
Adaptive Popularity Debiasing Aggregator for Graph
Collaborative Filtering

Huachi Zhou

huachi.zhou@connect.polyu.hk

The Hong Kong Polytechnic

University

Hung Hom, Kowloon, Hong Kong

Hao Chen
∗

sundaychenhao@gmail.com

The Hong Kong Polytechnic

University

Hung Hom, Kowloon, Hong Kong

Junnan Dong

hanson.dong@connect.polyu.hk

The Hong Kong Polytechnic

University

Hung Hom, Kowloon, Hong Kong

Daochen Zha

daochen.zha@rice.edu

Rice University

Houston, Texas, America

Chuang Zhou

chuang-qqzj.zhou@connect.polyu.hk

The Hong Kong Polytechnic

University

Hung Hom, Kowloon, Hong Kong

Xiao Huang
∗

xiaohuang@comp.polyu.edu.hk

The Hong Kong Polytechnic

University

Hung Hom, Kowloon, Hong Kong

ABSTRACT
The graph neural network-based collaborative filtering (CF) models

user-item interactions as a bipartite graph and performs iterative

aggregation to enhance performance. Unfortunately, the aggrega-

tion process may amplify the popularity bias, which impedes user

engagement with niche (unpopular) items. While some efforts have

studied the popularity bias in CF, they often focus on modifying

loss functions, which can not fully address the popularity bias in

GNN-based CF models. This is because the debiasing loss can be

falsely backpropagated to non-target nodes during the backward

pass of the aggregation.

In this work, we study whether we can fundamentally neutral-

ize the popularity bias in the aggregation process of GNN-based

CF models. This is challenging because 1) estimating the effect of

popularity is difficult due to the varied popularity caused by the

aggregation from high-order neighbors, and 2) it is hard to train

learnable popularity debiasing aggregation functions because of

data sparsity. To this end, we theoretically analyze the cause of

popularity bias and propose a quantitative metric, named inverse
popularity score, to measure the effect of popularity in the represen-

tation space. Based on it, a novel graph aggregator named APDA

is proposed to learn per-edge weight to neutralize popularity bias

in aggregation. We further strengthen the debiasing effect with

a weight scaling mechanism and residual connections. We apply

APDA to two backbones and conduct extensive experiments on

three real-world datasets. The results show that APDA significantly

outperforms the state-of-the-art baselines in terms of recommenda-

tion performance and popularity debiasing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9408-6/23/07. . . $15.00

https://doi.org/10.1145/3539618.3591635

u1 u3

u2

i1
i2 i5

i4

i3

u1 u3

u2

i1
i2

i5

i4

i3

Prob=0.7

u1 u3

u2

i1

i2

i5

i4

i3

Prob=0.4

push away

Debiasing Loss
i1 - u2

Debias

First Step

Second Step

Figure 1: Left: An illustrative example of popularity bias. The
popular item 𝑖1 aggregates much more nodes in two propaga-
tion steps than the niche item 𝑖2, which results in popularity
bias. Right: Cascading effect in popularity debiasing. Naively
applying a debiasing loss to 𝑖1 and 𝑢2 could also undesirably
reduce the interaction probability between 𝑖2 and 𝑢2 since
the loss will be backpropagated to 𝑖2 in the backward pass of
aggregation to push 𝑖2 away from 𝑢2 as well.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
collaborative filtering; graph neural networks; popularity bias

ACM Reference Format:
Huachi Zhou, Hao Chen

∗
, Junnan Dong, Daochen Zha, Chuang Zhou,

and Xiao Huang
∗
. 2023. Adaptive Popularity Debiasing Aggregator for

Graph Collaborative Filtering. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SI-
GIR ’23), July 23–27, 2023, Taipei, Taiwan.ACM, NewYork, NY, USA, 11 pages.

https://doi.org/10.1145/3539618.3591635

1 INTRODUCTION
Recommender systems play an indispensable role in alleviating

information overload by suggesting a small set of items to users.

https://orcid.org/0000-0002-8301-8470
https://orcid.org/0000-0001-6816-5344
https://orcid.org/0000-0003-2117-6083
https://orcid.org/0000-0002-6677-7504
https://orcid.org/0000-0002-3041-0591
https://orcid.org/0000-0002-3867-900X
https://doi.org/10.1145/3539618.3591635
https://doi.org/10.1145/3539618.3591635

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Huachi Zhou, Hao Chen∗ , Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang∗

This is typically achieved by modeling users’ preferences based

on their historical user-item interactions, known as collaborative

filtering (CF) [16, 21, 29]. Among many CF techniques, graph neu-

ral networks (GNNs) have recently received increasing attention

since many recommendation tasks can be naturally modeled as

graphs. These methods often align user-item interactions with a

bipartite graph and exploit high-order connectivity information by

aggregating user and item embeddings [41, 52]. The aggregation op-

eration enables GNN-based CF to learn high-quality user and item

representations and achieve state-of-the-art performances [13, 38].

Despite the encouraging results of GNN-based CF, the aggrega-

tion of GNNs may lead to significant popularity bias. In a typical

recommendation dataset, a small portion of items collects the ma-

jority of the user feedback (popular items), while the rest receive

little feedback (niche items). This long-tailed distribution leads to

a large difference in the number of edges connected to items. For

example, in the left-hand side of Figure 1, popular item nodes (such

as node 𝑖1) aggregate muchmore users/items than niche items (such

as 𝑖2). It is well known that the aggregation makes the node repre-

sentations similar to each other [2]. As a result, those popular items

will be similar to more users in the representation space, and thus

they become the “hub" and tend to have higher rating scores for the

majority of users. The skewed distribution of rating scores could,

in turn, amplify the popularity bias since it may impede future user

engagement with niche items.

To tackle the popularity bias in CF, the existing techniques of-

ten modify loss functions directly or indirectly and can be mainly

divided into three categories [6]. (1) Regularization: these methods

either penalize the correlation between rating scores and item pop-

ularity [35, 54] or apply orthogonal regularization to encourage

user/item embedding irrelevant with each other [8, 39]. (2) Causal
graph: they build a causal graph to analyze the popularity bias and

then eliminate the bias in user-item relevance score calculation

(indirectly) [32, 36]. (3) Inverse propensity score: they upweight the

importance of the ranking loss for the user-niche item pair based

on inverse propensity score [18, 40].

We argue, however, that the loss-based debiasing methods can

not fully address the popularity bias during the GNNs’ aggregation

process. This is because the debiasing loss can be falsely back-

propagated to non-target nodes during the backward pass of the

aggregation, causing a cascading effect, which, on the contrary, may

even reduce the recommendation opportunities for niche items. For

example, on the right of Figure 1, if we apply a debiasing loss to the

𝑖1-𝑢2 pair to decrease their similarity, the representation of 𝑖2 will be

undesirably pushed away from 𝑢2 as well due to the aggregation. In

this case, the popularity bias of 𝑖1 could be beneficial since it helps

the niche item 𝑖2 win more recommendation opportunities. The

above analysis motivates us to mitigate the popularity bias from

the aggregation perspective rather than loss functions. Specifically,

we ask: can we fundamentally neutralize the popularity bias
in the aggregation process of GNN-based CF models?

It is challenging to achieve this goal due to the following rea-

sons. First, before we can mitigate the popularity bias, we need to

accurately estimate the effect of popularity in the representation

space; however, estimating its effect is difficult due to the varied

popularity of the aggregation of high-order neighbors. In a single

aggregation step, even if two items have the same extent of popular-

ity before aggregation, their aggregated representations could have

quite different extents of popularity since they are influenced by

their neighbors. The estimation becomes even more complicated if

we consider multiple aggregation layers (the popularity effect for an

item may differ in each layer) and the fact that the representations

keep changing in the optimization process. Second, even if we can

accurately estimate the effect of popularity, it remains a challenge

to design a learnable aggregator to mitigate the bias. Due to data

sparsity in recommendation data [37], it is shown that an over-

complicated aggregator will lead to overfitting and degrade the

performance [15]. As a result, LightGCN [15] and its variants often

exclude feature transformation and non-linear activation functions.

