(4)

where 𝐽 is the ordinary least square based loss function. While the
current strategy works generally, it may suffer from low bias and
high variance issues in practice. To avoid over-fitting and keep the
reversibility of X(𝑏) (𝑘) , we introduce a penalty term based on L2
norm in a ridge regression as

𝐽 (X(𝑏) (𝑘) , r(𝑏) (𝑘) ) =
𝐾∑
𝑘=1

(r(𝑏) (𝑘) − X(𝑏) (𝑘)𝜷 (𝑏) )2

+ _𝑏 ∥ 𝜷 (𝑏) ∥22 .

(5)

_ is a hyperparameter, we solve the over-fitting problem by adopting
a suitable _. By differentiating the above formula and making the
derivative of the cost function zero, we solve for the parameter as

follows,

𝐽 (𝜷 (𝑏) ) = (r(𝑏) (𝑘) − X(𝑏) (𝑘) (𝜷 (𝑏) )⊤ (r(𝑏) (𝑘) − X(𝑏) (𝑘)𝜷 (𝑏) )

+ _𝑏 (𝜷 (𝑏) )⊤𝜷 (𝑏) .
(6)

By setting it to zero, we can update 𝜷 (𝑏) for 𝑘+1 iteration as follows,

𝜷 (𝑏) =
(
(X(𝑏) (𝑘) )⊤X(𝑏) (𝑘) + _𝑏I

)−1
(X(𝑏) (𝑘) )⊤r(𝑏) (𝑘) , (7)

where I ∈ R𝑑×𝑑 is an identity matrix.
Since exploitation is fulfilled by maximizing the expectation with

a learned 𝜷𝑏 , to facilitate exploration on less explored detectors,
we adopt an upper confidence bound for exploration-exploitation
trade-off by introducing [ (𝑏) . Inspired by prevailing studies [28],
for any 𝛿 > 0 with the probability at lease (1 − 𝛿), the reward
expectation 𝐸 (𝑟 (𝑖,𝑏) |x(𝑏)

𝑖
) is bounded by a confidence interval:

x(𝑏)
𝑖

𝜷 (𝑏) −𝛾 × 𝑓𝛾 (X(𝑏) (𝑘) ) ≤ 𝐸 ≤ x(𝑏)
𝑖

𝜷 (𝑏) +𝛾 × 𝑓𝛾 (X(𝑏) (𝑘) ), (8)

where 𝛾 is a constant value, i.e., 𝛾 = 1 +
√
𝑙𝑛(2/𝛿)/2. Also we can

derive the correlation term 𝑓𝛾 (X(𝑏) (𝑘) ) hereunder.

𝑓𝛾 (X(𝑏) (𝑘) ) ≜
√
x(𝑏)
𝑖

(
(X(𝑏) (𝑘) )⊤X(𝑏) (𝑘) + _𝑏I

)−1 (x(𝑏)
𝑖

)⊤ . (9)

Hence, through learning from the anchor triple x(𝑏)
𝑖

∈ R3𝑑 and
all historically selected triples X(𝑏) (𝑘) ∈ R𝑢×3𝑑 for base detector
𝑏 in 𝑘 steps, we can simply derive the equation to appropriately
update the trade-off noise term [ (𝑏) for the next iteration.

[ (𝑏) =

𝛾 ×
√
x(𝑏)
𝑖

(
(X(𝑏) (𝑘) )⊤X(𝑏) (𝑘) + _𝑏I

)−1 (x(𝑏)
𝑖

)⊤ .
(10)

When a triple with larger x(𝑏)
𝑖

𝜷 (𝑏) is selected, this reflects an ex-
ploitation process. Similarly, when the model chooses a triple with
larger [ (𝑏) , this variance shows an exploration process since the
model performs few selections of the current detector. Thus, jointly
maximizing (x(𝑏)

𝑖
× 𝜷 (𝑏) + [ (𝑏) ) helps us get rid of the dilemma.

