
PREPRINT, 2023 1

Integrating Entity Attributes for Error-Aware
Knowledge Graph Embedding
Qinggang Zhang1, Junnan Dong1, Qiaoyu Tan1, and Xiao Huang1

1Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR
qinggangg.zhang@connect.polyu.hk, hanson.dong@connect.polyu.hk, qiaoytan@polyu.edu.hk

Corresponding Author: Xiao Huang Email: xiaohuang@comp.polyu.edu.hk

Abstract—Knowledge graphs (KGs) can structurally organize large-scale information in the form of triples and significantly support many
real-world applications. While most KG embedding algorithms hold the assumption that all triples are correct, considerable errors were
inevitably injected during the construction process. It is urgent to develop effective error-aware KG embedding, since errors in KGs would
lead to significant performance degradation in downstream applications. To this end, we propose a novel framework named Attributed
Error-aware Knowledge Embedding (AEKE). It leverages the semantics contained in entity attributes to guide the KG embedding model
learning against the impact of erroneous triples. We design two triple-level hypergraphs to model the topological structures of the KG and
its attributes, respectively. The confidence score of each triple is jointly calculated based on self-contradictory within the triple,
consistency between local and global structures, and homogeneity between structures and attributes. We leverage confidence scores to
adaptively update the weighted aggregation in the multi-view graph learning framework and margin loss in KG embedding, such that
potential errors will contribute little to KG learning. Experiments on three real-world KGs demonstrate that AEKE outperforms
state-of-the-art KG embedding and error detection algorithms.

Index Terms—Knowledge graph, graph neural network, anomaly detection, node representation learning
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1 INTRODUCTION

KNOWLEDGE graphs (KGs) can aggregate millions of
relational facts in the form of triples [1], i.e, (head entity,

relation, tail entity). Examples include general-purpose KGs,
e.g., YAGO [2] and DBpedia [3], and domain-specific KGs,
e.g., biomedical KGs [4] and agricultural KGs [5]. KGs are
essential supporters for many knowledge-driven artificial
intelligent systems, such as KG-enhanced recommender
systems [6] and KG-based conversational agents [7]. Mean-
while, KG embedding has been intensively studied, which
can improve the generalization and adaptability of KGs in
downstream tasks. By representing entities as continuous
vectors and each relationship as an operation in the same
space, such as translation and projection, we can perform
KG inference in continuous spaces with simple numerical
computations.

While many KG embedding algorithms have been ex-
plored [8], [9], [10], the impact of erroneous triples has often
been ignored. Manual construction is impractical due to the
massive scale of KGs. Most real-world KGs are extracted
from web corpora using heuristic algorithms [3], [11], [12].
A considerable number of noisy triples were inevitably
introduced into KGs due to the noises in the original
sources and the imperfect extraction algorithms [13]. For
example, NELL [14] is a frequently used KG with 2.4 million
triples, with an accuracy of 74%, corresponding to roughly
0.6 million erroneous triples [15]. Errors in KGs would
lead to significant performance degradation in downstream
applications. Thus, it is urgent to develop effective error-
aware KG embedding.

It is nontrivial to enable error-aware learning in KGs,
given that the patterns of KG errors are unknown and
diverse [16], [17], [18]. Recently, a few studies explore guiding

the KG embedding model learning against the impact of
erroneous triples [19], [20], [21]. Particularly, Vault [22] is the
first work that performs graph representation learning while
considering erroneous triples during the learning phase. It
estimates a probability score of reliability to determine the
quality of a triple via several prior models fitted with existing
KGs. The similar concept of judgments for each triple is also
applied in CKRL [23] and NoiGAN [24]. The former model
generates confidence scores for triples via internal structure
information and utilizes them in representation learning to
produce robust representations, while the latter improves it in
the aspect of sample selection. The key idea of these methods
is to guide the embedding model to focus on more convincing
triples by exploiting the internal graph structures. However,
merely KG topological structures are often not effective to
support the detection of nontrivial errors [25]. For instance,
given a triple {London, is_larger_than,Washington} with
sparse graph structure, it is hard to know which London it
refers to, since there are many cities called London. Thus,
efforts have been devoted to employing extra information
sources, such as related webpages [26], external knowledge
bases [25] and annotation information from crowdsourcing
websites [27]. But these supplemental sources are often
prohibitive to acquire which impedes its success in practice.

KGs are often associated with fertile and valuable at-
tribute data, describing the property of entities. Fig. 1
illustrates a toy KG with six entities. Each entity contains a set
of attributes, e.g., the entity MadameCurie has an attribute
list of {birth_date, gender, nationality, language} which in-
dicates its role as a human being, while {latitude, longitude,
population, area} shows MariaSalomea’s role as a location.
Considering that most entities in KGs are not typed or are
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Fig. 1: Running examples of complex errors in real-world
KGs. (a) presents a KG error with mismatched head/tail
entities and relations. This error can be detected by reasoning
over neighboring triples. But, real-world KGs are often
incomplete and noisy. (b) demonstrates a further difficult case
with some key links missing. In this case, the rich semantics
in entity attribute types can facilitate the detection of errors.

very loosely typed, being able to learn about the semantic
portrait of the entity from the attribute set is valuable.

Modeling and measuring the correlation between en-
tity attributes and KG structure can guide the KG em-
bedding model learning against the impact of erro-
neous triples. In real-world KGs, entity attributes of-
ten show high dependency with the graph structure,
i.e., entities with relevant semantic meanings are usu-
ally linked by specific relations. For example, entities
with attribute set {latitude, longitude, population, area}
are generally connected to live_in or born_in while enti-
ties with {pen_name,writing_style} are more likely con-
nected to author_of . It means that triples whose entities
have inconsistent attributes with its neighboring relations
are more likely to contain noisy facts. Taking the triple
{MadameCurie, spouse_of,MariaSalomea} in Fig. 1-(b)
as example, analyzing the attribute list of MadameCurie
and MariaSalomea and comparing the learned semantics
with the corresponding relation, it can be easily deduced
that this triple is erroneous since it is impossible to has
the relation of spouse_of between a person and a location.
Hence, we propose to enrich the entity semantics with its
attribute list, and measure the degree of consistency between
attributes and graph structure as anomaly signal to guide
the learning process of KGs to enable effective error-aware
KG embeddings.

However, it is still a challenging task to integrate entity
attributes into error-aware KG embedding, with two major
key challenges. (i) The heterogeneity of entity attribute
makes it hard to utilize. In general, attributes are not
uniformly distributed over all entities. As shown in Fig. 1-
(b), different entities usually have distinct types or numbers
of attributes. Furthermore, the same entity can represent
different roles in different triples. When an entity describes
its different roles, it tends to associate with different attribute
sets to represent the certain semantics. For example, an entity
of both scientist and amateur writer prefers an attribute list of
{research_area, citation, h_index} when describes its role
as scientist and {pen_name,writing_style, notable_book}
when it means the status of writer. Therefore, a tailored
and uniform encoder is desired to fuse such heterogeneous
attribute information to depict the various levels of semantics
for entities. (ii) It is hard to leverage the semantics learned
from attributes to help the KG embedding model learn error-
aware embeddings. Entity attributes can be used to implicitly

portray the semantics of entities, but it is hard to integrate
different KG components, i.e. entities, relations and attributes
into a suitable vector space since they always exhibit rather
distinct characteristics. Some existing KG embedding models
attempt to integrate attributes into the learning framework by
directly fusing the learned attribute semantics into the entity
embedding [28], [29], [30], [31]. However, in this fusing way,
it is hard to measure the complex correlation and dependency
between entity attributes and knowledge graph structure,
which is crucial to guide the embedding model to filter out
noisy information from hidden erroneous triples.

Through this paper, we aim to answer the following
research questions. ❶ How to jointly embed different kinds
of KG components, i.e, entities, relations and attributes, into
suitable vector spaces? ❷ How to construct an effective
detector that calculates the confidence score for each triple
based on the learned features? ❸ How to make the best of
confidence information learned from the detection module
to get the error-aware KG embeddings? To solve these prob-
lems, in this paper, we propose a novel framework named
Attributed Error-aware Knowledge Embedding, i.e, AEKE,
that leverages the semantics contained in entity attributes to
guide the KG embedding model learning against the impact
of erroneous triples. The key idea is to guide the embedding
model to focus on more convincing triples by exploiting
the correlation between knowledge graph structures and
entity attributes. Concretely, we designed two triple-level
hypergraphs, i.e, relational hypergraph, and attribute hypergraph,
to model the topological structure of the original KG and
its attributes, respectively. A contrastive learning framework
is then used to learn the representation of each instance
from these two different views. Analyzing and mining the
unique structure of KGs and the correlation between graph
structure and attributes, the confidence score of each triple
can be calculated by considering three anomaly signals, i.e.,
self-contradictory within the triple, global acknowledgment
across triples, and conformity between attribute and graph
structure. We leverage confidence scores to adaptively update
the weighted aggregation in contrastive learning and margin
loss in KG embedding, such that potential errors would
contribute little to KG learning. The main contributions of
this work are concluded as follows:

• In this research, we propose a novel knowledge graph
embedding framework, i.e. AEKE, which leverages the
semantics contained in entity attributes to guide the
KG embedding model learning against the impact of
erroneous triples.

• We design a tailored multi-view contrastive learning
framework to use attribute information as a congruent
view to guide the learning process of KGs.

• Based on the KG structure characteristics and the
previously learned multi-view features, we propose
to measure the confidence score of each triple by
considering anomaly signals of three levels.

• We leverage confidence scores to adaptively update
weighted aggregation in the multi-view graph learning
framework and margin loss in KG embedding, such that
potential errors will contribute little to KG modeling.