It is hard to introduce a debiasing mechanism into the aggregator

without increasing the risk of overfitting.

To this end, this work aims to systematically analyze the cause

of popularity bias in GNN-based CF and investigate the mitigation

methods. In particular, we aim to answer the following questions:

(1) How to estimate the effect of popularity given the complex

aggregation of higher-order neighbors? (2) How to effectively miti-

gate the popularity bias in the aggregation process? By answering

these questions, we make the following contributions.

• Through theoretically analyzing the gradient magnitudes,

we show insights into why popular items suffer from pop-

ularity bias. Based on our theoretical findings, we propose

a quantitative metric, named inverse popularity score, to

measure the effect of popularity in the representation space.

• We present a simple yet effective graph aggregator, dubbed

APDA, which adaptively learns per-edge weights to neu-

tralize popularity bias in aggregation. We further propose

a weight scaling strategy and use residual connections to

strengthen the debiasing effect.

• We apply APDA to two representative backbones, Light-

GCN [15] and LR-GCCF [7]. Extensive experiments on three

real-world datasets show that, compared with the state-of-

the-art debiasing methods, APDA significantly reduces the

popularity bias while retaining its ranking performance.

2 PRELIMINARY
We first define the notations used in this paper. Then we introduce

LightGCN [15], one of the most popular GNN-based CF models.

Notations. We represent the historical interactions in recom-

mender systems as a user-item bipartite graph G = (V, E), where
V denotes the union of 𝑚 user nodes U = {𝑣1, 𝑣2, . . . , 𝑣𝑚} and
𝑛 item nodes I = {𝑣𝑚+1, 𝑣𝑚+2, . . . , 𝑣𝑚+𝑛}, and the edge set E de-

notes the observed node connections. Let A ∈ R(n+m)×(n+m)
denote

the binary adjacency matrix of graph G, where A𝑢,𝑖 = 1 when

there is an interaction between user node 𝑢 and item node 𝑖 , and

A𝑢,𝑖 = 0 otherwise. We denote 𝑑𝑢 as the degree of the user node 𝑢,

which is the summation of all the elements in row A𝑢 . A trainable

embedding lookup table E(0) ∈ R(n+m)×t
, where 𝑡 is embedding

dimension, maps user 𝑢 and item 𝑖 from one-hot encoding to dense

vectors e(0)𝑢 and e(0)
𝑖

, respectively. Here, the superscript
(0)

denotes

the initial embedding. Given a target user, the goal is to recommend

top-𝑁 unconnected items that are likely to be clicked by the user.

Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

User-Item Graph

Adaptive Popularity Debiasing Aggregator

prediction

user node

Quantitative Metric

yui

item node

layer k = 0 layer k = 1 layer k = 2

u1 u3

u2

i1
i2

i5

i4

i3

u1 u3

u2

i1
i2

i5

i4

i3

Popularity Debiasing through Adaptive Weight

user embedding
item embedding

Figure 2: A sketch illustration of APDA. Since we normalize the representations, we represent the user/item vector in a two-
dimensional space unit sphere. As more neighbors are aggregated, the sphere volume becomes larger. The shade of the color
represents the popularity effect on item representations. The popularity effect on the central item node declines since the
connected edges are assigned lower weights.

LightGCN. As one of the first GNN-based CF methods, Light-

GCN learns user/item representations following the general mes-

sage passing of GNNs. Specifically, the representations at the 𝑘-th

propagation layer are obtained by

E(𝑘) = 𝐻 (E(𝑘−1) ,G), (1)

where 𝐻 is the aggregation function. When 𝑘 = 1, the input is the

initial embedding table E(0) . It is shown that feature transformation

and non-linear activation from the original designs of GCNs may

increase the risk of overfitting and do not contribute to the per-

formance in recommendation tasks [15]. Thus, LightGCN and its

variants use linear embedding propagation, i.e., a simple weighted

sum as the aggregation function:

E(𝑘) = ÃE(𝑘−1) , (2)

where Ã = (D− 1

2AD− 1

2) and D is the diagonal node degree matrix.

To learn user and item embeddings, LightGCN adopts the pairwise

Bayesian personalized ranking (BPR) loss [27] to maximize the

rating score difference between positive and negative samples with

an 𝐿2 regularization term to avoid overfitting:

L𝐵𝑃𝑅 =
∑︁

𝑢,𝑖∈N(𝑢), 𝑗∉N(𝑢)
− ln𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗) + 𝛾 ∥Θ∥2

2
, (3)

where 𝛾 is a hyperparameter controlling the effect of 𝐿2 penalty;

N(𝑢) is the item set that user 𝑢 has interacted with in the history;

𝑦𝑢𝑖 denotes the inner product of the final representations of user 𝑢

and item 𝑖 , indicating their relevance score; 𝜎 denotes the sigmoid

activation function; Θ are the embeddings of the user and items in

the current batch.

To facilitate understanding, we describe the proposed APDA

mainly with LightGCN as the backbone. Note that APDA is general

and can be applied to other backbones as well. In the experiments,

we have considered another backbone, LR-GCCF [7].

3 METHODOLOGY
We start this section by theoretically analyzing the effect of popular-

ity in GNN-based CF methods and introducing a quantitative metric

to measure the effect of popularity (Section 3.1). Then we present a

simple yet effective aggregator, APDA, to mitigate popularity bias

by adaptively adjusting the per-edge weight in aggregation (Sec-

tion 3.2). Finally, we show how APDA can be applied to GNN-based

CF models using LightGCN [15] as an example.

3.1 Estimating the Effect of Popularity
In what follows, we theoretically analyze how item popularity (i.e.,

the normalized number of item clicks) influences representation

learning. Following the analysis, we propose inverse popularity score,
a quantitative metric to measure the effect of popularity based on

user and item representations. Further, we empirically study the

relationship between inverse popularity score and item popularity.

3.1.1 Effect of Popularity. Intuitively, the inner product between
the user and item representations reflects the effect of popularity

since we often use the inner product to rank items. The BPR training

objective increases the inner products for the positive user-item

pairs while decreasing those of negative pairs. To understand the

effect of popularity, we draw a connection between the extent to

which a user-item pair is being pushed in training and node degrees

with the theorem below. We provide its proof in Appendix A.1.

Theorem 3.1 (Effect of Popularity). Given a self-looped con-
nected graphG with sufficiently large embedding dimension 𝑡 , assume
that we use infinite linear embedding propagation layers with Ã to
train user and item embedding in a full-batch manner. For layer 𝑘 , the
gradient magnitude of BPR loss w.r.t. e(𝑘)⊤𝑢 e(𝑘)

𝑖
satisfies the follow-

ing: | 𝜕𝐿𝐵𝑃𝑅

𝜕 (e(𝑘)⊤𝑢 e(𝑘)
𝑖

)
| ∝ ∑

𝑚∈O (𝑘) (𝑢),𝑛∈O (𝑘) (𝑖) Ã
(𝑘)
𝑚𝑛

√︁
(𝑑𝑚 + 1) (𝑑𝑛 + 1),

where O (𝑘) (𝑢) represents the neighbor nodes within 𝑘 hops of node
𝑢; Ã(𝑘) represents repeated multiplication of Ã for 𝑘 times, and Ã(𝑘)

𝑚𝑛

is the element in the row𝑚 and column 𝑛 of Ã(𝑘) .

Theorem 3.1 implies that the speed of item representations mov-

ing towards the user representations is positively correlated to the

degrees of the aggregated nodes in the surrounding subgraphs.