In consequence, active ensemble learning for KG error detection
is an effective human-in-the-loop approach, which can timely lever-
age the feedback from domain experts to optimize the ensemble
policy. Guided by the objective of maximizing cumulative rewards
𝑠 , we train the model to learn from limited annotations and balance
the exploitation and exploration by a tailored MAB algorithm.

3.3 Three-stage Active Ensemble Scheme
In this section, we introduce a three-stage scheme designed for
active ensemble KG error detection. By integrating majority vot-
ing and a tailored MAB, we fully utilize oracle’s feedback with
limited queries in each stage. The whole process is illustrated in
Figure 2. Given a default𝑄 budget to query the oracle for labels, we
divide it into 𝑄1 and 𝑄2 for both initialization and training stages,
respectively, where 𝑄 = 𝑄1 +𝑄2.

Pre-training of base detectors. Empirically, both the performance
and the quantity of base detectors lay decisive influences, we care-
fully choose base detectors from two aspects: (i) embedding-based
methods: TransE [12] and ComplEx [25] that expresses a triple in
the complex space and learns representation by dividing the entities
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Algorithm 1: Training stage of tailored MAB - KAEL

Input: Candidate triples, Initialized 𝜷 (𝑏) ∈ R1×𝑑 and [ (𝑏) ;
Output: Learned 𝜷 (𝑏) and [ (𝑏) , Detected error list V, Total

rewards 𝑠;
Initialize an X={ } and r={ } to store selected triples and the
rewards, and remaining budget to query (𝑄2);
for i=1:(𝑄2) do

for j=1:𝑚 do
Sort triples with expectation 𝑝 from current base
detector with 𝜷 ( 𝑗) and [ ( 𝑗) and pick the best;

Rank all picked triples, pick the best of the best triple( 𝑗)

and query for reward 𝑟 ( 𝑗) ;
if triple( 𝑗) is a real anomaly then

Obtain reward 𝑟 ( 𝑗)
𝑖

1;
Append triple( 𝑗)

𝑖
to V, s plus 1;

else
Obtain reward 𝑟 ( 𝑗)

𝑖
0;

Append triple( 𝑗) and reward 𝑟 ( 𝑗) to X(i) (j) and r(𝑖) ( 𝑗) .
Update 𝜷 ( 𝑗) and [ ( 𝑗) based on X(𝑖) ( 𝑗) and r(𝑖) ( 𝑗) .

Return 𝜷 (𝑏) , [ (𝑏) , V and 𝑠;

and relations into real parts; (ii) KG error detectors: CKRL [18],
which singles out noises based on a confidence-aware framework
leveraging both local and global information to jointly optimize the
training process and KGTtm [1] that learns natural semantics of
triples, together with the global structural information to measure
trustworthiness of each individual triple.

3.3.1 Initialization Stage with Majority Voting. Intuitively, if all the
base detectors vote with agreement on a suspicious triple, then this
triple stands in most probability to be erroneous indeed. This is
a common strategy termed absolute majority vote as a traditional
ensemble learning strategy. In the initialization stage, we realize
this intuition by prioritizing the overlapping triples among all sets
of candidates.

Definition 3.1 (Overlapping triples). We refer overlapping triples
as the duplicated triples among all𝑚 base detectors, A = [X(1) ∩
X(2) ∩ ... ∩ X(𝑚) ].

The first 𝑄1 querying opportunity is spent on all overlapping
triples from A to initialize the MAB policy with as many real error
samples as possible. Let 𝑐1 be the number of real anomalies among
the overlaps, 𝑐1 ≤ 𝑄1. All overlaps are appended into V ∈ R𝑄1×𝑑 .
This absolute majority voting strategy could effectively alleviate the
cold-start problem with valuable labels and improve the efficiency
of the use of the limited budget.