A preliminary version of this paper was published in the
proceedings of the 31st ACM International Conference on
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Information & Knowledge Management (CIKM 2022) [32].
In the conference version, we introduced a contrastive graph
learning framework for Knowledge Graph Error Detection,
named CAGED. The key idea of CAGED is to detect the
potential errors from noisy KG by exploiting the internal
graph structures. Despite its superiority over existing error
detection models, we found that there are still two significant
limitations that need to be addressed before its successful
application in real-world scenarios. 1) CAGED performs
error detection merely relying on KG topological structures.
However, real-world KGs are often incomplete and sparse.
Simply relying on KG topological structures is often not
effective to support the detection of nontrivial errors with
sparse graph structure. 2) Given the detected errors, it is still
hard to get effective KG embeddings for downstream tasks.
A straightforward solution is to retrain the KG by filtering
out all the possible noisy triples. However, we found that it is
infeasible in practice since in real-world KGs, it is difficult to
directly conclude whether a triple is true or not without being
tested in practice or strictly and mathematically proven. As
shown in previous study [32], even the SOTA error detection
method could only achieve 60% accuracy. Consequently,
directly filtering out all the possible erroneous triples will
lead to severe information loss, especially for these long-tail
entities which only have few links in the original KG.

In this paper, instead of performing KG modeling via
a two-step way, i.e., (i) conduct error detection first, and
then (ii) retrain the KG by filtering out all the possible noisy
triples, we propose an end-to-end graph learning framework,
named AEKE. While CAGED serves as a KG error detection
model seeking anomaly labels for each triple, our newly
proposed AEKE focuses on error-aware KG embedding
learning that aims to encode entities and relations into a
low-dimensional vector space while considering erroneous
triples during the learning phase. In particular, we extend the
preliminary work as follows: 1) We formally define the task
of error-aware KG embedding and highlight its difference
with error detection. 2) Rather than relying solely on internal
topological structures, we leverage additional information,
i.e., entity attributes, to guide AEKE learning against the
impact of nontrivial errors. 3) We introduce a novel training
objective function, where the confidence score is learnable
and dynamically updated during the representation learning
phase so that the noisy information from erroneous triples
can be minimized while the valuable information from
correct triple will be mostly preserved during the training
process. 4) More experiments are conducted to verify the
effectiveness of our proposed model on both detection
performance and downstream task of KG completion.

2 PROBLEM STATEMENT

Given a knowledge graph G, we define G = (E ,R), indi-
cating an aggregation of an entity set E and a relation set
R. We use (h, r, t) ∈ T to represent a triple fact inside one
KG, where there is a relation r ∈ R linking a head entity
h and a tail entity t. Learning from the KG representation,
we use uppercase bold letters to denote matrices (e.g., W),
lowercase bold letters to represent vectors (e.g., z).

When taking entity attributes into consideration, we use
A to denote the attribute set and define the attributes of entity

TABLE 1: Notations summary.
Notation Description
G The original knowledge graph
A Entity attribute set
Gr relational hypergraph constructed from G
Ga attribute hypergraph constructed from A
{ahi|i = 1, . . . , n} A list of attribute types for entity h
(h, r, t) A triple of (head, relation type, tail)
pi Basic representation of ith triple
xi Representation of ith triple learned from Gr

zi Representation of ith triple learned from Ga

C(h, r, t) Confidence score of triple (h, r, t)

h in the form of
{
ah,1, ah,2, . . . , ah,|Ah|

}
where ah,i ∈ A

is the ith attribute type and |Ah| is the total number of
attribute types with regard to the entity h. Here, we only
utilize attribute types to quantitatively depict the entity
semantics without considering accurate values due to its
low quality. For example, given the entity MariaSalomea
in Fig. 1, we reconstruct its semantics with the attribute
set {longitude, latitude, population} instead of {longitude :
53.74W, latitude : 20.77N, population : 1.5M}. We adopt
E and R to represent the feature matrices of entity and
relation, respectively. Similarly, we adopt A to denote the
learned attribute matrix of entities in G, where i-th row
of A ∈ RD×FA represents the feature indicators to the
attributes ah,i ∈ A of entity h ∈ E . D is the max value across
the attribute number of each entity. In our model, these
embeddings will be used in two ways: (i) for representation
learning, and (ii) for confidence learning.

Definition 1. Errors in Knowledge Graph. Given a triple
in a KG, denoted as (h, r, t), if there is a mismatch among
its head entity h, relation r, and tail entity t, then this
triple (h, r, t) is an error. There are two types of mismatching.
First, relevant entities might be connected by wrong relations.
E.g., {ElonMusk, founder_of, Tesla}, where ElonMusk
is connected with Tesla indeed, but he is the CEO, not the
founder. Second, irrelevant entities might be connected. E.g.,
{BruceLee, place_of_birth,England}, in which BruceLee
was born in Los Angeles.

In a KG, it is difficult to directly conclude whether a
triple is true or not without being tested in practice or
mathematically proven. Thus, following previous studies
[15], [19], [23], [32], [33], we introduce the concept of triple
confidence and try to validate the whole KG from the
perspective of triples, where the confidence value indicates
the degree of a triple being true.

Definition 2. Triple Confidence. In this paper, we introduce the
concept of confidence to measure the correctness of each triple. Its
value is set to be in the range [0, 1]. The closer the value gets to 0,
the more likely the triple is incorrect.

Definition 3. Error-aware KG Embedding. Given a KG G,
with noisy triples, we aim to learn low-dimensional representations
for all entities E and relations R, i.e., a mapping {G} → {E,R},
such that all information in correct triples can be preserved, while
the impact of false triples on the embedding is minimized. The
performance of error-aware embedding is evaluated by applying E
and R to downstream tasks.
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Fig. 2: We perform a relation-induced construction process to build the relational hypergraph, and construct the attribute
hypergraph based on entity attributes. These two hypergraphs can be regarded as congruent views of the target KG.
A contrastive learning framework is used to learn the representation of each instance from these two different views.
Meanwhile, a triple confidence estimation module is designed to calculate the confidence score of each triple by considering:
self-contradictory within the triple; local-global consistency in graph structure; and structure-attribute homogeneity. Under
the joint adaptive training scheme, we leverage confidence scores to adaptively update the weighted aggregation in
contrastive learning and margin loss in KG embedding, such that potential errors would contribute little to KG learning.

3 METHODOLOGY

We propose AEKE to learn error-aware KG embedding by
integrating entity attributes. As shown in Fig. 2, AEKE
consists of three key components. ❶ KG representation
learning model. It incorporates a confidence score C(h, r, t)
into the traditional KG embedding model to isolate the
impact of noise over embedding vectors. ❷ Triple confi-
dence learning module. It aims to learn a confidence score
C(h, r, t) to measure the correctness and significance of each
triple with the favor of both internal structural information
and external heterogeneous attribute information. ❸ Joint
adaptive training scheme. A tailored adaptive mechanism
is applied to optimize the KG representation learning and
confidence learning model under an end-to-end framework.

3.1 Knowledge Graph Representation Learning
Knowledge graphs can effectively store and handle struc-
tured information of real-world entities and facts, and have
been widely utilized in various knowledge-driven applica-
tions. In fact, real-world KGs always suffer from serious
quality problem since amounts of errors were introduced
into KGs in construction phase due to the original noises
in sources and the imperfect extraction methods. How-
ever, most existing knowledge graph embedding methods
assume that all triple facts hold true to the knowledge
graph. Therefore, the noisy information is overfitted into
KG embeddings, which leads to significant performance
degradation in downstream tasks.

To eliminate the impact of noisy triples over embedding
vectors, following a previous study [23], [33], we introduce
the concept of confidence to describe whether a triple fact is
noisy or not. Its value is set to be in the range [0, 1]. The closer

the value gets to 0, the more likely the triple is incorrect. With
the introduction of confidence, we can define the new error-
aware objective function to eliminate the noisy data from the
learning process of KG embedding model.

Lemb =
∑

(h,r,t)∈G

∑
(h′,r′,t′)∈G′

max(0, γ + C(h, r, t) · E(h, r, t)

−E(h′, r′, t′)),

(1)

where E(h, r, t) = ∥eh + er − et∥2 is the traditional energy
score for translational embedding models following transla-
tion assumption. γ > 0 is the hyperparameter of margin, and
G represents the sampled positive triple set. Here, the triple
confidence C(h, r, t) forces our model to pay more attention
to those more convincing facts. For pair-wise training, since
there are no explicit negative triples in KGs, we sample
negative triples complying with the following rules:

G′ =
{(

h′, r, t
)
| h′ ∈ E

}
∪
{(

h, r, t′
)
| t′ ∈ E

}
∪
{(

h, r′, t
)
| r′ ∈ R

}
, (h, r, t) ∈ G.

(2)

It means that one entity or relation in a positive triple is
randomly replaced by another entity or relation in the overall
set. Note that different from TransE, we also add relation
replacements for better performances. The corruption of
entity (relation) might lead to false negative samples. To this
end, we discard all triples already in G from G′ to make sure
our generated negative triples are truly negative.

3.2 Triple Confidence Learning with Entity Attributes
To enhance the robustness of our error-aware KG embedding
model, we learn a confidence score C(h, r, t) for each triple.
As illustrated in Fig. 2, our key idea is to measure the
correctness and significance of each triple by exploiting the
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Fig. 3: Triple feature extraction for local relational structure.

correlation between knowledge graph structures and entity
attributes. In the real world, KGs are often accompanied by
entity attributes, which have three paradigms as follows.

• In triple level, relations can be interpreted as translations
operating on the low-dimensional embeddings of the
entities. So, the more a triple fits the translation assump-
tion, i.e. h+r ≃ t, the more convincing this triple should
be considered.

• In graph level, the connected triples that share the same
entity are always semantically relevant. Intuitively, a KG
can be regarded as a social group, where each triple is
an individual. The degree of acknowledgements from
neighboring triples to the target triple reflects whether
the target triple can be properly integrated into the
society.

• Entity attributes often show high dependency with
the graph structure, i.e., entities whose attributes show
relevant semantic meanings are usually linked by spe-
cific relations. It means triples whose entities have
inconsistent attributes with its neighbors are more likely
to contain noisy facts.

Based on these observations, we propose a novel con-
fidence learning model to answer the research problems
mentioned at the beginning of this paper. To model the differ-
ent components in KGs, i.e., entity, relation and attribute, into
suitable vector spaces, we proposed a multi-view knowledge
graph learning framework in which a dual-view structure
information encoder and a relation-specific attribute encoder
are designed to model the topological KG structure and
entity attributes, respectively. Specifically, we first design
two triple-level hypergraphs, i.e., relational hypergraph and
attribute hypergraph to model the topological structure of
the original KG and its attribute, respectively. And then we
employ a unified contrastive learning framework to model
their dependency. To construct an effective detector that
calculates the confidence score for each triple based on the
learned features, we propose to measure the confidence score
of each triple by considering three anomaly signals, i.e., self-
contradictory within relational triple structure, global consis-
tency across triples, and attribute-structure dependency.