Remark 1 (Hub Effect). The effect of popularity may further
lead to a hub effect. In the optimization, the positive user-item pair
may drag the embeddings of the nodes in the surrounding subgraph
closer to each other. Since popular items appear more frequently in the
subgraph, they will be pushed closer to other nodes. As a consequence,
they serve as the hubs in the subgraph.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Huachi Zhou, Hao Chen∗ , Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang∗

Remark 2 (Symmetric Normalization). Although the symmet-
ric normalization in the standard graph aggregation can mitigate the
impact of node degree during propagation to some extent, it can not
prevent the popular items from obtaining large inner products. This is
because popular items have dense edges connected to a larger number
of neighbors. The weighted sum of aggregated node degrees is still
large, so it will also enlarge the inner product.

3.1.2 Inverse Popularity Score. Based on Theorem 3.1, we estimate

the effect of popularity based on the inner products of the item and

user representations. Specifically, we propose the following metric.

Definition 3.2 (Inverse Popularity Score). Given user and item em-

beddings learned at 𝑘-th layer 𝑒
(𝑘)
𝑢 and 𝑒

(𝑘)
𝑖

, the inverse popularity

score 𝑟
(𝑘)
𝑢𝑖

is defined as:

𝑟
(𝑘)
𝑢𝑖

= 1 −
e(𝑘)⊤𝑢 e(𝑘)

𝑖

∥e(𝑘)𝑢 ∥2
2
∥e(𝑘)

𝑖
∥2
2

. (4)

Remark 3 (Normalized User-item Distance). The inverse pop-
ularity score can also be interpreted as the normalized distance be-
tween the user and item representations. Specifically, we can rewrite

𝑟
(𝑘)
𝑢𝑖

as follows: 𝑟 (𝑘)
𝑢𝑖

= 1− 𝑒
(𝑘)⊤
𝑢 𝑒

(𝑘)
𝑖

∥𝑒 (𝑘)𝑢 ∥2
2
∥𝑒 (𝑘)

𝑖
∥2
2

= 1

2
(𝑒

(𝑘)⊤
𝑢 𝑒

(𝑘)
𝑢

∥𝑒 (𝑘)𝑢 ∥2
2

+ 𝑒
(𝑘)⊤
𝑖

𝑒
(𝑘)
𝑖

∥𝑒 (𝑘)
𝑖

∥2
2

−

2 ∗ 𝑒
(𝑘)⊤
𝑢 𝑒

(𝑘)
𝑖

∥𝑒 (𝑘)𝑢 ∥2
2
∥𝑒 (𝑘)

𝑖
∥2
2

) = 1

2
∥ 𝑒

(𝑘)
𝑢

∥𝑒 (𝑘)𝑢 ∥2
2

− 𝑒
(𝑘)
𝑖

∥𝑒 (𝑘)
𝑖

∥2
2

∥2
2
.

Note that rather than directly using the inner product as the

score, we use cosine similarity, which introduces an 𝐿2 normaliza-

tion to eliminate the impact of representation magnitude, i.e., the

denominator ∥e(𝑘)𝑢 ∥2
2
∥e(𝑘)

𝑖
∥2
2
. This is because real-world user-item

graphs may not satisfy the connected graph assumption in Theo-

rem 3.1. Geometrically, the inner product is jointly determined by

the euclidean magnitude and cosine similarity of the two represen-

tations. However, when using the BPR loss for training, the user

or item representations may have a growing euclidean magnitude.

In this case, the inner product may not well represent the effect

of popularity but rather be dominated by the large representation

magnitude. In an extreme case, the following proposition suggests

that the unbounded representation magnitude could go to infinity.

Proposition 3.3. Assume that graph G contains two components,
where the small component has one (niche) user and one item node
while other nodes reside in the other component. The optimal repre-
sentation magnitude of the item in the small component is infinite.

The 𝐿2 normalization restricts user/item node representations in

a unit sphere and bounds the score in the range of [−1, 1]. Finally,
we use one subtracted by the cosine similarity as the final score.

Intuitively, the niche items tend to have higher inverse popularity

scores. The score implies how much we should promote an item.

The benefits of estimating the popularity effect based on rep-

resentations are twofold. First, the inverse popularity scores are

adaptively adjusted based on the user and item representations.

Thus, the scores can dynamically fit the representations in each

aggregation layer throughout the training process. Second, this
metric can be generally applied to all the GNN-based CF models.

3.1.3 Relationship between Inverse Popularity Score and Item Popu-
larity. We analyze whether the proposed inverse popularity score

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
normalized number of clicks

0.0

0.2

0.4

0.6

0.8

1.0

inv
er

se
 p

op
ula

rit
y s

co
re

Gowalla
Epinions
iFashion

Figure 3: Inverse popularity score versus item popularity
(normalized number of clicks). We rank items by the ascend-
ing order of the normalized number of clicks and then split
them into 20 equal-size groups, where each split has 5% of
the items.We plot the average of the inverse popularity score
and the normalized number of clicks for each group.

aligns with the actual popularity of the items. Specifically, we re-

trieve the trained item embeddings from LightGCN and rank them

by the ascending order of the normalized number of clicks (which

is defined as the total number of clicks of the item divided by the

maximum total number of clicks across all items in the training

data). Then we split the items evenly, where each group contains

5% of all the items. The inverse popularity score for each item is

computed as the average of all user embeddings. We average the

inverse popularity scores and the normalized number of clicks for

all items in each group. The average inverse popularity scores of

each group on three datasets are scaled using min-max scaling to

fit within the interval [0, 1]. Their relationship is plotted in Figure 3.

We observe that the inverse popularity aligns with item popular-

ity (i.e., the normalized number of clicks), which verifies that the

proposed metric can accurately estimate the effect of popularity.

Note that, while the normalized number of clicks can also imply

the popularity effect [20, 50], it is a fixed value, so it may only be

applicable to trained embeddings. Whereas the proposed metric is

adaptively adjusted based on the current embeddings, and thus it

can estimate the popularity effect throughout the training process.

3.2 Adaptive Popularity Debiasing Aggregator
Figure 2 shows an overview of APDA. We will first introduce how

to enable adaptive per-edge weight based on the proposed inverse

popularity score. Then we discuss how weight scaling and residual

connections can strengthen the debiasing effect.

3.2.1 Adaptive Weight. The key idea is to reweigh the neighboring

nodes during the aggregation process to neutralize the popularity

bias. Specifically, at the 𝑘-th propagation step, we calculate the

inverse popularity scores defined in Eq. (4) using the embeddings

in the current layer. Then we assign the inverse popularity scores

to all the user-item pairs as the weights.

We discuss the effect of this weighting mechanism on popular

and niche items below. On the one hand, popular items gener-

ally get assigned smaller inverse popularity scores, which reduce

the aggregation weights with their 𝑘 hop neighbors. As a result,

the popular items aggregate less information from the high-order

Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

neighbors, which prevents them from obtaining excessive similarity

with other nodes. On the other hand, niche items are assigned

larger inverse popularity scores, which prioritize their message

passing to other nodes and help them win more recommendation

opportunities. Putting the above two effects together, the adaptive

weights can penalize the popular items and promote the niche items,

which neutralizes the popularity bias in aggregation.

3.2.2 Weight Scaling. When the item popularity difference of neigh-

bors is not large, the inverse popularity score may not be differenti-

ated enough to mitigate the popularity bias. To tackle this problem,

we introduce a weight scaling mechanism to amplify weight dif-

ferences. Specifically, we add exponential function and symmetric

normalization term to further hinder popular item message prop-

agation. The scaled weight for a user-item pair (𝑢, 𝑖) in the 𝑘-th

propagation step is given as

𝑤
(𝑘)
𝑖𝑢

= 𝑤
(𝑘)
𝑢𝑖

=
exp(𝑟 (𝑘)

𝑢𝑖
)

√
𝑑𝑢𝑑𝑖

, (5)

where exp(·) denotes exponential function. Eq. (5) applies to not

only item nodes but also user nodes since user representations may

also suffer from popularity bias due to aggregation. With the scaled

weights, the aggregator aggregates neighbor messages with

e(𝑘+1)𝑢 =
∑︁

𝑖∈𝑁 (𝑢)
𝑤

(𝑘)
𝑢𝑖

ê(𝑘)
𝑖

, (6)

e(𝑘+1)
𝑖

=
∑︁

𝑢∈𝑁 (𝑖)
𝑤

(𝑘)
𝑖𝑢

ê(𝑘)𝑢 . (7)

3.2.3 Residual Connection. The over-smoothing issue of GNNs [2]

can make all representations similar to each other, which will re-

duce the sensitivity of the proposed metric and make our debiasing

strategy less effective. This is because stacking multiple GNN lay-

ers will smooth the locality feature, i.e., users/items residing in

the same subgraph. This long-range dependency modeling may

lead to peripheral nodes being similar. The indistinguishable repre-

sentations will undermine the metric sensitivity since the similar

representation of proximal nodes narrows the range of values for

the inverse popularity score. In an extreme case, if the representa-

tions of all nodes become exactly the same, the inverse popularity

score will collapse to uniform distribution and degrade to the origi-

nal aggregation function. In this case, the proposed aggregator will

not be able to debias based on inverse popularity scores.