3.3.2 Training Stage of Active Ensemble Policy. Given an initialized
policy, the training stage will make full use of the remaining 𝑄2
budgets to incrementally update the selection and detection. The
main training procedure is summarized in Algorithm 1. First, we
input the remaining sets of candidate triple embedding and the
initialized 𝜷 (𝑏) ∈ R𝑑 and [ (𝑏) . Then in k steps, we calculate triple
expectation 𝐸 (𝑟 𝑖,𝑏 |x(𝑏)

𝑖
) iteratively, 𝑘 ≤ 𝑄2, walking through each

Algorithm 2: Application stage with trained MAB - KAEL
Input: Remaining Sets of candidate triples, learned

𝜷 (𝑏) ∈ R1×𝑑 and [ (𝑏) ;
Output: Detected error list V;
Initialize remaining budget to query (𝐾 −𝑄1 − 𝑐2);
for i=1:(𝐾 −𝑄1 − 𝑐2) do

for j=1:𝑚 do
Pick the triple with highest expectation 𝑝 from
current base detector with learned 𝜷 ( 𝑗) and [ ( 𝑗) ;

Rank all picked triples, choose the best of the best
triple( 𝑗) ;
Append triple( 𝑗) to V;

Return V;

detector with corresponding 𝜷 (𝑏) , [ (𝑏) and select top one triple
with the highest 𝑝 . After that, among all𝑚 selected triples in current
step, we pick the best of the best to query the oracle for a final
reward 𝑟 𝑖,𝑘 for the current iteration and append the queried triple𝑏

𝑖

into X(𝑏)𝑘 . Finally, we update 𝜷 (𝑏) and [ (𝑏) to learn from the
previous selections to differentiate particular error types in the
best detector. Among all queried triples in this stage, let 𝑐2 be the
number of queries receiving 𝑟 = 1. After spending 𝑄2, we append
this batch of 𝑐2 real anomalies into the list V ∈ R(𝑄1+𝑐2)×𝑑 , 𝑐2 ≤ 𝑄2.

3.3.3 Application Stage of the Trained Policy. In the final stage, after
running out of the budget, we apply the trained policy on remaining
triples to replenish the error list V until totally Top@𝐾 triples are
detected. The overall procedure is summarized in Algorithm 2. Since
there is no oracle involved in this phase, we do not further update
the policy with newly detected triples. Alternatively, we directly
compute 𝑝 for all the remaining candidates from𝑚 detectors with
previously learned 𝜷 (𝑏) and[ (𝑏) and rank them for top (𝐾−𝑄1−𝑐2)
triples. This aims to find triples best fit the implicit patterns we
excavated from historically selected triples X(𝑏) (𝑘) ∈ R𝑢×3𝑑 and
obtained rewards r(𝑏) (𝑘) ∈ R𝑢 in the current base detector 𝑏, where
𝑢 ≤ (𝑄1+𝑐2). Afterwards, we verify all triples that are screened out
in this stage for performance evaluation, and let 𝑐3 be the number
of real anomalies, 𝑐3 ≤ (𝐾 −𝑄1 − 𝑐2).

4 EXPERIMENTS
In this section, we evaluate KAEL upon three real-world KGs. Specif-
ically, we aim to answer following research questions. RQ1: How
effective is KAEL compared the state-of-the-art KG error detection
methods? RQ2: Can KAEL outperform other ensemble learning
and active ensemble learning based strategies? RQ3: How to set
an appropriate active querying budget for KAEL over different
datasets? RQ4: What are the impacts of different combinations
of base detectors on KAEL? RQ5: How does KAEL make queries
among different base detectors through active ensemble learning?

4.1 Experimental Settings
4.1.1 Datasets. We consider two benchmark real-world KGs.WN-
18RR: it describes the characteristics of associations among English
words with 46,943 entities, 11 relations and 93,003 triples. FB15K-
237: it is a subset of Freebase [29], containing 14,541 entities, 237
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Datasets UMLS WN18RR FB15k-237

Top@𝐾 1% 3% 5% 1% 3% 5% 1% 3% 5%

SOTA
Detectors

TransE 0.615 0.385 0.282 0.589 0.337 0.272 0.955 0.853 0.777
ComplEx 0.646 0.595 0.571 0.428 0.281 0.241 0.677 0.557 0.454
CKRL 0.800 0.605 0.518 0.683 0.464 0.353 0.895 0.679 0.534
KGTtm 0.661 0.620 0.534 0.647 0.471 0.393 0.916 0.711 0.551