3.2.1 Multi-view construction
Knowledge graph embedding projects entities and relations
into low dimensional vector space, which has been suc-
cessfully applied in KG-based tasks. However, the existing
embedding approaches only model entities and their rela-
tions within triples, ignoring the global correlation among
triples in KGs. To model the complex topological graph
structure, in this paper, we propose a novel view towards
knowledge graph modeling that augments the target KG
into hyper-views (triple-level), by regarding each relational
triple as nodes. Concretely, we perform a relation-induced
construction process to build the relational hypergraph. In
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Fig. 4: Attribute triple Embedding initialization by capturing
attribute information.

essence, we follow one strategical criterion: we regard each
relational triple as nodes and link them in the relational
hypergraph if they share the same entity in the original KG.
Such triple-level transformation could filter out low-level
information without changing the structure of possible errors
in original KGs since a KG error usually occurs inside a
triple as a mismatch of the head entity, tail entity, and their
corresponding relation.

Definition 4. Relational Hypergraph. Given a knowledge graph
G = {(h, r, t)|h, t ∈ E , r ∈ R}, the corresponding relational
hypergraph is the triple-level graph Gr = (Ṽ, Ãr, X̃r), where Ṽ
and Ãr are the set of nodes and adjacency metric respectively.
X̃r = {Γ(h, r, t) | (h, r, t) ∈ G} represents the feature matrix of
Ṽ , where Γ(·) is a concatenation function. Ãr(v, u|u, v ∈ Ṽ) = 1,
if u and v share the same entity in the original KG, i.e., G.

When taking entity attributes into consideration, we
build another triple-level graph, i.e. attribute hypergraph, to
reconstruct the knowledge graph from the perspective of
attributes. Specifically, we treat each triple in the original
KGs as an individual instance and reconstruct its semantics
with the feature learned from the attribute sets of its head
and tail entity.

Definition 5. Attribute Hypergraph. Given the same knowledge
graph G = {(h, r, t)|h, t ∈ E , r ∈ R}, with entity attribute
set A = {

{
ah,1, ah,2, . . . , ah,|Ah|}|h ∈ E

}
where ah,i is the ith

attribute type for entity h, the attribute hypergraph can be denoted
as Ga = (Va,Aa,Xa), where Va and Aa are the set of nodes and
adjacency metric respectively, which have the same structure with
Gr. And Xa represent the feature matrices of each node vi ∈ Va

learned from corresponding entity attributes.

These two hypergraphs can be regarded as congruent
views of the target KG. The relational hypergraph models
the correlation between relational triples, while the attribute
hypergraph represents the distribution of entity attributes.
Considering that entity attributes always show high depen-
dency with graph structure, i.e., entity attributes are always
linked with certain relevant relations, for normal triples in
KGs, we can easily find enough relevant attributes in attribute
hypergraph to reconstruct its semantics learned from relational
hypergraph. Thus, it helps us assess the trustworthiness of
each triple in the original KG by measuring the consistency
between its representations learned from these two views.

3.2.2 Learning from view I: relational hypergraph

Existing KG embedding approaches only model entities and
their relations within triples, ignoring the global correlation
among triples in KGs. In this section, we propose a new graph
encoder in a dual-view which learns both the local structure
within relational triples (local view), and the contextual
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information buried among their neighboring community
simultaneously (global view).
Local view of relational structure modeling. Constructing
relational hypergraph from the original knowledge graph,
in some way, may lose some local structure information,
which means the translational or sequential structure inside
a triple (head → relation → tail). Since every instance in the
relational hypergraph is transformed from a corresponding
triple (h, r, t) in the original knowledge graph, we first
randomly initialize the embedding of entities and relations
in the original knowledge graph, and then adopt a local
information modeling layer, i.e, a set of BiLSTM units, to
to integrate the embedding of head entity, relation and tail
entity (eh, er, et) into triple-level representation p. Taking
the ith triple (h, r, t) as an example, our local information
modeling layer is formulated as follows.

pi = Glocal(h, r, t) = fconcat(fBiLSTM (eh, er, et)). (3)

The output triple embedding pi is supposed to well
capture the local relational structure of the input triple.
Thus, we use them as the initial embedding of each node in
relational hypergraph.

Global view of neighbor information aggregation. Ex-
cept the local structure inside triples, abundant contextual
information among a community of triples are useful in
detecting anonymous triples. To model such global contex-
tual information, an intuitive way is to use graph neural
network (GNN) or its variants. However, existing graph
neural networks are not optimal for KG embedding task since
they ignore the existence of anomalous instance in the graph.
In other words, potential noisy triples may draw relatively
equal attention as normal ones, which leads to a more
challenging triple representation learning. To reduce impacts
from potential anomalies, we adopt an attention-based
architecture, i.e. Gglobal, to selectively aggregate messages
from the neighboring triples.

Given an anchor triple pi ∈ Rd in relational hypergraph, we
update its embedding by attending over its neighborhoods’
features, e.g. {p1, p2, . . . , pm} , pm ∈ Rd through a two-layer
graph attention network. A single graph attentional layers is
given by:

attij = fatt (Wpi,Wpj) . (4)

Here, attij is a raw attention coefficient which indicates the
importance of triple j to triple i. W ∈ Rn×d is a learnable
linear transformation matrix to project the initialized triple
representations into the same high-level vector space. fatt
is the attentional function. To make attention coefficients
easily comparable across different triples, We normalize the
attention values by applying a softmax function:

αij =
exp (attij)∑m

k=1 exp (attik)
. (5)

Then, the final triple embedding in relational hypergraph can
be calculated with a nonlinearity sigmoid function as follows.

xi = σ

(
m∑

j=1

αijWpj

)
. (6)

3.2.3 Learning from view II: attribute hypergraph

Most of the current knowledge graph embedding frame-
works focus on learning the inner structure of relational
triples. However, entity attributes contain amounts of ac-
curate and targeted semantic information that can describe
entities quantitatively, which is equally valuable to enable
effective KG embedding. To facilitate information transfer
between entity attributes and the target KG for error-aware
embedding, we propose a tailored a relation-specific encoder,
i.e. gattr learn the attribute-based triple representation from
attribute hypergraph.
Attribute hypergraph embedding.

Attributes are not uniformly distributed over all entities.
In general, different entities always have different types or
numbers of attributes, even the same entity may represent
different roles in different triples. When an entity describes
its different roles in different triples, it tends to associate
with different attribute sets to represent the certain semantics.
Thus, it is necessary to choose which attribute corresponds to
the semantics the current entity represents when we want to
reconstruct triple-level semantics based on the attributes of
its head/tail entities. To capture which level of information
the current entity mainly focuses on, we therefore adopt the
relation-specific mechanism, which uses the relation type
as an indicator to lead the selection of entity attributes in
different triples.

Given a triple (h, r, t), in order to extract the rich seman-
tics information from more valuable attributes of entity h and
t, we first splice the embeddings of attribute type into an em-
bedding matrix, denoted by Mh =

{
ah,1, ah,2, . . . , ah,|Ah|

}
and Mt =

{
at,1, at,2, . . . , at,|At|

}
, then feed them to an

attention module with relation embedding er to get the
integrated representation êh and êt for target entity h and t.
Take entity h as an example:

atth,i = fatt (femb (er) , femb (ah,i)) , (7)

αh,i =
exp (atth,i)∑|Ah|

j=1 exp (atth,j)
, (8)

where femb and fatt are all single-layer feed-forward neural
networks. The αh,i is the normalized attention weight of
attribute ah,i. Now, we can compute the aggregated attribute-
based representation êh of Ah, which is the weighted sum
of all the transformed representation of attributes in it:

êt =

|At|∑
i=1

αt,i ∗ femb (at,i) . (9)

Then given a triple (h, r, t) in attribute hypergraph, we can
get the attribute-based entity representations, i.e., êh and
êt, by using this attribute encoder. The final attribute-based
triple embedding qi can be calculated as:

qi = fconcat(êh; er; êt). (10)

Aggregating neighbor attribute information. Homoge-
neously, given an anchor triple qi ∈ Rd in attribute hypergraph,
we follow the global view of relational hypergraph to update
the embedding by attending over neighbors’ features of qi,
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e.g., {q1, q2, . . . , qm} , qm ∈ Rd through the same two-layer
graph attention network:

zi = σ

(
m∑

j=1

αijWqj

)
. (11)

3.2.4 Model learning
To learn discriminative features from both relational hyper-
graph and attribute hypergraph, we adopt a tailored contrastive
loss to optimize the proposed multi-view knowledge graph
neural network.
Contrasting between structure and attribute views. The
relational hypergraph models the global correlation between
relational triples, while the attribute hypergraph represent
the distribution of entity attributes. These two hypergraphs
can be regarded as congruent views of the original KG
since entity attributes always show high dependency with
graph structure. In this paper, we adopt the normalized
temperature-scaled cross entropy loss as our contrastive
objective and train the encoders by maximizing the mutual
information between triple embeddings, i.e. xi and zi,
learned from these two views.

Lsa(xi, zi) = − log
exp (sim (xi, zi) /τ)∑

j∈{1,2,...,N}\{i} exp (sim (xi, zj) /τ)
, (12)

where τ denotes the temperature parameter. sim(xi, zi)
denotes the cosine similarity of triple embedding xi from
relational hypergraph and zi learned from attribute hypergraph.
Contrasting between local and global views. As mentioned
at the beginning of § 3.2, the connected triples that share the
same entity are always semantically relevant, and thus the
degree of acknowledgements from neighboring triples to the
target triple reflects whether the target triple can properly
integrate into the community. To model such paradigm
between individual triple and its community, we propose
another contrastive training objective by maximizing the
mutual information between pi and xi. Here, pi is the
embedding of ith triple learned from local relational structure
(Eq. (3)), while xi is the embedding of the same triple that
learned by aggregating information from its neighboring
community (Eq. (6)).