To tackle this problem, we add residual connections to enforce

the embeddings not to be closely similar as follows:

ê(𝑘)𝑢 = e(𝑘)𝑢 + _e(0)𝑢 , (8)

ê(𝑘)
𝑖

= e(𝑘)
𝑖

+ _e(0)
𝑖

. (9)

We have added an initial embedding to the current stepwith a hyper-

parameter _ to balance the importance of self-information and

neighbor representations. This design helps maintain the sensitivity

of the metric.

3.3 Application to LightGCN
This subsection shows how to apply APDA to the existing GNN-

based CF models. We use LightGCN [15] as an example.

For ease of implementation, we can rewrite the aggregator as a

matrix form:

E(𝑘+1) = CÃ(E(𝑘) + _E(0)), (10)

where C = exp(1 − 𝐿2 (·)) is the reweighting function; 𝐿2 (·) rep-
resents row-wise 𝐿2 normalization function. After 𝑘 layers prop-

agation, each user/item obtains 𝑘 embedding outputs. Based on

LightGCN, we encode the structural information and adopt a mean

pooling function to combine the information into the final rep-

resentations: e𝑢 = 1

𝑘+1
∑𝑘
𝑞=0 e

(𝑞)
𝑢 , e𝑖 = 1

𝑘+1
∑𝑘
𝑞=0 e

(𝑞)
𝑖

. The final

representations contain different orders of connectivity. We com-

pute their inner products of them to obtain the final interaction

probability for each user-item pair 𝑦𝑢𝑖 = e⊤𝑢 e𝑖 .

4 EXPERIMENTS
In this section, we conduct extensive experiments to verify the

effectiveness of APDA and understand how it behaves. We aim to

answer the following research questions:

• RQ1:How effective is APDA comparedwith the existing pop-

ularity debiasing methods on different backbones in terms

of accuracy and popularity debiasing?

• RQ2:What are the contributions of different components of

APDA to the overall model performance?

• RQ3: How much performance improvement do popular and

niche items gain compared with popularity debiasing base-

lines over the backbone, and does performance improvement

on either one come at the expense of sacrificing the other?

• RQ4: What are the impacts of different hyper-parameters

on model performance?

Table 1: Detailed datasets statistics.

Datasets User Item Interaction Density

Gowalla 29,858 40,981 1,027,370 0.00084

iFashion 23,405 24,803 378,713 0.00065

Epinions 11,496 11,656 327,942 0.00245

4.1 Datasets
Three public real-world datasets are processed to compare the per-

formances of all the methods: Gowalla, iFashion, and Epinions.

Gowalla1 is collected from a social networking website where

users share their daily check-in locations. iFashion2 is an indus-

trial dataset released by Alibaba, a famous e-commercial website.

Epinions3 comes from a product review website.

We follow previous experimental setting [33, 50] and only re-

serve users and items who have at least ten interactions. For each

user, 70% interacted items are randomly sampled as the training

set, and another 10% is used as the validation set to tune hyperpa-

rameters. The remaining 20 % of interactions are used as the test

set. The detailed data statistics are summarized in Table 1.

1
https://snap.stanford.edu/data/loc-gowalla.html

2
https://github.com/wenyuer/POG

3
http://www.trustlet.org/downloaded_epinions.html

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Huachi Zhou, Hao Chen∗ , Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang∗

Table 2: Performances of APDA variants and baselines using the LightGCN backbone, where ↑means the higher the better,
while ↓means the lower the better. The best performance is marked in bold, and the second-best performance is underlined.
N.A. suggests that the model does not learn well and only achieves a marginal improvement over an untrained model.

Methods

Gowalla iFashion Epinions

Recall@20↑ NDCG@20↑ PRU@20↓ Recall@20↑ NDCG@20↑ PRU@20↓ Recall@20↑ NDCG@20↑ PRU@20↓
LightGCN 0.1810 0.1529 0.4960 0.0779 0.0478 0.3096 0.1085 0.0790 0.3968

PC_LightGCN 0.1830 0.1559 0.4804 0.0762 0.0469 0.3045 0.1082 0.0790 0.3902

IPS_LightGCN 0.1795 0.1513 0.4895 0.0851 0.0528 0.2975 0.0990 0.0725 0.3020

Reg_LightGCN 0.1809 0.1538 0.4892 0.0752 0.0459 0.2835 0.1087 0.0798 0.3510

DICE_LightGCN 0.1743 0.1478 0.4780 0.0821 0.0510 0.2723 0.1138 0.0832 0.3156

MACR_LightGCN 0.1749 0.1486 0.4882 0.0615 0.0376 0.2835 0.0873 0.0638 0.3657

AdjNorm_LightGCN 0.1795 0.1527 0.4841 0.0781 0.0479 0.2850 0.1094 0.0803 0.3205

SimGCL 0.1790 0.1483 0.4891 0.0929 0.0582 0.3430 0.1189 0.0867 0.3639

GTN 0.1875 0.1573 0.4981 0.0941 0.0590 0.2931 0.1239 0.0914 0.3286

Improvement(%) +1.68% +2.72% +6.78% +6.06% +5.59% +15.53% +1.78% +1.42% +14.11%

APDA_LightGCN 0.1907 0.1617 0.4456 0.0998 0.0623 0.2300 0.1261 0.0927 0.2594
APDA w/o-AW 0.1886 0.1596 0.4507 0.0612 0.0377 0.2786 0.1192 0.0874 0.3643

APDA w/o-WS N.A. N.A. N.A. N.A. N.A. N.A. 0.0793 0.0540 0.4086

APDA w/o-RC 0.1904 0.1613 0.4479 0.0979 0.0612 0.2408 0.1214 0.0886 0.2902

1 2 3 4
GNN Layer Number

0.08

0.09

0.10

0.11

0.12

0.13

Re
ca

ll@
20

APDA
LightGCN

1 2 3 4
GNN Layer Number

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

PR
U@

20

APDA
LightGCN

Figure 4: The effect of the number of layers on APDA and
LightGCN.

4.1.1 EvaluationMetrics. To estimate model performance w.r.t. top-

𝑁 recommendation, we adopt two widely used metrics: Recall@N

and NDCG@N. To investigate the extent of popularity bias suffered

by models, we adopt PRU@N to calculate the correlation between

item rank and popularity following [39, 50, 54], defined by:

𝑃𝑅𝑈@𝑁 = − 1

|U|
∑︁
𝑢∈U

𝑆𝑅𝐶 (𝑝𝑜𝑝 (𝑖), 𝑟𝑎𝑛𝑘𝑢𝑖), (11)

where 𝑆𝑅𝐶 (·, ·) calculates Spearman’s rank correlation between

two lists; 𝑝𝑜𝑝 (·) returns the number of item clicks in the training

set and 𝑟𝑎𝑛𝑘𝑢𝑖 represents item order in the recommendation list.