Ensemble
Learning

RS 0.633 0.584 0.446 0.624 0.403 0.368 0.765 0.630 0.501
RMV 0.791 0.663 0.580 0.701 0.512 0.426 0.923 0.742 0.544

Active
Ensemble

OIS 0.775 0.649 0.562 0.688 0.497 0.395 0.894 0.701 0.526
AAD-IFOR 0.477 0.520 0.454 0.329 0.246 0.182 0.560 0.511 0.405
AAD-HST 0.615 0.515 0.426 0.299 0.224 0.176 0.583 0.497 0.423
KAEL 0.847 0.716 0.669 0.862 0.612 0.479 0.964 0.903 0.815

Table 2: Error detection performance of baselines and KAEL on three real-world datasets with an anomaly ratio of 5%.

relations and 310,116 triples. For all the datasets, we synthesize
anomalies by replacing the head or tail entity of a triple randomly,
with an anomaly ratio of 5%. We summarize the dataset statistics
of in Table 3. Additionally, to evaluate the generalization ability
of KAEL, we also include a specific medical domain KG. UMLS:
Unified Medical Language System, a collection of documents for
health along with biomedical vocabularies. It includes 135 entities,
46 relations and 6,529 pairs in total.

4.1.2 Evaluation Metric. We first formally adopt True Negative
Rate (TNR) [30] for anomaly detection tasks to quantify the fraction
of real negative triples that are correctly identified in top 𝐾 triples,
which is defined as

TNR =
TN

TN + FP
, (11)

where TN and FP denote the number of true negatives and false
negatives, respectively. A TNR of 1 suggests perfect detection with
all the top 𝐾 triples being anomalies, while 0 indicates all the top
𝐾 triples are not anomalies. The overall performance is proceeded
by the triples and real anomalies detected from each of the three
stages, which could be equivalently transformed to

TNR =
𝑐1 + 𝑐2 + 𝑐3

K
. (12)

4.1.3 Hyperparameter Tuning. In this subsection, we introduce
how we tune the hyperparameter, _. This is the coefficient of
squared canonical term in L2 used to equilibrate variance and
bias in ridge regression. Specifically, as _ increases, the result of(
(X(𝑏) (𝑘) )⊤X(𝑏) (𝑘) + _𝑏I

)
will increase accordingly, which leads

to the decrease of the inverse and increase of the bias. Thus, through
tuning _ appropriately, we can achieve better exploitation when
𝜷 tends to be stable. After pre-training, we utilize the returned
𝑚 sets of candidate triples, and adopt a 10-fold cross validation
to find the best _ (𝑏) with the smallest variances for each detector
𝑏. Moreover, tuning of _ is model-agnostic since we take it as a
prerequisite which is independent of KAEL. This allows our model
to be transferable and could be easily enhanced by integrating more
suitable and diverse off-the-shelf KG error detection algorithms
without further parameter tuning.

Datasets Triples Entities Relations Anomalies

UMLS 6,529 135 46 326
WN18RR 93,003 40,943 11 4,650
FB15k-237 310,116 14,541 237 16281

Table 3: Statistics of datasets with an anomaly ratio of 5%.

4.2 Experimental Results
4.2.1 Comparison with KG Error Detectors. To answer RQ1, we
compare KAELwith the base detectors, i.e., TransE, ComplEx, CKRL
and KGTtm, to evaluate whether the proposed active ensemble
learning strategy is effective. Results are summarized in the row of
‘SOTA Detectors’ in Table 2. We observe that KAEL significantly
outperforms the base detectors across all KGs. For instance, KAEL
achieves significant improvement of 11.5%, 8.6% and 3.8% over
UMLS, WN18RR and FB15k-237 with Top@𝐾 = 5% when compared
with the best baselines, and 22.7%, 43.4% and 28.7% over the lowest
baseline performance on three datasets with Top@𝐾 = 1%. The
performance diversity is attributed to their different designs of
conventions. In such a way, they may either perform good detection
performance on particular datasets or be confined by unknown
error types. For instance, TransE performs the worst on UMLS but
the best on FB15k-237. Consistent outperforming results of KAEL
demonstrate the effectiveness of our proposed active ensemble
learning strategy with a tailored MAB.

