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Error Detection on Knowledge Graphs with Triple
Embedding

Yezi Liu Qinggang Zhang Mengnan Du Xiao Huang† Xia Hu

Abstract—Knowledge graphs (KGs), as an essential ingredient
in many real-world applications, always contain a considerable
number of errors. KG error detection aims to find the triples
whose head entity, tail entity, and corresponding relation are
mismatched. Though urgently needed, existing methods are not
generalizable. They mainly utilize supervised information such as
entity type or erroneous labels, but such information is not often
available in the real world. It remains challenging to detect errors
in KGs. First, KGs have unique data characteristics compared to
general graphs. Second, real-world KGs are often large, while the
labels are rare and unavailable for error detection. To bridge the
gap, we propose a novel KG error detection framework based on
triple embedding, termed TripleNet. Specifically, we first construct
a triple network by considering each triple as a node meanwhile
connecting them with shared entities. We then exploit a Bi-LSTM
layer to capture the intra-triple translational information (local
level) and employ a graph attention network to gather the inter-
triple contextual information (global level), respectively. Finally,
we compute the triple’s suspicious score by integrating its local-
level and global-level information. Experimental results on two
real-world KGs demonstrated that TripleNet outperforms state-
of-the-art error detection algorithms with comparable or even
better efficiency.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

Knowledge graph (KG) has been demonstrated to be an
efficient data structure for storing and organizing relations
and knowledge during the digital age. A knowledge graph
is a directed graphs in which each realistic fact has been
reformulated into a triple (i.e., a head entity, a relation, and
a tail entity). KGs are growing in popularity because of
their flexibility in handling complex data, including web data,
commercial data, general-purpose knowledge, and domain
knowledge. For example, many large-scale general-purpose
KGs have been created, such as Freebase [1], DBpedia [2],
YAGO [3], and NELL [4]. Numerous domain-specific KGs
are also emerging, such as agricultural KGs [5], biomedical
KGs1, and COVID-19 KGs2. These KGs have served as an
essential ingredient in various artificial intelligence systems,
including search engines [6], recommender systems [7], and
conversational agents [8].

KG-based systems are heavily affected by KG errors. It has
become infeasible to manually build and maintain real-world
KGs, as they often contain millions or billions of entities [1]–[4].
Instead, heuristic automated systems have been used to extract
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knowledge from semi-structured or unstructured crowdsourcing
sources [2], [4]. Errors were unavoidably introduced into the
KGs as a result of noise in these sources and imperfections in
the acquisition algorithms. For example, NELL, a KG created
by a never-ending learning agent, has an estimated precision of
74% [4]. These errors would significantly affect downstream
tasks, such as recommendation [8], searching [6], question
answering [9], and reasoning [10]. Thus, there is an increasing
demand for automatically and systematically detecting errors
in KGs.

While there are extensive efforts on KG error detection,
these approaches are not generalizable. Many studies take
advantage of entity types to perform clustering-based outlier
detection [11], [12]. However, entity types are only partially
(or even not) available in real-world KGs. And another line of
methods utilize path-based rule mining for error checking [13],
but are limited by the coverage and quality of the rules. Several
recent studies proposed to build classifiers to evaluate each
triple, based on different features, including entity categories,
path features, out-degrees, as well as embedding representations
of entities and relations [14], [15]. However, the labels are often
not available for training the classifiers. Furthermore, efforts
have also been made to employ additional sources of informa-
tion, such as related webpages [16] and annotations [17], to
facilitate error detection. While such webpages and annotations
are valuable for error detection algorithms, acquiring such
supplementary information could be difficult and expensive.
Therefore, these methods are not generalizable in real-world
applications.