4.1.2 Competitors. We incorporate the following state-of-the-art

baselines in our comparison. The baselines belong to three groups: i)

Backbone: (1) LR-GCCF [7] excludes nonlinear activation unit and

adds residual network to the original structure. (2) LightGCN [15]

removes burdensome activation unit and enhances model gener-

alization ability. ii) Popularity debiasing: (3) Adjnorm [50] in-

creases the power of normalization term in graph aggregation. (4)

PC [54] post-processes the prediction results to compensate for

niche items being recommended. (5) Reg [54] regularizes the corre-

lation between prediction results and item popularity in training.

(6) MACR [36] performs counterfactual reasoning on the causal

graph to mitigate the popularity bias. (7) DICE [53] disentangles

the popularity and conformity from the user and item embeddings.

(8) IPS [18, 40] lowers the weight of the loss for popular items.

Notably, our model only uses user-item interactions without side

information, e.g., timestamp. We leave out the comparison with

other popularity debasing models such as PD [48], CD
2
AN [8], De-

cRs [32]. iii) Graph-based Collaborative Filtering: SimCGL [42]

is state-of-the-art graph contrastive learning method. It adds uni-

form noise to node representations when generating different views.

GTN [11] adds 𝐿1 normalization and 𝐿2 normalization to the prop-

agation and shrinks the coefficients of unimportant features to 0.

Remarkably, we do not introduce more methods since we aim to

mitigate the impact of the popularity of items instead of solely

pursuing state-of-the-art performance.

Besides, to demonstrate the effectiveness of different compo-

nents of APDA under the LightGCN backbone, we design three

variants. (1) APDA w/o-AW removes adaptive weight to verify the

effectiveness of constructing adaptive messages in GNN popularity

debiasing. (2) APDA w/o-WS drops weight scaling to show the

necessity of its success in controlling the impact of node degree on

model performance. (3) APDA w/o-RC exclude the residual con-

nection to demonstrate its success in improving the whole model

performance and debiasing results.

4.1.3 Hyper-parameter Settings. We implement APDA with

Pytorch and optimize it with Adam optimizer. We apply a grid

search strategy to search optimal hyperparameters based on the

performance on the validation set. The early stopping strategy is

applied, and the threshold is fixed as 50, i.e., no more Recall@20

score improvement for 50 consecutive epochs [33]. This setting

meanswe study the popularity bias when themodel reaches the best

recommendation performance. We tune the residual connection

coefficient _ from {0, 0.1, · · · , 1.0}. The learning rate is set as 0.001,
and the weight decay equals 1𝑒 − 4. The batch size is set as 2048 for

all baselines, and the baseline codes released by the original authors

are utilized to tune hyperparameters, except for the default value

Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

Table 3: Overall comparison with popularity debiasing baselines under the LR-GCCF backbone.

Methods

Gowalla iFashion Epinions

Recall@20↑ NDCG@20↑ PRU@20↓ Recall@20↑ NDCG@20↑ PRU@20↓ Recall@20↑ NDCG@20↑ PRU@20↓
LR-GCCF 0.1540 0.1301 0.6068 0.0915 0.0562 0.3482 0.1163 0.0837 0.4195

PC_LR-GCCF 0.1516 0.1289 0.5408 0.0910 0.0559 0.3398 0.1172 0.0844 0.4113

IPS_LR-GCCF 0.1480 0.1252 0.5976 0.0634 0.0376 0.3330 0.1074 0.0779 0.3796

Reg_LR-GCCF 0.1508 0.1282 0.6025 0.0920 0.0569 0.3458 0.1179 0.0850 0.4198

DICE_LR-GCCF 0.1552 0.1293 0.4210 0.0619 0.0377 0.2995 0.0940 0.0687 0.3502

MACR_LR-GCCF 0.1466 0.1246 0.4316 0.0818 0.0495 0.2851 0.1046 0.0756 0.3112

AdjNorm_LR-GCCF 0.1537 0.1307 0.5960 0.0923 0.0571 0.3306 0.1168 0.0843 0.4032

Improvement +9.66% +3.90% +22.47% +1.91% +3.33% +18.48% +1.36% +3.06% +7.52%

APDA_LR-GCCF 0.1702 0.1358 0.3264 0.0941 0.0590 0.2324 0.1195 0.0876 0.2878

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

0.1220

0.1230

0.1240

0.1250

0.1260

Re
ca
ll@

20

Recall@20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

0.0890

0.0900

0.0910

0.0920

0.0930

ND
CG

@
20

NDCG@20

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
λ

0.26

0.27

0.28

0.29

PR
U@

20

PRU@20

Figure 5: The effect of _ magnitude on APDA

and test performance. All models are run repeatedly five times, and

we report the average results.

4.2 Overall Performance (RQ1)
To answer the first question, we compare APDA with all the base-

lines. Table 2 and 3 summarize the performances of all the models in

terms of Recall@20, NDCG@20, and PRU@20 scores on three real-

world datasets on LightGCN and LR-GCCF backbones, respectively.

We have the following observations.

First, directly or indirectly modifying the debiasing loss mitigates

the popularity bias to some extent but sacrifices the recommenda-

tion performance at the same time, including PC, IPS, Reg, DICE,

and MACR. These methods achieve better performance in the PRU

scores than the backbone, showing that the loss function can some-

what alleviate the bias. However, since they do not consider the

key aggregation process, the improvement is marginal. Moreover,

all these methods suffer from a drop in recommendation perfor-

mance. The potential reason is that the debiasing loss prevents

popular node representations from being too similar to other nodes

while the effect is also propagated indiscriminately to non-target

neighbor users/items in the optimization.

Second, debiasing the aggregation generally outperforms debi-

asing the loss in terms of recommendation performance and bias

mitigation. AdjNorm ignores that representation is dynamically

updated in the optimization and only uses the number of clicks to

predefine edge weight. The results show that predefinedweights are

almost incapable of assigning appropriate static weights to further

suppress the bias than APDA.

Third, improving recommendation performance does not neces-

sarily bring gains in mitigating popularity bias. The SimGCL and

GTN are state-of-the-art GNN-based CF models. The results demon-

strate that they only slightly mitigate the bias and even amplify the

bias in some cases.

Fourth, APDA boosts the model performance on two backbones.

APDA differs from other popularity debiasing baselines in that it

considers the unique aggregation mechanism of GNN and performs

adaptive message propagation to mitigate the bias. The APDA rel-

atively achieves +1.68%, +2.72%, +6.78%, +6.06%, +5.59%, +15.53%,

+1.78%, +1.42%, +14.11% over the strongest baselines in three real-

world datasets with respect to Recall@20, NDCG@20, PRU@20

scores under the LightGCN backbone. It demonstrates the effective-

ness of APDA and the rationality of model design.

4.3 Ablation Study (RQ2)
To investigate whether different model components contribute to

the whole model performance, we analyze three variants, i.e, APDA

w/o-AW, APDAw/o-WS, and APDAw/o-RC and show the results in

Table 3. APDA w/o-AW only uniformly aggregates neighbor nodes

and does not learn attention in distinguishing niche neighbors.

Therefore, it weakens the popularity bias to a lesser extent than

APDA. It proves the effectiveness of adaptive weight in mitigating

the popularity bias. APDAw/o-WS removes the weight scaling com-

ponent and performs worse among all variants. It demonstrates the

necessity of weight scaling towards further improving performance

and popularity debiasing. APDA w/o-RC excludes residual connec-

tion, which hurts model performance. APDA takes advantage of the

three components and consistently outperforms the three variants

on three real-world datasets.

4.4 Popular and Niche Item Improvement (RQ3)
In this subsection, we examine the performance gain on the niche

and popular items and investigate whether the improvement of

one group could sacrifice the performance of the other. The item

groups are divided based on the number of clicks in the training

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Huachi Zhou, Hao Chen∗ , Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang∗

Table 4: The performance of popularity debiasing methods evaluated on popular and niche item group.