4.2.2 Empirical Analysis on EnsembleMethods. To investigateRQ2,
we compare KAEL with the following heuristic variants of the ab-
solute majority voting ensemble for KG error detection. (𝑖) Random
Selection: Except for overlaps, we complete the list to Top@𝐾 with
random selection in the remaining sets of triples, in abbreviation
RS; (𝑖𝑖) Relative Majority Voting: Obeying the superiority of ma-
jority over minority, we take all overlaps in pair level among all𝑚
candidate sets, and supplement the list with top-ranked triples until
the total number of identified triples satisfies Top@𝐾 , in shorthand,
RMV. Their results are averaged over 5 times and summarized
in the row of ‘Ensemble Learning’ of Table 2. We get the follow-
ing interesting observations. First, majority voting appears to be
an effective way to improve the performance. Specifically, even
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Figure 3: By varying budget ratios ∈ [0.2, 0.3, 0.4, 0.5, 0.6, 0.7],
we study the impact of budgetswith the smoothness of slope
changes on UMLS and WN18RR with Top@𝐾 = 1%. Real er-
rors are rewarded ‘1’, while wrong predictions receive ‘-1’.

a heuristic ensemble method that combines majority voting and
random selection achieves modest improvements over at least one
base model on all three datasets. RMV exceeds at least three base
detectors, particularly taking the first places on UMLS at Top@𝐾
= 3% and 5% and WN18RR. Second, we observe that KAEL con-
sistently outperforms these two baselines by around 10% across
all the datasets, which demonstrates that our MAB-based active
ensemble learning strategy is effective. These results shed light on
our motivation to design multi-armed bandit based ensemble policy
for KG error detection.

4.2.3 Comparison with Active Ensemble Learning Strategies. To
further answer RQ2, we consider three active-learning-enhanced
ensemble learning algorithms: (𝑖) Oracle Involved Selection: By re-
placing the random part in RMV, we query oracle with top-ranked
tripleswihttps://www.overleaf.com/project/615e385f2d31de116068ff38thin
same budget𝑄 as KAEL, and directly replenish the list with remain-
ing highly-ranked ones, denoted asOIS. This is semi-active without
learning from the answers. (𝑖𝑖) We adopt two typical active ensem-
ble learning methods from AAD [31]. By employing a greedy query
strategy, AAD-IFOR integrates a traditional ensemble learning
model, Isolation Forests, and AAD-HST uses HS Trees. We cat-
egorize these baselines in a group of ‘Active Ensemble’ and the
main statistics is shown in Table 2. From the disparate results, we
could easily tell the significance of majority voting on prioritized
suspicious triples in OIS compared with tree-based ensembles, as
well as the superior performance of KAEL.

4.3 Budget Study for Active Querying
To answer RQ3, we further investigate the impact of budget 𝑄 .
Intuitively, more opportunities for interaction with oracle lead to
higher performance. However, this premise is not practically held in
KGs since human annotations are expensive and limited. Realizing
when to stop is an important feature for applying active learning to
KGs. To observe when the accuracy reaches the plateau, we vary the
percentage of 𝑄 in Top@𝐾 through controlled experiments. Main
results are shown in Figure 3 with four base detectors combined and
the anomaly ratio of 1%. We change the budget ratios ∈ [0.2, 0.3, 0.4,
0.5, 0.6, 0.7]. For evaluation, the model is rewarded ‘1’ if the detected
triple is a real anomaly, while a ‘−1’ for a mistakenly identified