Llg(pi, xi) = − log
exp (sim (pi, xi) /τ)∑

j∈{1,2,...,N}\{i} exp (sim (pi, xj) /τ)
. (13)

Finally, by combining the above two losses, we have our final
contrastive objective function, i.e Lcon defined below:

Lcon =
1

2N

N∑
i=1

(Lsa (xi, zi) + Llg (pi, xi)) . (14)

3.2.5 Triple confidence estimation
Based on the KG paradigms and the previously learned multi-
view features, we propose to measure the triple confidence by
considering three anomaly signals: self-contradictory within
local relational structure, global consistency across triples,
and attribute-structure dependency.
Self-contradictory measurement. In triple level, relations
can be interpreted as translations operating on the low-
dimensional embeddings of the entities. So, the more a
triple fits the translation assumption, i.e. h + r ≃ t, the

more convincing this triple should be considered. Existing
KG embedding algorithms have developed various energy
functions to model the translational structure for better
learning embeddings. In this paper, we take a simple squared
euclidean distance to measure the unconformity of each
triple with translation assumption, and define the local triple
confidence LT (h, r, t) as follows.

LT (h, r, t) =
1

1 + e−∥eh+er−et∥2

. (15)

Global acknowledgement estimation. The connected triples
that share the same entity are always semantically relevant,
and thus the degree of acknowledgements from neighboring
triples to the target triple reflects whether the target triple
can properly integrate into the KG. Inspired by social identity
theory [34], [35], the KG can be regarded as a social group,
where each triple is an individual. The degree of acknowl-
edgements from other individuals to the targeted individual
(target triple) reflects whether the targeted individual can
properly integrate into the society, i.e., the KG. We believe
that only a true triple can achieve popular recognition from
its neighboring triples. In other words, if a triple is well
accepted, we tend to believe that it is trustworthy. Hence,
we define another confidence function to measure the global
acknowledgement of target triple (h, r, t).

GT (h, r, t) = sim(pi, xi), (16)

where pi = Glocal(h, r, t) is the local embedding of triple
(h, r, t), and xi = Gglobal(h, r, t) represent the feature learned
from its global context.
Structure-attribute dependency estimation. The relational
hypergraph models the correlation between relations, while
the attribute hypergraph represent the distribution of entity
attributes. Considering that entity attributes always show
high dependency with graph structure, i.e. entity attributes
are always linked with certain relevant relations, for normal
triples in KGs, we can easily find enough relevant attributes
in attribute hypergraph to reconstruct its semantics learned
from relational hypergraph. So, the consistency between its rep-
resentations learned from these two views can be regarded
as an effective anomaly signal to assess the trustworthiness
of each triple in the original KG.

AT (h, r, t) = sim(xi, zi), (17)

where xi = Glocal(h, r, t), zi = gattri(h, r, t) are the represen-
tations of triple (h, r, t), learned from relational hypergraph
and attribute hypergraph, respectively.
Triple confidence. Finally, we measure the confidence score
of each triple based on the previously learned features and
define final score functions for detecting potential errors as
follows:

C(h, r, t) = σ(LT (h, r, t) + λ1 ·GT (h, r, t)

+λ2 ·AT (h, r, t)),
(18)

where LT (h, r, t) reflects the degree of self-conformity within
the local relational triple, GT (h, r, t) denotes the consistency
between local-global structure, AT (h, r, t) measures the
similarity of the same sample between relational hypergraph
and attribute hypergraph. When the confidence value is larger,
the triple (h, r, t) is more likely to be a normal one.



PREPRINT, 2023 8

Algorithm 1: Error-aware KG Embedding Learning
Input: A real-world Knowledge graph G = (E ,R) with

entity attributes A.
Output: Error-aware KG Embeddings, i.e, E and R.

1 Initialize network parameters, learnable embedding and
confidence metric Construct two subgraphs Gr , i.e.,
relational hypergraph and Ga, i.e., attribute hypergraph
while not converged do

2 for (h, r, t) ∈ G do
3 pi ← modelling local relational triple structure,

defined in Eq. (3);
4 xi ← modelling triple embedding from relational

hypergraph Gr defined in Eq. (6);
5 zi ← modelling triple embedding from attribute

hypergraph Ga, defined in Eq. (11);
6 Update the confidence score of each triple (h, r, t)

as defined in Eq.(18);
7 Incorporate the learned confidence score into the

KG embedding loss and jointly optimize the
model with contrastive loss, define in Eq.(19).

3.3 Joint Adaptive Training Scheme
In this section, we introduce the details of the training
scheme to answer the third research question mentioned
at the beginning of this paper, i.e. how to make the best of
confidence information learned from the detection module to
get the error-aware KG embeddings. Concretely, we define
a comprehensive objective function to tightly integrates the
KG embedding model and confidence learning model that
work jointly to get the error-aware embeddings. The learning
process of AEKE is summarized in Algorithm 1.

L = Lcon + βLemb. (19)

Under this scheme, KG representation learning and con-
fidence learning mechanism could be mutually beneficial
for each other in each iteration that the former provides a
promising embedding in latent space for the latter, while the
latter singles out less credible triples to improve the perfor-
mance of the former. Through iteratively joint estimation of
triple confidence, we aim at reducing impacts from potential
anomalies and learn optimal representation of the target KG.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments on a
variety of real-world KGs to verify the effectiveness of the
proposed framework AEKE. Specifically, we aim to answer
the following questions.
• Q1 (§ 4.2): Is our proposed AEKE valid and effective for

distinguishing noisy triples?
• Q2 (§ 4.3): How effective is the KG embeddings learned

by AEKE in comparison with the state-of-the-art KG
embedding models?

• Q3 (§ 4.4): How does each component of AEKE contribute
to its prominent performance?

• Q4 (§ 4.5): How do the hyperparameters influence the
performance of AEKE?

• Q5 (§ 4.6): Is our proposed AEKE an efficient method
compared to baselines?

• Q6 (§ 4.7): How does our proposed AEKE perform error-
aware embedding in real-world scenarios?

4.1 Datasets
We evaluate our proposed AEKE on three real-world bench-
mark datasets, including FB15K-237, YAGO15K, and DB15K.
Due to the human curation, these benchmark datasets
contain highly reliable facts. Following prior work [23],
[24], we amplify each of three datasets by incorporating
5% and 15% noisy triples to imitate real-world errors,
respectively. Since most errors in real-world KGs derive from
the misunderstanding between similar entities, e.g., the error
(Newton,Nationality, England) is more likely to occur in
real-world KGs than (Newton,Nationality,Google), in this
paper, the noisy triples are appropriately generated in the
following way. Given a positive triple (h, r, t), the head or
tail entity is replaced to form a harder and more confusing
negative triple (h′, r, t) or (h, r, t′), where h′ (or t′) should
have appeared in the head (or tail) position with the same
relation in the dataset.
FB15K-237 [36] stands as the widely-applied subset with 114
relations and 10054 entities under Freebase, which is known
as the huge knowledge base with over 1 billion triples. FB15K-
237 proves to be better than FB15K-237 by getting over the
challenges FB15K-237 faced for inverse relations and keeping
symmetrical, asymmetrical and combinatorial relationships,
as well as the attributes.
DB15K [37] is a subset of Wikidata, making up for the
weakness of Wikipedia. To avoid test leakage, it also excludes
inverse relations using the same procedure as the derivation
of FB15K-237.
YAGO15K [38] augmented WordNet with over one million
entities, transforming WordNet from the plane data to a
knowledge graph. YAGO15K gets formed based on YAGO
aligned with the entities in Freebase.

4.2 Capability of AEKE in Distinguishing KG Errors (Q1)
In this section, we conduct experiment on KGs in terms of
KG error detection task to verify the capability of AEKE in
distinguishing errors. Specifically, we rank all the triples in
the target KG according to their confidence scores in ascend-
ing order. The top ranked triples are treated as potential
errors. The experiments are conducted on three benchmark
datasets, including FB15K-237, DB15K and YAGO15K with
noisy triples to be different ratios of 5% and 15% of KGs. In
the following part, we elaborate the experiment settings and
prerequisites of baseline models and evaluation metrics.

4.2.1 Baselines
From three aspects we single out models as the base-
line to evaluate the error detection performance, among
which CKRL [23] and NoiGAN [24] represent the error-
aware embedding methods; TTMF [15], CAGED [32], and
CrossVal [25] represent the state-of-the-art error detection
alternatives; TransE [39], DistMult [40], ComplEx [41],
SimplE [42] TuckER [43] and EARL [44] are picked for
being representative knowledge graph embedding methods.
The details of the baseline methods are elaborated as follows:
TransE [39] assumes that entities and relations are embedded
in the same space, allowing for the approximation of the
tail entity related to a given head entity and relation after
training. As a result, the original triples are transformed into
word vectors using either L1 or L2 norm.
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TABLE 2: Error detection results of Precision@K and Recall@K based on the three datasets with anomaly ratio = 5%.