Methods

Gowalla Epinions

Recall@20 NDCG@20 Recall@20 NDCG@20

niche pop niche pop niche pop niche pop

LightGCN 0.0401(+0.00%) 0.3245(+0.00%) 0.0511 0.3892 0.0127(+0.00%) 0.1715(+0.00%) 0.0162 0.2228

PC_LightGCN 0.0594(+48.13%) 0.3048(-6.07%) 0.0750 0.3675 0.0213(+67.72%) 0.1496(-12.77%) 0.0272 0.1976

IPS_LightGCN 0.0503(+25.44%) 0.3119(-3.88%) 0.0643 0.3739 0.0153(+20.47%) 0.1529(-10.85%) 0.0194 0.2000

Reg_LightGCN 0.0396(-1.25%) 0.3234(-0.34%) 0.0503 0.3865 0.0137(+7.87%) 0.1700(-0.87%) 0.0177 0.2215

DICE_LightGCN 0.0469(+16.96%) 0.2992(-7.80%) 0.0594 0.3609 0.0164(-29.13%) 0.1781(+3.85%) 0.0209 0.2303

MACR_LightGCN 0.0593(+47.88%) 0.2898(-10.69%) 0.0753 0.3512 0.0123(-3.15%) 0.1346(-21.52%) 0.0165 0.1773

AdjNorm_LightGCN 0.041(+2.24%) 0.322(-0.77%) 0.052 0.3851 0.0149(+17.32%) 0.1707(-0.47%) 0.0191 0.2220

APDA_LightGCN 0.0508(+26.68%) 0.3306(+1.88%) 0.0647 0.3956 0.0216(+70.08%) 0.1932(+12.65%) 0.0280 0.2479

set. Specifically, we put the top 20% frequently clicked items into

the popular item group and the rest into the niche item group.

We show the recommendation performance of two item groups

on the Gowalla and Epinions datasets under LightGCN backbone in

Table 4. We observe thatmost baselines outperform the back-
bones on niche items on two datasets. The improvement is

mainly due to the fact that all baselines are trying to minimize

the effect of item popularity on the recommendation results and

recommend more unpopular items to users. However, almost all
baselines deteriorate popular item recommendation perfor-
mance and neutralize the performance gain over the niche
item group. This observation suggests that, for graph-based rec-

ommender systems, it is challenging to mitigate the popularity bias

without sacrificing model performance. Interestingly, we find
that our APDA does not sacrifice the performance of the
popular item group. This suggests that APDA can capture user

niche preferences and put items in the appropriate order based

on user preferences. The gap between APDA and the baselines

demonstrates the effectiveness of the proposed aggregator.

4.5 Hyperparameter Sensitivity (RQ4)
To evaluate the impact of different hyperparameters on model per-

formance, we divide vital hyperparameters into two groups.

The first group examines the effects of the number of GNN

layers 𝑘 on APDA and backbone LightGCN. We show Recall@20,

and PRU@20 scores on the Epinions dataset since NDCG@20 scores

exhibit the same trend, and we ignore them to save layout spaces

in Figure 4. We observe that with embedding dimension and layer

number increasing, two models get a recommendation performance

improvement. For PRU scores, LightGCNperformsworse other than

the first layer as layers go deeper. Compared with the backbone,

APDA shows a better capability in controlling the PRU@20 scores

increasing when stacking GNN layers. A possible explanation is

that the model automatically lowers the weight of popular neighbor

weight which drives themodel tomitigate the popularity bias. These

results justify the effectiveness of the model design.

The second group targets to explore the impact of the magnitude

of hyperparameter _ on model performance. We start from 0.1

and increment its value by 0.1 step size on Epinions datasets. The

Recall@20, NDCG@20, PRU@20 scores are reported in Figure 5.

We can observe the performance of APDA continuously increase

before reaching the optimal _. After that, the optimal _ achieves the

best performance across three metrics. It validates the superiority

of APDA. Then the performance keeps relatively stable. Therefore,

it is vital to select an appropriate _ to achieve the best performance.

5 RELATEDWORK
5.1 Popularity Debiasing
Popularity bias widely exists in the recommendation datasets and

is characterized by the fact that popular items dominate the recom-

mendation lists [4, 9, 12, 23, 28, 34]. Regularization is a potential so-

lution whose basic idea is to divert attention from popular items and

push the model to give a more balanced recommendation list. The

LapDQ [35] regularize promotes diversity by adding the regulariza-

tion terms on the item distances. INRS [19] applies the mean-match

approach to correct the popularity bias to make less preferred and

more diverse items recommended. Causal graphs can also be ap-

plied to understand and mitigate bias [32, 36, 48, 51, 53]. CausE [1]

tries to adopt an unbiased method. A tricky finding claims that not

all popularity bias will deteriorate performance. Accordingly, a new

paradigm is proposed to remove the confounding popularity bias in

model training [48]. Based on that, subsequent papers attempted to

tackle this problem by considering the interaction timestamp and

disentangling users’ interests. Driven by casual effects, MPCI [14]

is designed to eliminate the direct causal path from the popularity

bias to the prediction. However, the existing debiasing methods do

not target the aggregation process and may not fully address the

popularity bias in GNN models.

5.2 GNN-based Recommender System
Deep learning based recommender systems reply on well-learned

representations to predict interactions [45]. GNNs have shown

this ability due to aggregating the information from neighboring

nodes [3, 5, 10, 17, 46, 47, 49]. The propagation layers explicitly

utilize the high-order connectivities in the user-item integration

graph [33]. LightGCN further simplifies the architecture of the net-

work by removing the transformation and non-activation parts [15].

NIA-GCN captures the relationships between pairs of neighbors

at each layer [30]. After that, UltraGCN points out that multiple

Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

stacks of layers might suffer from over-smoothing. They claim that

skipping the explicit message passing and directly approximating

the limit of infinite layers can lead to a more effective and efficient

performance [25]. As self-supervised learning is gaining increasing

popularity, it is also brought into the recommendation domain. To

cope with the sparsity of the matrix and the noises in interactions,

SGL [37] jointly employs the classic loss function and the addi-

tive contrastive objective through randomly constructing multiple

sub-graphs. Subsequently, NCL [24] takes both the graph struc-

ture and the semantic space into account to capture potential node

relatedness. Both methods improve the robustness of the model.

DirectAU [31] analyzes the importance of the alignment and uni-

formity properties, i.e., representations of related positive pairs

should be close to each other, and other instances should randomly

scatter. Despite these efforts, they do not systematically tackle the

popularity bias in the aggregation process. Our APDA can be com-

bined with the existing GNN-based models to help neutralize the

popularity bias.

6 CONCLUSION AND FUTUREWORK
In this work, we study the problem of how to neutralize the popu-

larity bias in the aggregation process. We first theoretically analyze

the cause of the popularity bias, i.e., the effect of item popularity,

from the perspective of the gradient magnitude. Then we corre-

spondingly propose a quantitative metric, named inverse popularity

score, to measure the effect. We conduct empirical analysis and

observe that the score aligns with the normalized number of item

clicks. Based on the metric, we develop a novel graph aggregator

which consists of three components: adaptive weight, weight scal-

ing, and initial residual connection. We implement the APDA with

two backbones. Extensive experiments verify the effectiveness of

APDA. Our future work will explore popularity debiasing in view

of enhancing data quality, given that the model effectiveness is

contingent on utilizing appropriate training data [43, 44].

7 ACKNOWLEDGMENT
The work described in this paper was fully supported by a grant

from the Research Grants Council of the Hong Kong Special Ad-

ministrative Region, China (Project No. PolyU 25208322).