It remains a challenging task to detect errors in real-world
KGs. First, KGs have unique data characteristics, including
directed triples, relation with different types, and semantic
properties. Second, real-world KGs are often large [2]–[4],
but with rare labels. For example, Freebase contains 1.9
billion triples, and there exist more than 7000 entities and
4000 relations [1]. In this paper, we claim that detecting
errors in KGs is equivalent to identifying triples that have
mismatched components, i.e., the head entity, tail entity, and
relation. We propose an effective solution - TripleNet. The
proposed TripleNet framework firstly constructs a triple network
by considering each triple as a node meanwhile connecting
them with shared head or tail entity. It then uses Bi-LSTM
to capture the translational structure within each triple to
obtain the local representation, and an attention mechanism for
collecting contextual information from neighbors to obtain the
global representation. The error detection is performed based
on both local dissimilarity and global inconsistency of triples.
Through the investigation, we aim at answering the following
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two research questions. 1) How can we learn an appropriate
vector space by jointly embedding translational structure
information within each triple and contextual information
from neighborhoods? 2) How can we conduct effective error
detection in this vector space? The major contributions of our
work are summarized as follows:
• We formally define the problem of error detection on

knowledge graphs as a mismatch of the head entity, tail
entity, and the corresponding relation.

• We propose a tailored KG error detection solution TripleNet,
to detect noisy triples by considering both the local transla-
tional structure within the triple and the global contextual
information from the neighborhoods of the target triple.

• Experimental results validate the effectiveness of TripleNet
on two real-world knowledge graph datasets in terms of two
different evaluation metrics.

II. PROBLEM STATEMENT

In this section, we introduce the notation as well as the
problem of error detection on knowledge graphs that we target
to tackle. Let G = {E ,R} denote a knowledge graph that
contains a large number of triples, where E and R denote
the sets of entities and relations, respectively. Each triple is
made up of a head entity h, a relation r, and a tail entity
t, represented as (h, r, t). We embed the local translational
structure into a basic triple embedding x by concatenating the
bidirectional hidden state sequences output from the Bi-LSTM
model. The basic embedding of the jth neighbor of the anchor
triple is denoted as xj . And the final triple embedding is z.
The suspicious score function is defined as fs(·).
Notations: We use an uppercase bold alphabet to denote a
matrix (e.g., W) and a lowercase bold alphabet to represent
a vector (e.g., x). The transpose of a matrix is denoted as
W⊤. We use ∥x∥2 to represent the ℓ2 norm of a vector. The
operation x = [h; r; t] denotes the concatenation of the column
vectors h, r, and t into a new column vector x. We list the
major symbols in this paper in Table I.

Since the entities naturally exist in KG, we define the
error in the given KG as a mismatch of the head entity, tail
entity, and the corresponding relation. For example, (Bruce_Lee,
place_of_birth, Chinatown) is a false triple, though Bruce_Lee
and Chinatown are correct entities. This means that the errors
are not from an individual entity and relation, but from the
mismatch of three components.

Given the notations and definitions mentioned above, we
formally define the problem of error detection on KGs as
follows.

Given a knowledge graph G = {E ,R}, our goal is to design
an end-to-end framework that takes the KG as input and
returns a rank of all triples with their suspicious scores, i.e.,
the possibility of being an error. The performance of error
detection is measured by both Precision@K and Recall@K.

III. THE PROPOSED TRIPLENET FRAMEWORK

In this section, we introduce the TripleNet framework. We
first construct a triple network by considering each triple as

TABLE I: Important symbols and definitions.
Notations Definitions
G A knowledge graph
T A triple network reformulated from G
R Relation set
R′ Relation set in triple network
E Entity set
S Triple set

(h, r, t) A triple of head, relation, and tail
(h, r, t) Embedding of head, relation and tail

x Basis embedding of a triple
xj Basis embedding of j th neighbor
z Final representation of the anchor triple

n = |S| Number of triples
m Number of neighbors of a triple
γ Margin parameter

fs(·) Suspicious score function

a node and connecting them with shared head or tail entities.
Then we apply a Bi-LSTM model to learn the translational
structure within each triple and obtain basic representations
of all triples. Next, we feed them into the attention layers to
obtain an updated representation for the triples of the network.
Finally, the suspicious score of each triple is calculated using
the dissimilarity within a triple, and the inconsistency between
the basic representation and the updated embedding containing
neighborhood information.

A. Translational-based Triple Representation

In this section, we perform translation-based triple rep-
resentation learning on a KG, G, in order to capture the
local directional relations within a triple and obtain an initial
representation x of the triple.