FB15K-237 DB15K YAGO15K

K=1% K=2% K=3% K=4% K=5%a K=1% K=2% K=3% K=4% K=5%a K=1% K=2% K=3% K=4% K=5%a

P
r
ec
is
io
n
@
K

TransE 0.756 0.674 0.605 0.546 0.488 0.671 0.566 0.535 0.472 0.443 0.534 0.455 0.362 0.319 0.279
ComplEx 0.718 0.651 0.590 0.534 0.485 0.679 0.612 0.532 0.469 0.424 0.503 0.426 0.369 0.310 0.273
DistMult 0.709 0.646 0.582 0.529 0.483 0.638 0.587 0.523 0.499 0.445 0.513 0.423 0.347 0.347 0.302
SimplE 0.744 0.667 0.611 0.556 0.515 0.709 0.616 0.554 0.504 0.455 0.560 0.459 0.373 0.319 0.281
TuckER 0.742 0.680 0.614 0.552 0.514 0.711 0.630 0.550 0.509 0.452 0.549 0.454 0.375 0.331 0.276
EARL 0.762 0.692 0.639 0.582 0.531 0.729 0.652 0.573 0.530 0.483 0.578 0.487 0.394 0.338 0.303
TTMF 0.815 0.767 0.713 0.612 0.579 0.744 0.685 0.623 0.557 0.510 0.701 0.569 0.454 0.413 0.346
CAGED 0.852 0.796 0.735 0.665 0.595 0.802 0.722 0.658 0.596 0.554 0.724 0.599 0.489 0.429 0.373
CKRL 0.789 0.736 0.684 0.630 0.574 0.787 0.723 0.634 0.599 0.526 0.662 0.531 0.438 0.382 0.327
NoiGAN 0.837 0.788 0.727 0.649 0.585 0.823 0.718 0.676 0.606 0.553 0.737 0.592 0.477 0.403 0.379
CrossVal 0.874 0.814 0.742 0.667 0.596 0.819 0.707 0.645 0.572 0.548 0.754 0.647 0.562 0.500 0.424
AEKE 0.892 0.822 0.753 0.691 0.614 0.853 0.756 0.705 0.625 0.582 0.778 0.676 0.590 0.519 0.440

R
ec
a
ll
@
K

TransE 0.151 0.269 0.363 0.437 0.488 0.134 0.226 0.321 0.377 0.443 0.106 0.182 0.217 0.255 0.279
ComplEx 0.144 0.260 0.354 0.427 0.485 0.135 0.244 0.319 0.375 0.424 0.100 0.170 0.221 0.248 0.273
DistMult 0.142 0.258 0.349 0.423 0.483 0.127 0.234 0.313 0.399 0.445 0.102 0.169 0.208 0.277 0.302
SimplE 0.149 0.267 0.366 0.445 0.515 0.142 0.246 0.332 0.403 0.455 0.112 0.184 0.224 0.255 0.281
TuckER 0.148 0.272 0.368 0.442 0.514 0.142 0.252 0.330 0.407 0.452 0.110 0.182 0.225 0.265 0.276
EARL 0.152 0.277 0.383 0.466 0.531 0.146 0.261 0.344 0.424 0.483 0.116 0.195 0.236 0.270 0.303
TTMF 0.163 0.306 0.427 0.489 0.579 0.148 0.274 0.373 0.445 0.510 0.140 0.227 0.272 0.330 0.346
CAGED 0.171 0.318 0.441 0.532 0.595 0.160 0.288 0.395 0.477 0.554 0.145 0.240 0.293 0.343 0.374
CKRL 0.158 0.294 0.410 0.504 0.574 0.157 0.289 0.380 0.479 0.526 0.132 0.212 0.262 0.305 0.327
NoiGAN 0.167 0.315 0.436 0.519 0.585 0.164 0.287 0.405 0.484 0.553 0.147 0.236 0.286 0.322 0.379
CrossVal 0.175 0.325 0.445 0.533 0.596 0.163 0.282 0.387 0.457 0.548 0.150 0.258 0.337 0.400 0.424
AEKE 0.178 0.328 0.452 0.552 0.614 0.170 0.302 0.423 0.500 0.582 0.155 0.270 0.354 0.415 0.440

a Please note that according to Eqs.(20)-(21), when K equals 5%, Precision@K and Recall@K are equal.

DistMult [40] is a bi-linear model that calculates the confi-
dence of potential semantics for entities and relations in the
vector space. It simplifies the RESCAL model by representing
the relational matrix as a diagonal matrix, removing the
limitation. However, DistMult can only handle symmetric
relations in a knowledge graph.
ComplEx [41] is another notable bi-linear model that builds
upon DistMult. It improves upon DistMult by introducing
complex numbers and expanding the model into the complex
number space. This enhancement enables ComplEx to handle
both symmetric and asymmetric relations in a knowledge
graph.
SimplE [42] SimplE embeddings offer interpretability and
allow the integration of specific background knowledge by
employing weight tying. It provides evidence of its complete
expressiveness and establishes a bound on the size of its
embeddings to ensure full expressivity.
TuckER [43] is a linear model that offers a relatively simple
approach to link prediction in knowledge graphs. It leverages
the Tucker decomposition of a binary tensor containing
known facts.
EARL [44] focuses on learning embeddings for a specific
group of entities referred to as reserved entities. To obtain
embeddings for the entire set of entities, it encodes their
unique characteristics by considering their connected rela-
tions, k-nearest reserved entities, and multi-hop neighbors.
TTMF [15] utilizes semantic information to calculate the
trustworthiness of triples in order to distinguish between
normal instances and anomalies. This differentiation is
achieved through corresponding confidence values.
CAGED [32] By joint training with KG embedding and
contrastive learning loss, CAGED assesses the trustworthi-
ness of each triple based on two learning signals, i.e., the
consistency of triple representations across multi-views and
the self-consistency within the triple.

NoiGAN [24] aims to learn noise-aware knowledge graph
embeddings. It combines error detection and completion
tasks using a unified Generative Adversarial Networks
(GAN) framework.
CKRL [23] is an advanced confidence-aware knowledge
representation learning method. It aims to overcome the
assumption made in conventional KRL, where all triples
in the original graph are considered correct. CKRL focuses
more on triples with lower confidence, as they may indicate
potential noise.
CrossVal [25] suggests using an external human-curated
knowledge graph as an auxiliary information source to aid in
error detection within a target knowledge graph. The external
knowledge graph is constructed based on human-curated
knowledge repositories and tends to have high precision.

4.2.2 Evaluation protocol
The implementation of both the baselines and our proposed
framework is carried out using PyTorch. For the baseline
methods, we utilize the publicly available codes for conduct-
ing our experiments. Training of our proposed framework
and the baselines is performed on a Nvidia 3090 GPU
server. Specifically, we employ the Adam optimizer with
a fixed batch size of 256 to optimize all models. The model
parameters are initialized using the default Xavier initializer,
and the initial learning rate is set to 0.01. Additionally, we
maintain a fixed embedding size of 100 for all models.

In order to assess the performance of the baseline
approaches, we utilize ranking measures. These measures
involve calculating ranks based on the scores assigned by
the models to the triples in the knowledge graph (KG). A
lower score indicates a lower likelihood of a triple being
correct. The triples in the target KG are ranked in ascending
order according to their scores, where the top-ranked triples
have a higher probability of being incorrect. To provide a fair
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TABLE 3: Results of knowledge graph completion.

Dataset FB15K-237 DB15K YAGO15K

Metrics MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

0%

TransE 0.302 0.211 0.344 0.468 0.420 0.385 0.431 0.509 0.311 0.199 0.369 0.523
SimplE 0.288 0.202 0.314 0.455 0.437 0.392 0.445 0.505 0.296 0.188 0.344 0.487
EARL 0.308 0.209 0.338 0.474 0.447 0.389 0.459 0.508 0.317 0.199 0.372 0.509
RGCN 0.363 0.306 0.387 0.512 0.474 0.410 0.487 0.576 0.381 0.269 0.424 0.588

RGHAT 0.422 0.362 0.446 0.535 0.483 0.422 0.499 0.588 0.412 0.295 0.467 0.618
NoiGAN 0.424 0.371 0.445 0.526 0.480 0.421 0.483 0.581 0.413 0.310 0.465 0.605

CKRL 0.410 0.362 0.438 0.536 0.482 0.416 0.490 0.586 0.408 0.298 0.461 0.610
Ours 0.427 0.375 0.453 0.534 0.486 0.426 0.503 0.587 0.418 0.316 0.474 0.622

5%

TransE 0.294 0.201 0.335 0.465 0.407 0.358 0.417 0.481 0.288 0.161 0.345 0.493
SimplE 0.266 0.178 0.281 0.416 0.407 0.354 0.412 0.466 0.277 0.166 0.313 0.455
EARL 0.284 0.194 0.308 0.437 0.407 0.366 0.416 0.466 0.283 0.180 0.348 0.468
RGCN 0.348 0.261 0.375 0.493 0.456 0.408 0.472 0.551 0.365 0.250 0.397 0.562

RGHAT 0.401 0.342 0.442 0.507 0.460 0.411 0.472 0.565 0.392 0.275 0.442 0.580
NoiGAN 0.418 0.360 0.440 0.515 0.474 0.415 0.479 0.578 0.404 0.305 0.457 0.598

CKRL 0.400 0.340 0.426 0.512 0.471 0.410 0.483 0.572 0.397 0.292 0.449 0.594
Ours 0.424 0.369 0.447 0.519 0.482 0.424 0.499 0.583 0.412 0.308 0.465 0.612

15%

TransE 0.267 0.185 0.309 0.451 0.386 0.340 0.401 0.469 0.276 0.149 0.334 0.473
SimplE 0.242 0.154 0.241 0.361 0.368 0.314 0.358 0.416 0.231 0.134 0.288 0.419
EARL 0.259 0.169 0.266 0.381 0.368 0.326 0.362 0.416 0.237 0.147 0.32 0.431
RGCN 0.325 0.237 0.356 0.476 0.437 0.398 0.455 0.534 0.343 0.238 0.375 0.549

RGHAT 0.395 0.332 0.416 0.498 0.442 0.398 0.454 0.540 0.371 0.258 0.427 0.565
NoiGAN 0.409 0.348 0.427 0.506 0.463 0.401 0.462 0.566 0.385 0.295 0.448 0.589

CKRL 0.396 0.334 0.422 0.501 0.458 0.400 0.467 0.559 0.375 0.275 0.437 0.579
Ours 0.417 0.363 0.440 0.512 0.475 0.411 0.492 0.579 0.401 0.299 0.451 0.600
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Fig. 5: KG completion results of AEKE variants based on the three datasets with anomaly ratio = 5%.

assessment of KG validation performance, we employ the
following two evaluation measures.
Precision@K assesses the percentage of real anomalies found
in the first K queries.

Precision@K =
| Errors Discovered in Top K Ranking |

K
. (20)

Recall@K measures reflects the percentage of real anomalies
found in the overall number of ground truth anomalies.