A PROOFS
A.1 Proof of Theorem 3.1
To prove Theorem 3.1, we incorporate the entry limit of Ã(𝑘)

𝑢𝑖
for

self-looped connected graph G when stacking infinite GNN layers:

lim

𝑘→+∞
Ã(𝑘)
𝑢𝑖

=

√︁
(𝑑𝑢 + 1) (𝑑𝑖 + 1)
2|E | + |N | . (12)

The relevance score of 𝑦𝑢𝑖 using last layer output is computed as:

𝑦𝑢𝑖 = (lim

𝑘→+∞

∑︁
𝑚∈U∪I

Ã(𝑘)
𝑢𝑚𝑒

(0)
𝑚) (lim

𝑘→+∞

∑︁
𝑛∈U∪I

Ã(𝑘)
𝑖𝑛

𝑒
(0)
𝑛). (13)

The relevance score of the randomly sampled negative items is

unknown. And we take the expectation term of the relevance score

with equal sampling probability distribution 𝑃𝐼 (𝑗) = 1

| I | and for

the sake of simplicity, interactions between the user and relevant

items are not removed. Then the BPR loss is calculated as:

L𝐵𝑃𝑅 = −
∑︁

𝑢,𝑖∈N(𝑢)
ln𝜎 (𝑦𝑢𝑖 − E𝑗∼𝑃𝐼 [𝑦𝑢 𝑗])

≈ −
∑︁

𝑢,𝑖∈N(𝑢)
ln𝜎 (𝑦𝑢𝑖 −

∑︁
𝑗∈I

𝑦𝑢 𝑗

|I |) . (14)

Given that the embedding dimension is of sufficient large size,

perfect node embedding pair training is achieved. That is to say, the

optimization of any node embedding pair is independent [22, 26].

Thus, it suffices to consider only the inner product of the target

node embedding pair, treating the remaining pairs as constants

denoted by 𝑐 . Then we combine Eq. (13)(14) and select loss terms

related to the target node embedding pair. The BPR loss related to

(e(0)𝑢 , e(0)
𝑖

) is updated as:

L𝐵𝑃𝑅 (e(0)𝑢 , e(0)
𝑖

) ≈ −
∑︁

(𝑚,𝑛) ∈E
ln𝜎 (

e(0)⊤𝑢 e(0)
𝑖

√︁
(𝑑𝑢 + 1) (𝑑𝑖 + 1)

(2|E | + |N |)2

∗
[(
√︁
(𝑑𝑚 + 1) (𝑑𝑛 + 1) −

∑
𝑗 ∈I

√
(𝑑𝑚+1) (𝑑 𝑗+1)
|I |)]

(2|E | + |N |)2
+ 𝑐).

(15)

Based on it, the gradient magnitude of BPR loss for inner product

of node embedding pair (e(0)𝑢 , e(0)
𝑖

) is calculated as follows:

| 𝜕𝐿𝐵𝑃𝑅

𝜕(e(0)⊤𝑢 e(0)
𝑖

)
| = |

∑︁
(𝑚,𝑛) ∈E

(𝑦𝑚𝑛 − 1)
√︁
(𝑑𝑢 + 1) (𝑑𝑖 + 1)
(2|E | + |N |)2

∗
(
√︁
(𝑑𝑚 + 1) (𝑑𝑛 + 1) −

∑
𝑗 ∈I

√
(𝑑𝑚+1) (𝑑 𝑗+1)
|I |)

(2|E | + |N |)2
|

∝
√︁
(𝑑𝑢 + 1) (𝑑𝑖 + 1),

(16)

where 𝑦𝑚𝑛 represents the interaction probability of user 𝑚 and

item 𝑛, which is shared for all node embedding pairs. Viewed this

way, the speed at which any user-item embedding pair is pushed is

proportional to their node degrees. And the node representation at

layer 𝑘 is the aggregated sum of node embeddings in 𝑘 hops. Since

each node embedding pair is independent, the gradient magnitude

of BPR loss for e(𝑘)⊤𝑢 e(𝑘)
𝑖

is defined as:

| 𝜕𝐿𝐵𝑃𝑅

𝜕(e(𝑘)⊤𝑢 e(𝑘)
𝑖

)
| ∝

∑︁
𝑚∈O (𝑘) (𝑢),𝑛∈O (𝑘) (𝑖)

Ã(𝑘)
𝑚𝑛

√︁
(𝑑𝑚 + 1) (𝑑𝑛 + 1)

(17)

A.2 Proof of Proposition 3.3
We give the proof in the case of the niche item. We use e(0)𝑚 and e(0)𝑛

to represent the user and item embedding in the small component.

Define the vector v as the negative direction of the large component.

The vectors along the direction have a negative relevance score with

nodes in the large component. The e(0)𝑚 and e(0)𝑛 could be pushed

away from nodes in the large component along the direction vwhen
optimizing the BPR loss since they are not connected to nodes in

the large component. And the larger the magnitude, the smaller the

relevance score and BPR loss. We have the optimal representation

e(0)∗𝑛 = lim𝑙→+∞ 𝑙 · v.

SIGIR ’23, July 23–27, 2023, Taipei, Taiwan Huachi Zhou, Hao Chen∗ , Junnan Dong, Daochen Zha, Chuang Zhou, and Xiao Huang∗

REFERENCES
[1] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.

In Proceedings of the 12th ACM conference on recommender systems. 104–112.
[2] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 34. 3438–3445.

[3] Hao Chen, Zhong Huang, Yue Xu, Zengde Deng, Feiran Huang, Peng He, and

Zhoujun Li. 2022. Neighbor enhanced graph convolutional networks for node

classification and recommendation. Knowledge-Based Systems (2022), 108594.
[4] Hao Chen, Zefan Wang, Feiran Huang, Xiao Huang, Yue Xu, Yishi Lin, Peng

He, and Zhoujun Li. 2022. Generative adversarial framework for cold-start item

recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 2565–2571.

[5] Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang

Wang, Peng He, and Zhoujun Li. 2020. Label-aware graph convolutional net-

works. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 1977–1980.

[6] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2020. Bias and debias in recommender system: A survey and future directions.

arXiv preprint arXiv:2010.03240 (2020).
[7] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network

approach. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
27–34.

[8] Zhihong Chen, Jiawei Wu, Chenliang Li, Jingxu Chen, Rong Xiao, and Binqiang

Zhao. 2022. Co-training Disentangled Domain Adaptation Network for Lever-

aging Popularity Bias in Recommenders. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
60–69.

[9] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. Esam: Discriminative domain adaptation with non-displayed

items to improve long-tail performance. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
579–588.

[10] Junnan Dong, Qinggang Zhang, Xiao Huang, Keyu Duan, Qiaoyu Tan, and

Zhimeng Jiang. 2023. Hierarchy-Aware Multi-Hop Question Answering over

Knowledge Graphs. (2023).

[11] Wenqi Fan, Xiaorui Liu, Wei Jin, Xiangyu Zhao, Jiliang Tang, and Qing Li. 2022.

Graph Trend Filtering Networks for Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 112–121.

[12] Wenjing Fu, Zhaohui Peng, Senzhang Wang, Yang Xu, and Jin Li. 2019. Deeply

fusing reviews and contents for cold start users in cross-domain recommendation

systems. In Proceedings of the AAAI Conference on Artificial Intelligence. 94–101.
[13] Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. 2022. Graph neural net-

works for recommender system. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 1623–1625.

[14] Ming He, Changshu Li, Xinlei Hu, Xin Chen, and Jiwen Wang. 2022. Mitigating

Popularity Bias in Recommendation via Counterfactual Inference. In International
Conference on Database Systems for Advanced Applications. Springer, 377–388.

[15] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[17] Zhongyu Huang, Yingheng Wang, Chaozhuo Li, and Huiguang He. 2022. Going

Deeper into Permutation-Sensitive Graph Neural Networks. In International
Conference on Machine Learning. PMLR, 9377–9409.

[18] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

learning-to-rank with biased feedback. In Proceedings of the tenth ACM interna-
tional conference on web search and data mining. 781–789.

[19] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2014. Cor-

recting Popularity Bias by Enhancing Recommendation Neutrality.. In RecSys
Posters.

[20] Minseok Kim, Jinoh Oh, Jaeyoung Do, and Sungjin Lee. 2022. Debiasing Neighbor

Aggregation for Graph Neural Network in Recommender Systems. In Proceedings
of the 31st ACM International Conference on Information &KnowledgeManagement.
4128–4132.