3 4 5

TransE 0.282 - - 0.282 0.282 - 0.282
ComplEx - 0.571 - 0.571 - 0.571 0.571
DistMult - - 0.534 - 0.534 0.534 0.534
CKRL 0.518 0.518 0.518 0.518 0.518 0.518 0.518
KGTtm 0.534 0.534 0.534 0.534 0.534 0.534 0.534

KAEL 0.615 0.645 0.638 0.669 0.658 0.680 0.707
Table 4: Comparisons of different combinations with 3/4/5
base detectors on UMLS, where each column is a combina-
tion and ‘-’ means not included in the current combination.

normal triple. We paint the tendency lines from shallow to deep,
i.e., light blue to dark blue, when the anomaly ratio increases.

The smoothness of the slope changes reflect the changing ability
of detecting real anomalies at the certain point. Our observation
reveals an essential homophily of choosing a proper budget for two
different datasets, where the slopes commonly trend to be more
stable with the ratio of budget increasing from 0.2 to 0.5, while they
turn to be steeper sharply when the budget ratio rises from 0.5 to
0.7. An intuitive assumption arises from the fact that, considering
the dispersion among both normal and erroneous triples, there
exists a critical point of budget 𝑄 where the model can be fed to
exactly recognize erroneous patterns and avoid both under-fitting
and over-fitting. Otherwise, either less or more budgets will render
it harder to identify errors from the remaining ranking list, as well
as a waste of opportunities to query less valuable triples [32]. Thus,
we uniformly set the budget ratio at 0.5 for both OIS and KAEL on
three datasets in Table 2.

4.4 Analysis of Ensemble Construction
For RQ4, we study how different combinations of the base detec-
tors impact the performance. Our proposed ensemble is built up
with two types of base detectors in parallel, i.e., embedding-based
methods and KG error detectors based on a tailored MAB algo-
rithm, which ensures both harmony and diversity. Moreover, for
embedding-based methods, TransE is the translational distance
model, while ComplEx is a typical semantic matching model. Addi-
tionally, we introduce DistMult [33], a bi-linear embedding-based
model, which results in five base models in the candidate pool. We
consider the combinations of ‘3’, ‘4’, ‘5’ base detectors to study (𝑖)
how the number of detectors and (𝑖𝑖) different combinations of
detectors impact the performance.

The results on UMLS with Top@𝐾 = 5% are presented in Table 4,
where each column represents one combination. For example, in
the first column, only TransE, CKRL, and KGTtm have numbers.
This indicates that we only combine these three detectors without
the ones with ‘-’ (i.e., ComplEx, DistMult). We make the following
observations. First, combining more base detectors always achieve
better performance. KAEL performs the best when combining all
five detectors, and combinations of ‘4’ consistently outperforms ‘3’.
Second, integrating stronger base detectors leads to better ensem-
ble results. Specifically, for all combination ‘3’, combination with
ComplEx outperforms both with either TransE or DistMult. In con-
sequence, the hypothesis is developed that themore or stronger base
detectors we combine, the better performance KAEL will achieve.
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(mins) UMLS WN18RR FB15k-237

TransE 3.77 10.53 36.46
ComplEx 4.08 12.47 38.07
DistMult 4.52 15.03 39.97
CKRL 12.40 40.10 72.55
KGTtm 16.22 52.27 77.28
KAEL 0.51 7.53 32.68

Table 5: Efficiency evaluation with the average running time.

4.5 Efficiency Evaluation
As both existing active learning and ensemble learning policies
suffer from the efficiency problem on large datasets, to evaluate
KAEL, we compare the running time with state-of-the-art detectors
and summarize the results in Table 5. The computation time of
KAEL on UMLS, WN18RR and FB15K-237 at Top@𝐾 = 5% is around
a half minute, 10 minutes and 30 minutes, respectively, which is
more efficient than the baselines; The superiority mainly benefits
from two design principles. First, KAEL is dataset-agnostic since
it builds upon top 𝐾 triples prioritized by 𝑚 base detectors. In
other words, KAEL only takes𝑚 × 𝐾 highly suspicious triples as
input to alleviate the costs on the whole large KG, where𝑚 × 𝐾 is
far smaller than the original sample size 𝑛. Second, we treat base
detectors as prior knowledge and exclude them to be trained by
our framework. The primary time consumption is spent on the
policy optimization based on important triples. KAEL proves to be
adaptive and promising on larger real-world KGs.