Recall@K =
| Errors Discovered in Top K Ranking |
| Total number of Errors in the KG | . (21)

4.2.3 Experimental results
We now answer the first question, i.e., Q1 evaluating the
effectiveness of AEKE. The experimental results are summa-

rized in Table 2. We have three observations as follows.
Obs. 1.AEKE demonstrates superior performance compared
to both embedding methods and state-of-the-art error detec-
tion baselines. Our proposed model, AEKE, outperforms all
baselines in terms of recall and precision evaluation metrics.
Specifically, at a 5% anomaly ratio and k value of 5%, AEKE
achieves a 1.8% improvement over the second-best method.
Obs. 2. Knowledge graph embedding baselines, such as
TransE, ComplEx, and DistMult, generally yield satisfac-
tory results. However, when compared to tailored error
detection and error-aware methods, these knowledge graph
representation baselines exhibit inferior performance. The
reason behind this is that KG embedding frameworks do
not account for errors in the KG, resulting in the inability
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TABLE 4: Results of Precision@K% and Recall@K% based on
FB15K-237 with anomaly ratio = 5%.

Precision@K

Top@K 1% 2% 3% 4% 5%a

TransE(none) 0.7565 0.6749 0.6058 0.5466 0.4884
TransE(attr) 0.7668 0.6808 0.6214 0.5493 0.5011

ComplEx(none) 0.7185 0.6508 0.5900 0.5342 0.4856
ComplEx(attr) 0.7250 0.6589 0.5924 0.5453 0.4873

DistMult(none) 0.7088 0.6461 0.5828 0.5298 0.4839
DistMult(attr) 0.7263 0.6501 0.6000 0.5306 0.4862

AEKE(none) 0.8522 0.7959 0.7352 0.6658 0.5957
AEKE 0.8919 0.8223 0.7529 0.6916 0.6141

Recall@K

Top@K 1% 2% 3% 4% 5%a

TransE(none) 0.1513 0.2700 0.3635 0.4373 0.4884
TransE(attr) 0.1534 0.2723 0.3728 0.4394 0.5011

ComplEx(none) 0.1437 0.2603 0.3540 0.4273 0.4856
ComplEx(attr) 0.1450 0.2636 0.3554 0.4362 0.4873

DistMult(none) 0.1418 0.2584 0.3497 0.4239 0.4839
DistMult(attr) 0.1452 0.2600 0.3600 0.4245 0.4862

AEKE(none) 0.1706 0.3180 0.4411 0.5326 0.5957
AEKE 0.1783 0.3289 0.4517 0.5532 0.6141

a Please note that according to Eqs.(20)-(21), when K equals 5%,
Precision@K and Recall@K are equal.

to learn discriminative representations for normal and noisy
triples. This outcome emphasizes the need for an error-aware
representation learning framework to achieve robust KG
embeddings.
Obs. 3. The inclusion of auxiliary human-curated information
proves to be useful in detecting errors in KGs. For instance,
CrossVal, which utilizes an external human-curated KG as
auxiliary information, demonstrates better detection perfor-
mance than other baselines. However, our model surpasses
it due to its ability to leverage the relational structure
within triples, the global contextual structure across triples,
and the rich semantics derived from entity attributes. This
comprehensive approach allows our model to excel in error
detection.

4.3 Quality of KG Embeddings leaned by AEKE (Q2)
The goal of our model is to learn effective knowledge graph
embeddings that could facilitate various applications. To ver-
ify the quality and effectiveness of learned embeddings, we
evaluate AEKE in terms of KG completion task. Knowledge
graph completion is a traditional evaluation task that aims
to complete the incomplete triples that lack a head entity,
tail entity or relation. In the following part, we elaborate the
experiment settings and prerequisites of baseline models and
evaluation measurements.

4.3.1 Baseline methods
To validate the quality of KG embeddings leaned by our
proposed AEKE, we compare it with the strongest baselines
according to our best knowledge. Following the taxonomy
aforementioned in § 5, we divide all baselines into three
categories: (i) embedding-based: TransE [39], SimplE [42],
EARL [44]; (ii) state-of-art completion models: RGCN [45]
and RGHAT [46]; (iii) Error-aware embedding method:
NoiGAN [24] and CKRL [23].

4.3.2 Evaluation protocol
In this research paper, our primary focus revolves around
entity prediction. To provide a more precise description, we
establish the KG completion as a task that involves predicting
either the head entity in a given query (?, r, t) or the tail entity
in a given query (h, r, ?). To be specific, we mask the head
or tail entity of each triple in the test dataset and require
each method to predict the missing entities. To maintain
consistency with the previous study [23], [24], we utilize two
evaluation metrics: 1) Mean Rank of correct entities, denoted
as MRR, and 2) Hits@K, which denotes the proportion of
correct answers ranked within the top K positions.

4.3.3 Experiment results
We conduct the experiments on three benchmark datasets,
including FB15K-237, DB15K and YAGO15K with noisy
triples to be different ratios of 5% and 15% of KGs. Evaluation
results are shown in Table 3. In general, we have the
following observations.
Obs. 1. AEKE consistently outperforms the embedding-
based models and other tailored KG completion competitors
over different anomaly ratios, which verifies the quality and
effectiveness of KG embeddings learned by AEKE.
Obs. 2. Error-aware embedding methods, including NoiGAN,
CKRL and our proposed AEKE, always show better perfor-
mance than other models. And the embedding-based meth-
ods, i.e. TransE, SimplE, and EARL, are always surpassed
by both KG completion models, i.e. RGCN and RGHAT. It
is because embedding-based methods that are trained in a
pair-wise mode and only model the local relational structure
of triples, are more likely to over-fit noisy information.
Obs. 3. As the anomaly rate increases, the performance gap
between the baseline models and our AEKE become more
significant. Specifically, comparing with second-best method,
our AEKE just gets the improvements of 0.3%, 0.6% and
0.5% on FB15k-237, DB15K and YAGO15K respectively. As
the anomaly rate increases to 15%, our AEKE gets more
significant improvements of 0.8%, 1.2% and 1.6% on FB15k-
237, DB15K and YAGO15K, respectively. It indicates that our
proposed framework is more robust, especially for KGs with
larger scale of noises.

4.4 Ablation Study (Q3)
We now investigate the third question. In this part, four pairs
of variants of AEKE are used for this ablation study.

4.4.1 The role of attribute hypergraph encoder
Entity attributes can be used to implicitly portray the
semantics of entities, but it is hard to integrate different KG
components, i.e. entities, relations and entity attributes into a
suitable vector space since they always exhibit rather distinct
characteristics. To leverage the semantics contained in entity
attributes to guide the KG embedding model learning against
the impact of erroneous triples, in this paper, we first build
an attribute-based hypergraph and then propose a novel
attribute encoder to model the attribute information with
heterogeneous structure. To test the effect of our proposed
attribute encoder, we remove the attribute view from AEKE,
and denote the variant as AEKE(none). In this part, we
compare our model and its variant with three KG embedding
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Fig. 6: Margin parameter and trade-off parameters analysis
on the three datasets.
models in terms of the capability in distinguishing KG
errors. Specifically, we use TransE, ComplEx and DistMult
to model the KGs without attribute information and denote
them as TransE(none), ComplEx(none) and DistMult(none),
respectively. In the same time, we directly integrate attributes
into KG embedding frameworks by initializing the entity
feature with the concatenated attribute semantics, and denote
them as TransE(attr), ComplEx(attr) and DistMult(attr).

As shown in Table 4, after introducing the attributes, all
baselines as well as our model, present better performance,
which verifies the value and importance of attribute infor-
mation in KG representation learning. But the improvement
of the baselines is quite marginal compared to our model.
Particularly, there is only an increase of 0.99%, 0.65%, 1.75%
for TranE, ComplEx and DistMult, respectively. And our
model shows a significant improvement of 3.97% at K equals
1%. It is because these baseline models attempt to integrate
attributes into KG embedding framework by directly initial-
izing the entity feature with the learned attribute semantics
and train the model in pair-wise mode. However, in this
fusing way, it is hard to measure the complex correlation and
dependency between entity attributes and knowledge graph
structure, which is crucial to guide the embedding model to
filter out noisy information from hidden erroneous triples.

4.4.2 The role of relational hypergraph encoder

To assess the effectiveness of capturing translational struc-
ture within each triple using a local information model-
ing layer, we introduce two variations: AEKE_LSTM and
AEKE_Concat. AEKE_LSTM replaces the Bi-LSTM units in
our local information modeling layer with LSTM, while
AEKE_Concat removes the Bi-LSTM units and directly
concatenates randomly initialized embeddings of the head
entity, relation, and tail entity to form the local representation
of each triple. Our results indicate a significant drop in perfor-
mance for both variants, with AEKE_LSTM outperforming
AEKE_Concat. This outcome is expected because a simple
concatenation approach can lead to the loss of local structural
information.

Next, to validate the error-aware functionality of our
global encoder, we substitute our tailored graph encoder
with RGCN [45] and RGHAT [46], creating AEKE_GCN
and AEKE_GAT, respectively. As observed from Fig. 5,
AEKE_GAT outperforms AEKE_GCN, but there remains
a noticeable gap compared to our model. This gap arises
due to RGCN assuming that all observed triples in the KG
are correct, which can result in overfitting on noisy facts
and the failure to detect errors. On the other hand, RGHAT

TABLE 5: Complexity analysis (space complexity, time
complexity, the overall training time Ttotal and the average
training time in each epoch Tepoch).

Method Space Complexity Time Complexity on FB15K-237
Tepoch Ttotal

TransE O(Nem+Nrn) O(Ntm) 2.5 s 0.4 h
SimplE O(Nem+ 2Nrn) O(Ntmn) 3.9 s 0.6 h
EARL O(Nem+Nrn) O(Ne

2m+Nem2) 6 s 0.7 h
NoiGAN O(Nem+Nrn+Ntt) O(Ntm3) 96 s 2.9 h
CAGED O(Nem+Nrn+Ntt) O(Ne

2m+Nem2) 131 s 1.7 h
CrossVal O(Nem+Nrn+Nkd) O(Nem2 +Nkd

2) 590 s 4.5 h
AEKE O(Nem+Nrn+Nam) O((Ne +Na)m2) 375 s 3.3 h

employs an attention mechanism to learn KG representations,
which has the potential to filter out some noisy information.
However, AEKE_GAT still does not exhibit excellent perfor-
mance in the error detection task. This can be attributed to
the fact that RGHAT applies the attention mechanism from
the perspective of entities and relations, whereas KG errors
often occur at the triple level, where mismatches between
the head entity, tail entity, and the corresponding relation
are common. In contrast, our graph encoder incorporates a
customized error-aware attention layer that takes triple-level
embeddings as input. This tailored approach enables us to
effectively filter out noisy facts.