[21] Xiangnan He Le Wu, Xiang Wang, Kun Zhang, and Meng Wang. 2021. A survey

on neural recommendation: From collaborative filtering to content and context

enriched recommendation. arXiv preprint arXiv:2104.13030 (2021).
[22] Omer Levy and Yoav Goldberg. 2014. Neural word embedding as implicit matrix

factorization. Advances in neural information processing systems 27 (2014).
[23] Langzhang Liang, Zenglin Xu, Zixing Song, Irwin King, and Jieping Ye. 2022.

ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural Net-

works via Normalization. arXiv preprint arXiv:2206.08181 (2022).

[24] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving

Graph Collaborative Filtering with Neighborhood-enriched Contrastive Learning.

In Proceedings of the ACM Web Conference 2022. 2320–2329.
[25] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang He.

2021. UltraGCN: ultra simplification of graph convolutional networks for recom-

mendation. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 1253–1262.

[26] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.

Network embedding as matrix factorization: Unifying deepwalk, line, pte, and

node2vec. In Proceedings of the eleventh ACM international conference on web
search and data mining. 459–467.

[27] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2012. BPR: Bayesian personalized ranking from implicit feedback. arXiv preprint
arXiv:1205.2618 (2012).

[28] Wondo Rhee, Sung Min Cho, and Bongwon Suh. 2022. Countering Popularity

Bias by Regularizing Score Differences. In Proceedings of the 16th ACM Conference
on Recommender Systems. 145–155.

[29] Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A survey of collaborative filtering

techniques. Advances in artificial intelligence 2009 (2009).
[30] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,

Chen Ma, and Mark Coates. 2020. Neighbor interaction aware graph convolution

networks for recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1289–1298.

[31] Chenyang Wang, Yuanqing Yu, Weizhi Ma, Min Zhang, Chong Chen, Yiqun Liu,

and Shaoping Ma. 2022. Towards Representation Alignment and Uniformity in

Collaborative Filtering. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1816–1825.

[32] Wenjie Wang, Fuli Feng, Xiangnan He, Xiang Wang, and Tat-Seng Chua. 2021.

Deconfounded recommendation for alleviating bias amplification. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
1717–1725.

[33] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[34] Xinghua Wang, Zhaohui Peng, Senzhang Wang, Philip S Yu, Wenjing Fu, Xi-

aokang Xu, and Xiaoguang Hong. 2020. CDLFM: cross-domain recommendation

for cold-start users via latent feature mapping. Knowledge and Information
Systems (2020), 1723–1750.

[35] Jacek Wasilewski and Neil Hurley. 2016. Incorporating diversity in a learning to

rank recommender system. In The twenty-ninth international flairs conference.
[36] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.

2021. Model-agnostic counterfactual reasoning for eliminating popularity bias

in recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining. 1791–1800.

[37] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and

Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[38] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural

networks in recommender systems: a survey. Comput. Surveys 55, 5 (2022), 1–37.
[39] Guipeng Xv, Chen Lin, Hui Li, Jinsong Su, Weiyao Ye, and Yewang Chen. 2022.

Neutralizing Popularity Bias in Recommendation Models. In Proceedings of the
45th International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval. 2623–2628.

[40] Longqi Yang, Yin Cui, Yuan Xuan, Chenyang Wang, Serge Belongie, and Debo-

rah Estrin. 2018. Unbiased offline recommender evaluation for missing-not-at-

random implicit feedback. In Proceedings of the 12th ACM conference on recom-
mender systems. 279–287.

[41] Yonghui Yang, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2021. En-

hanced graph learning for collaborative filtering via mutual information max-

imization. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 71–80.

[42] Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung

Nguyen. 2022. Are graph augmentations necessary? simple graph contrastive

learning for recommendation. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 1294–1303.

[43] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, and Xia Hu. 2023.

Data-centric AI: Perspectives and Challenges. arXiv preprint arXiv:2301.04819
(2023).

[44] Daochen Zha, Zaid Pervaiz Bhat, Kwei-Herng Lai, Fan Yang, Zhimeng Jiang,

Shaochen Zhong, and Xia Hu. 2023. Data-centric artificial intelligence: A survey.

arXiv preprint arXiv:2303.10158 (2023).
[45] Daochen Zha, Louis Feng, Bhargav Bhushanam, Dhruv Choudhary, Jade Nie,

Yuandong Tian, Jay Chae, Yinbin Ma, Arun Kejariwal, and Xia Hu. 2022. Au-

toshard: Automated embedding table sharding for recommender systems. In

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. 4461–4471.

Adaptive Popularity Debiasing Aggregator for Graph Collaborative Filtering SIGIR ’23, July 23–27, 2023, Taipei, Taiwan

[46] Peiyan Zhang, Jiayan Guo, Chaozhuo Li, Yueqi Xie, Jae Boum Kim, Yan Zhang,

Xing Xie, Haohan Wang, and Sunghun Kim. 2023. Efficiently Leveraging Multi-

level User Intent for Session-based Recommendation via Atten-Mixer Network.

In Proceedings of the Sixteenth ACM International Conference on Web Search and
Data Mining. 168–176.

[47] Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, and Linchuan

Xu. 2022. Contrastive Knowledge Graph Error Detection. In Proceedings of the
31st ACM International Conference on Information & Knowledge Management.
2590–2599.

[48] Yang Zhang, Fuli Feng, Xiangnan He, Tianxin Wei, Chonggang Song, Guohui

Ling, and Yongdong Zhang. 2021. Causal intervention for leveraging popularity

bias in recommendation. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. 11–20.

[49] Yiding Zhang, Chaozhuo Li, Xing Xie, Xiao Wang, Chuan Shi, Yuming Liu, Hao

Sun, Liangjie Zhang, Weiwei Deng, and Qi Zhang. 2022. Geometric Disentangled

Collaborative Filtering. (2022).

[50] Minghao Zhao, Le Wu, Yile Liang, Lei Chen, Jian Zhang, Qilin Deng, Kai

Wang, Xudong Shen, Tangjie Lv, and Runze Wu. 2022. Investigating Accuracy-

Novelty Performance for Graph-based Collaborative Filtering. arXiv preprint
arXiv:2204.12326 (2022).

[51] Zihao Zhao, Jiawei Chen, Sheng Zhou, Xiangnan He, Xuezhi Cao, Fuzheng Zhang,

and Wei Wu. 2022. Popularity bias is not always evil: Disentangling benign and

harmful bias for recommendation. IEEE Transactions on Knowledge and Data
Engineering (2022).

[52] Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, and Yong Li. 2021. Dgcn: Diversi-

fied recommendation with graph convolutional networks. In Proceedings of the
Web Conference 2021. 401–412.

[53] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.

Disentangling user interest and conformity for recommendation with causal

embedding. In Proceedings of the Web Conference 2021. 2980–2991.
[54] Ziwei Zhu, Yun He, Xing Zhao, Yin Zhang, Jianling Wang, and James Caverlee.

2021. Popularity-opportunity bias in collaborative filtering. In Proceedings of the
14th ACM International Conference on Web Search and Data Mining. 85–93.

	Abstract
	1 Introduction
	2 Preliminary
	3 Methodology
	3.1 Estimating the Effect of Popularity
	3.2 Adaptive Popularity Debiasing Aggregator
	3.3 Application to LightGCN

	4 Experiments
	4.1 Datasets
	4.2 Overall Performance (RQ1)
	4.3 Ablation Study (RQ2)
	4.4 Popular and Niche Item Improvement (RQ3)
	4.5 Hyperparameter Sensitivity (RQ4)

	5 Related Work
	5.1 Popularity Debiasing
	5.2 GNN-based Recommender System

	6 Conclusion and Future Work
	7 Acknowledgment
	A Proofs
	A.1 Proof of Theorem 3.1
	A.2 Proof of Proposition 3.3

	References