4.6 Case Study with Visualization of Selections
To provide insights for RQ5, we visualize the distribution of selec-
tion times of each base detector in Figure 4 on UMLS and WN18RR
with Top@𝐾 = 5% and 1%, respectively. After learning from over-
laps, KAEL realizes differentiation by equilibrating the actions of
exploration and exploitation in the training stage. This is inter-
pretable as both actions can be distinctly observed in the figures,
which performs as choosing the current best detector and explor-
ing the potential one. We observe how KAEL achieves exploitation
from the results of KGTtm in UMLS. Specifically, the color changes
from shallow to deep, which suggests KAEL is exploiting the best
detector, consequently increasing the number of selections from
the candidate lists of best detectors. Similarly, the process of explo-
ration can be sufficiently observed in WN18RR. KAEL queries more
triples from the detectors that are not well-explored with the color
changing from deep to shallow.

5 RELATEDWORK
Knowledge Graph Error Detection. Many KG error detection
methods have been proposed to distinguish noise from normal
triples. The majoity of them can be categorized into two groups. (i)
Embedding-based methods [34]. Except for TransE, ComplEx and
DistMult [12, 25, 33], TransH [35] models a relation hyperplane for
solving 1-N and N-1 problems in TransE; NTN [36] and ConvE [4]
evaluate the probability between ℎ and 𝑡 w.r.t. 𝑟 by applying neu-
ral networks; (ii) Path-based methods. PTransE [37] integrates the
translational assumption in TransE with a multi-hop path-aware
embedding model, which is followed by CKRL [18] and KGTtm [1].
Other heuristic algorithms like PaTyBRED [14] and PRGE[9] learn
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Figure 4: Visualization of selection times of base detectors.

from additional type information and propose advanced path rank-
ing models for relation errors based on PRA [38]. As they dedicate
to identifying particular KG error characteristics, in this paper, we
effectively leverage strengths of both two types of detectors with a
novel ensemble learning framework.

Ensemble learning for Anomaly Detection. Ensemble learn-
ing contributes prominently for traditional anomaly detection on
i.i.d datasets [39–41]. It improves the generalization capability by
integrating homogeneous [42, 43] or heterogeneous detectors [44]
with an effective combination strategy [21, 45]. As labels are ex-
pensive to be obtained, a few attempts have been made for unsu-
pervised training to avoid label costs [46, 47]. Most of them apply
predicted labels aggregated from an estimator to train ensemble
classifiers [48, 49]. However, they perform unsteadily with pseudo
labels [22]. Since ensemble learning has not been explored for KG
error detection, we tackle the challenges by learning from a limited
number of active queries with a tailored MAB.

ActiveAnomalyDetection.Human-in-the-loopmethods have
been explored for anomaly detection for label efficiency under weak
supervision [50]. Prevailing stream-based efforts search the whole
space to query sequentially [24], and train the policies with differ-
ent optimization objectives [31, 51–53]. Considering the intrinsic
semantics and huge sizes of KGs, we focus on a concentrated space
with valuable candidates, which best facilitate the query strategy.

6 CONCLUSIONS
In this paper, we present a novel active ensemble learning frame-
work, KAEL, for KG error detection. We design a tailored multi-
armed bandit algorithm to integrate multiple base detectors. A
three-stage active ensemble scheme is employed to fully utilize the
oracle’s feedback. Experimental results demonstrate the significant
superiority of KAEL over all the baselines. We also visualize the
process of selection to illustrate the interpretability of our policy
when solving the exploitation and exploration dilemma. For fu-
ture works, we will explore further improving KAEL with more
progressive combination principles for ensembles.
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