4.4.3 The role of joint adaptive training scheme
To evaluate the effectiveness of our joint optimization ap-
proach, we conduct experiments using different training
losses, resulting in three variants: AEKE_SA, AEKE_LG,
and AEKE_KGE. From the results depicted in Fig. 5, it is
evident that all three variants are inferior to our proposed
model. Notably, AEKE_KGE performs particularly poorly,
even when compared to straightforward baseline methods.
This discrepancy arises due to the fact that the negative sam-
pling employed in the KG embedding framework primarily
assists our model in learning rich structural and semantic
information within triples. However, such local features
alone are insufficient to enable effective error detection
across the entire KG. Contrastive learning, on the other
hand, complements the negative samples by facilitating the
learning of distinguishable across-view representations. With
the distinguishable across-view representations, denoising
noisy triples on KGs will be much more effective.

4.5 Parameter Analysis (Q4)
In this section, we investigate the impact of three key
parameters in AEKE and report the results in Figs. 6(a)
and 6(b).

4.5.1 Trade-off parameters in confidence score function
As shown in Eq.(18), λ1 and λ2 are trade-off coefficients
that balance the contribution of three learning signals for
error detection, i.e., the self-contradictory within the triple
embedding, global alignment among triples, and the con-
formity between attributes and the graph structure. The
larger λ1 and λ2 indicate that effective error detection relies
more on the signals of global acknowledgement and cross-
view conformity, respectively. To search for suitable trade-off
parameters, we vary them from 10−3 to 103. We perform
completion on FB15K-237 and the performance in terms of
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Fig. 7: Case study on FB15K-237. (a) presents a 2-hop
subgraph extracted from FB15K-237 centering at the target
entity /m/0fb1q. While (b) demonstrates the corresponding
subgraph with attribute information attached to each entity.

MRR is shown in Fig. 6(b). From the results, we observe
that the completion performance is much better when the
value of λ1 and λ2 is larger than 1, with an optimal result at
λ1 = 10 and λ2 = 100. We omit the results on the other two
datasets since they show similar trends.

4.5.2 Margin parameter
The translation-based KG embedding loss function utilizes γ
as a margin to regulate the distance between the representa-
tions of positive and negative pairs, as indicated in Eq.(1). In
order to examine the influence of γ, we vary its value from 0
to 1.0 and present the results in Fig.6(a). The DB15K dataset
achieves optimal outcomes when λ1 is approximately 0.1.
From a global perspective, the variations in the parameter λ
do not appear to have a significant impact, as its value
remains stable within a specific range, as observed in
YAGO15K. However, for FB15K-237, the performance notably
improves when λ is set below 0.5, with the best result
obtained at 0.2. The overall performance changes exhibit
a stable trend with minimal fluctuation as γ varies. This is
primarily attributed to the joint training approach employed,
which prevents the model from becoming suboptimal.

4.6 Complexity Analysis (Q5)

In this section, we conduct a comprehensive complexity
analysis to investigate the efficiency of our proposed AEKE.
N_e, N_r and N_t denote the number of entities, relations
and triples, respectively. m, n and t are the dimensions of
entity, relation and triple embeddings. N_k is the number
of entities in external KG used in CrassVal, and d is the
dimension of entity embedding in external KG. N_a is the
number of attributes in AEKE. As shown in Table 5, we have
the following observations: 1) Embedding-based methods
including TransE, SimplE, and EARL are time and space
efficient and run faster than error detection and error-aware
methods in general since they only need to calculate the
mean square losses. In the same time, EARL costs more
time than TransE and SimplE since it introduces multi-layer
convolution network in knowledge graph embedding. 2)
In terms of computation time per epoch, NoiGAN and
CAGED outperform AEKE and CrossVal. This is attributed
to NoiGAN and CAGED leveraging fewer data sources
for KG modeling. Nonetheless, the overall training time
of NoiGAN is considerably larger than CAGED due to the
challenges in convergence that are commonly encountered

TABLE 6: Confidence score of each triple in the sugraph.

Triple: {head entity, relation, tail entity} Triple Confidence

Grounded NoiGAN AEKE

{/m/01xcr4, nominated_for, /m/0304nh} Normal 0.7553 0.8921
{/m/01xcr4, producer_of, /m/01h1bf} Normal 0.7017 0.8427
{/m/0fb1q, live_in, /m/0cc56} Normal 0.8257 0.9254
{/m/0fb1q, actor_of, /m/0fpxp} Normal 0.7682 0.8710
{/m/0c33pl, actor_of, /m/0b3n61} Normal 0.7944 0.8549

{/m/0fb1q, award_winner_of, /m/01xcr4} Erroneous 0.6836 0.1684
{/m/0c33pl, nominated_for, /m/0fb1q} Erroneous 0.2673 0.1086
{/m/020ffd, nominated_for, /m/01xcr4} Erroneous 0.7864 0.4309
{/m/0c33pl, award_winner_of, /m/01xcr4} Erroneous 0.6781 0.1146

with GAN-based models. 3) Although both our proposed
AEKE and CrossVal use extra data sources for KG modeling,
our proposed AEKE shows better efficiency than CrossVal.
It is because entity attributes used in AEKE are naturally
attached to entities, which can be directly leveraged for
KG learning, while CrossVal need extra time to align the
knowledge from the original KG and external KG since a
entity may have different IDs or names in different KGs.

4.7 Case Study on Interpretability (Q6)
We conduct a case study to investigate how AEKE can per-
form error-aware learning in real-world scenarios. We select
the entity /m/0fb1q as the target entity and visualize its
2-hop subgraph and the corresponding attribute information
in Fig. 7. There are nine triples in the subgraph, five of which
are normal ones and the other four are erroneous (in red).
To verify the ability of AEKE in distinguishing noisy triples,
we show the confidence score of each triple in Table 6. To
make the effect measurable and comparable, apart from the
ground truth labels, we also include the confidence score that
are learned from the SOTA error-aware embedding method,
i.e., NoiGAN, as counterparts.

Based on the results shown in Table 6, we have the
following observations: (i) compared to NoiGAN, our
proposed AEKE shows its superiority in distinguishing
erroneous triples. To be clear, NoiGAN learn a confidence
set of {0.6836, 0.2673, 0.7864, 0.6781} for the four real-
world errors, which means three erroneous triples have
escaped the detection with the help of the conflicting
and complicated structure. Our method, in contrast, as-
signs a confidence set of {0.1684, 0.1086, 0.4309, 0.1146}
to four triples, which indicates that it accurately identi-
fies three errors, i.e., only one erroneous triple is oddly
assigned a slightly higher score of 0.4309. (ii). When
measuring the correctness of normal triples, AEKE shows
better stability and robustness than NoiGAN in most cases.
Specifically, the normal triples get a confidence set of
{0.8921, 0.8427, 0.9254, 0.8710, 0.8549} using AEKE, which
are generally closer to 1 (the ground truth value), compared
with the confidence set {0.7553, 0.7017, 0.8257, 0.7682,
0.7944} learned from NoiGAN. Interestingly, the triple with
more erroneous neighbors tends to have a lower confidence
score in NoiGAN, while this phenomenon is not that ob-
vious in our proposed AEKE. It is mainly because AEKE
measures the triple confidence by considering three different
anomaly signals, i.e, self-contradictory within relational triple
structure, global consistency across triples, and attribute-
structure dependency, while NoiGAN only relies on pure
graph structure to estimate triple confidence, which makes it
more vulnerable to neighboring erroneous instances.
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5 RELATED WORK

5.1 Knowledge Graph Embedding
A lot of efforts have been laid on the KG embedding to learn
the representation of triples within KGs after establishment,
contributing an essential base for downstream tasks [47], [48],
[49], [50], [51]. Translational distance models represented
by TransE [39] seize greater attention than before, more
applications prove its reliability for embedding based on
the design to embed entities and relations into a continuous
vector space as the projection of the original triples. As to
three methods which sharing roots with each other, Rescal
[46] represents the bi-relational data into three-dimensional
tensors, in the form of an entity matrix and a relation matrix.
DistMult [40] simplifies Rescal with a bi-linear formulation,
taking entities as low dimensional vectors and relations
from a bi-linear mapping function.However, this kind of
simplification brings the restriction of a symmetry problem,
ComplEx [41] improved DistMult and fixed the problem
by introducing complex value which enables the model to
handle both symmetric and asymmetric problems.
KG embedding methods with external information. While
the traditional ones are showing their advantages, more and
more researches start to focus on attaching importance to
external information of the original KG aiming to support
better embedding methods. DKRL [52] introduces entitiy
description into the KG embedding for better semantic
understanding . It trains the energy function with mutual
promotion of structural embedding and description em-
bedding. KDCoE [53], similarly, also takes the advantage
of abundant semantics as a semi-supervised algorithm,
which embeds multilingual entity descriptions through a co-
learning method for knowledge alignment across languages.

5.2 Knowledge Graph Error Detection
Error detection, being one of the most challenging problems,
has been the subject of extensive research for many years.
Initially, studies on error detection primarily focused on
traditional methods such as rule-based approaches [54],
classification-based methods [55], clustering-based meth-
ods [56], [57], distance-based methods [58], distribution-
based methods [59], and others [60], [61]. Among these
approaches, several notable methods have been developed
specifically for error detection in knowledge graphs (KGs).
One such method is KGClean [62], a classification-based
framework that employs a novel approach called AL-detect
to determine the truthfulness of triples and subsequently
detect and repair erroneous data. Another method, SDVali-
date [59], utilizes statistical distributions to identify error
relations in noisy KGs, without relying on any external
knowledge. Inspired by SDValidate and PRA [63], PaTy-
BRED [55] incorporates type and path features into local
relation classifiers to detect relation assertion errors in KGs.
However, in many cases, it is challenging to acquire a
sufficiently labeled dataset with explicit error labels, which
limits the broader application of unsupervised learning
methods in error detection tasks.

The advancement of graph embedding techniques, such
as TransE [39], KBGAN [64], ConvE [65], and DistMult [34],
has led to a significant focus on embedding-based error
detection methods. Numerous models have been developed,

demonstrating the effectiveness of embedding approaches
on benchmark datasets. One notable model is TransT [66],
which is a translating embedding model based on TransE [39]
and incorporates triple trustworthiness to handle noisy
knowledge graphs. TransT introduces two sub-models that
consider entity types and entity descriptions, respectively,
in order to calculate triple trustworthiness values. In the
Correction Tower framework proposed by Abedini et al. [17],
three distinct embedding-based solutions are introduced
to address different types of errors, including outliers,
inconsistent triples, and erroneous relations. These solutions
are then combined to form a filter-like structure that detects
and corrects errors within the knowledge graph.

5.3 Error-aware Knowledge Graph Embedding

Different from KG error detection that aims to get the
anomaly labels of each triple, error-aware KG embedding is
an end-to-end KG representation learning framework that
encodes entities and relations into low-dimensional vector
space with the consideration of erroneous triples during
the learning phase. Vault [22] is the first work that aims
to detect possible errors in KGs while learning knowledge
representations. It estimates a probability score of reliability
to determine the quality of a triple via several prior models
fitted with existing KGs. A similar concept of judgments for
each triple is also applied in CKRL [23] and NoiGAN [24].
The former model generates confidence scores for triples
via internal structure information and utilizes them in
representation learning to produce robust representations,
while the latter improves it in the aspect of sample selection.

6 CONCLUSIONS AND FUTURE WORK

Learning effective and robust embeddings of entities and
relations in KGs can facilitate various downstream applica-
tions. Most existing efforts take advantage of the internal
structure within KGs to help train a discriminative detector.
But, they are confronted with the bottleneck that the internal
topological information implied in pure KGs is far from
abundant to support the validation task in real-world sce-
narios. In this paper, we propose a novel KG representation
learning framework, i.e., AEKE, to incorporate the semantic
information contained in entity attributes to automatically
validate triples in KGs. We treat the original KG without
attributes information as relational hypergraph, and build an
attribute hypergraph based on these side-information and treat
it as a congruent view of target KG. The confidence score
of each triple is calculated by considering: self-contradictory
within the triple; local-global consistency in graph struc-
ture; and structure-attribute homogeneity between triple-
level views. Experiment results demonstrate that AEKE
outperforms state-of-the-art KG error detection algorithms.
Since real-world KGs are always evolving and introducing
new knowledge, extending our method to temporal KG
representation learning will be a very valuable and promising
future work. Besides, in the future, we will also explore using
the error-aware knowledge graph representation learning
method in AEKE for downstream applications such as
question answering and recommender systems.
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[43] I. Balažević, C. Allen, and T. M. Hospedales, “Tucker: Tensor
factorization for knowledge graph completion,” arXiv preprint
arXiv:1901.09590, 2019.

[44] M. Chen, W. Zhang, Z. Yao, Y. Zhu, Y. Gao, J. Z. Pan, and H. Chen,
“Entity-agnostic representation learning for parameter-efficient
knowledge graph embedding,” arXiv preprint arXiv:2302.01849,
2023.

[45] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and
M. Welling, “Modeling relational data with graph convolutional
networks,” in European semantic web conference. Springer, 2018, pp.
593–607.

[46] D. Nathani, J. Chauhan, C. Sharma, and M. Kaul, “Learning
attention-based embeddings for relation prediction in knowledge
graphs,” arXiv preprint arXiv:1906.01195, 2019.

[47] J. Ashish, B. Ashwin Ramesh, Z. Mohammad Zaki, B. Debapriya,
and M. Fillia, “A survey on contrastive self-supervised learning,”
Technologies (Basel), vol. 9, no. 2, p. 2, 2021.

[48] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06),
vol. 2. IEEE, 2006, pp. 1735–1742.

[49] O. Henaff, “Data-efficient image recognition with contrastive
predictive coding,” in International Conference on Machine Learning.
PMLR, 2020, pp. 4182–4192.

[50] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 9729–9738.

[51] S. Monka, L. Halilaj, S. Schmid, and A. Rettinger, “Contrakg:
Contrastive-based transfer learning for visual object recognition
using knowledge graphs.” CoRR, 2021.

[52] R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning
of knowledge graphs with entity descriptions,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

[53] M. Chen, Y. Tian, K.-W. Chang, S. Skiena, and C. Zaniolo, “Co-
training embeddings of knowledge graphs and entity descriptions
for cross-lingual entity alignment,” arXiv preprint arXiv:1806.06478,
2018.

[54] Y. Ma, H. Gao, T. Wu, and G. Qi, “Learning disjointness axioms
with association rule mining and its application to inconsistency
detection of linked data,” in CSWS. Springer, 2014, pp. 29–41.

[55] A. Melo and H. Paulheim, “Detection of relation assertion errors
in knowledge graphs,” in Proceedings of the Knowledge Capture
Conference, 2017, pp. 1–8.

[56] H. Paulheim and A. Gangemi, “Serving dbpedia with dolce–more
than just adding a cherry on top,” in ISWC. Springer, 2015, pp.
180–196.

[57] X. Wang, X. L. Wang, and D. M. Wilkes, “A minimum spanning tree-
inspired clustering-based outlier detection technique,” in Industrial
Conference on Data Mining. Springer, 2012, pp. 209–223.

[58] J. Debattista, C. Lange, and S. Auer, “A preliminary investigation
towards improving linked data quality using distance-based
outlier detection,” in Joint international semantic technology conference.
Springer, 2016, pp. 116–124.

[59] H. Paulheim and C. Bizer, “Improving the quality of linked data
using statistical distributions,” IJSWIS, vol. 10, no. 2, pp. 63–86,
2014.

[60] J. Lehmann, D. Gerber, M. Morsey, and A.-C. N. Ngomo, “Defacto-
deep fact validation,” in International semantic web conference.
Springer, 2012, pp. 312–327.

[61] B. Shi and T. Weninger, “Discriminative predicate path mining for
fact checking in knowledge graphs,” Knowledge-based systems, vol.
104, pp. 123–133, 2016.

[62] C. Ge, Y. Gao, H. Weng, C. Zhang, X. Miao, and B. Zheng, “Kgclean:
An embedding powered knowledge graph cleaning framework,”
arXiv preprint arXiv:2004.14478, 2020.

[63] N. Lao and W. W. Cohen, “Relational retrieval using a combination
of path-constrained random walks,” Machine learning, vol. 81, no. 1,
pp. 53–67, 2010.

[64] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph
embedding by translating on hyperplanes,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 28, no. 1, 2014.

[65] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and
relation embeddings for knowledge graph completion,” in Twenty-
ninth AAAI conference on artificial intelligence, 2015.

[66] Y. Zhao, H. Feng, and P. Gallinari, “Embedding learning with triple
trustiness on noisy knowledge graph,” Entropy, vol. 21, no. 11, p.
1083, 2019.

Qinggang Zhang is a Ph.D. student at the De-
partment of Computing, The Hong Kong Poly-
technic University, Hong Kong SAR. He received
the bachelor degree of Engineering in Computer
Science from the Northwestern Polytechnical
University, China. He is currently a group member
in DEEP Lab supervised by Dr. Xiao Huang
at the Hong Kong Polytechnic University. His
research interests include graph neural networks,
knowledge graphs, network anomaly detection.

Junnan Dong received his M.S. degree from the
Hong Kong Polytechnic University, supervised by
Dr. Xiao Huang. He is currently a Ph.D. student
in DEEP Lab, Department of Computing at the
Hong Kong Polytechnic University. His research
interests mainly include graph neural networks
and knowledge-enhanced reasoning. He has
published papers on WSDM and WWW related
to learning with knowledge graphs.

Qiaoyu Tan received the BEng degree from the
College of Computer Science and Technology,
Southwest University, China, in 2017. He is cur-
rently working toward the PhD degree in the De-
partment of Computer Science and Engineering,
Texas A&M University, College station, Texas. His
research interests include graph neural networks,
knowledge graphs, network anomaly detection
and recommendation systems. He has published
more than 20 peer-reviewed research papers and
serves as a reviewer and PC member for several

premier conferences and journals.

Xiao Huang is an assistant professor in the
Department of Computing at The Hong Kong
Polytechnic University. He received Ph.D. in Com-
puter Engineering from Texas A&M University
in 2020, M.S. in Electrical Engineering from Illi-
nois Institute of Technology in 2015, and B.S. in
Engineering from Shanghai Jiao Tong University
in 2012. He is a program committee member
of AAAI 2021-2023, ICLR 2022-2023, NeurIPS
2021-2022, KDD 2019-2022, TheWebConf 2022-
2023, ICML 2021-2022, IJCAI 2020-2022, CIKM

2019-2022, WSDM 2021-2023, SDM 2022, ICKG 2020-2021.


	Introduction
	Problem Statement
	Methodology
	Knowledge Graph Representation Learning
	Triple Confidence Learning with Entity Attributes
	Multi-view construction
	Learning from view I: relational hypergraph
	Learning from view II: attribute hypergraph
	Model learning
	Triple confidence estimation

	Joint Adaptive Training Scheme

	Experiments
	Datasets
	Capability of AEKE in Distinguishing KG Errors (Q1)
	Baselines
	Evaluation protocol
	Experimental results

	Quality of KG Embeddings leaned by AEKE (Q2)
	Baseline methods
	Evaluation protocol
	Experiment results

	Ablation Study (Q3)
	The role of attribute hypergraph encoder
	The role of relational hypergraph encoder
	The role of joint adaptive training scheme

	Parameter Analysis (Q4)
	Trade-off parameters in confidence score function
	Margin parameter

	Complexity Analysis (Q5)
	Case Study on Interpretability (Q6)

	Related Work
	Knowledge Graph Embedding
	Knowledge Graph Error Detection
	Error-aware Knowledge Graph Embedding

	Conclusions and Future work
	Acknowledgement
	References
	Biographies
	Qinggang Zhang
	Junnan Dong
	Qiaoyu Tan
	Xiao Huang