Given an anchor triple (h, r, t) in G, the core idea behind
the knowledge graph embedding approach is to define a
mapping function f(g(·)), where g(·) : R→ RD is a lookup
table that maps entities or relation indexes of a triple into
D-dimension feature space while f(·) : RD → Rd is a
transformation function that maps the input feature vector
into a low-dimensional embedding space. The distinctions
between various embedding-based methods rely on their way to
determine f(·) as well as the loss function [18], [19]. Although
it is simple and scalable, we found that it itself is not applicable
to the triple-level error detection problem as shown in the
ablation study, since it only measures the inner sequential error
within a triple instead of the entire KG. To this end, a novel
error detector should be able to directly predict the suspicious
probability of a triple by leveraging its inner translational
structure at the local level and the community structure of the
entire triple at the global level.

To achieve the above requirements, the crucial step is to
represent an individual triple as an embedding vector. That
is, we aim to obtain a general representation x ∈ Rd for a
triple (h, r, t). Basically, the naive solution is to adapt pooling
methods, i.e., average and max pooling, or concatenation oper-
ation. However, they may result in suboptimal representation in
practice, since they ignore the direction of knowledge graphs,
e.g., the translational or sequential structure inside a triple.
Therefore, we aim to explicitly capture the sequential nature
of the knowledge graph and treat each triple as an ordered
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Fig. 1: The proposed TripleNet framework. TripleNet uses the Bi-LSTM to embed the local translation structure within each
triple to obtain the local representation x, and an attention mechanism to embed the triple network globally to obtain the global
representation z. The error detection is performed based on both local representation x and global representation z of triples.
Eventually, a suspicious score could be obtained for each triple.

sequence from head → relation → tail. To be specific,
we implement f(·) as a bidirectional long short-term memory
(Bi-LSTM) [20] network. Let eT represent the input feature
vectors, where T has three time steps, i.e., T ∈ {h, r, t}. Taking
the backward one as an example, the hidden representation
←−eT is computed as follows:

fT = σ
(
WfeT +Uf

←−e T+1 + bf

)
,

iT = σ
(
WieT +Ui

←−e T+1 + bi

)
,

oT = σ
(
WoeT +Uo

←−e T+1 + bo

)
,

cT = fT ⊙ cT+1 + iT ⊙ tanh
(
WceT +Uc

←−e T+1 + bc

)
,

←−eT = oj ⊙ tanh (cT ) ,

(1)

where Wf , Wi, Wo, Uf , Ui, Uo, bf , bi, and bo denote
trainable parameters. fT , iT , oT are respectively forget, input,
and output gates at the T th time stamp. ⊙ presents the element-
wise multiplication operation, while tanh is the tanh activation
function [21]. Assuming xh, xr, and xt indicate the final
output of the Bi-LSTM, we can obtain the triple representation
x = [xh;xr;xt] = [

−→
h ,
←−
h ;−→r ;←−r ;−→t ;←−t ]. It is worth noting

that the output triple embedding x is supposed to capture
well the translational/sequential structure of the input triple,
thanks to the powerful sequential module Bi-LSTM. We will
explain how to detect anomalous triples with the learned triple
embedding in Section III-C.

B. Neighborhood-based Context Learning

In addition to the translational nature of the knowledge graph,
the global structure/neighborhood is another vital character in
understanding the connectivity relationships among triples [22],
[23].Inspired by this, several efforts have been made to leverage
the global structure of triples for various learning tasks in
recent years, i.e., knowledge graph completion [19]. The key
assumption behind these methods is that connected entities

should be similar, and thus the representation of a target entity
can be aggregated from its neighborhood recursively.

Motivated by the success, we aim to derive a different view of
community structure by using the representations of neighbors
to determine the suspicious propensity score for the anchor
triple, instead of using them to learn the triple representation.
To be specific, let x denote the embedding vector of an
anchor triple as defined in Section III-A, and {x1,x2, · · · ,xm}
indicates the corresponding embedding vectors of neighborhood
triples, where m is the number of neighbors. Then we need
to obtain the context triple embedding z of the anchor triple
using a readout function denoted by z = Readout({xj}mj=1).

The readout function could be initialized in several ways
in practice. We follow the work [19], [24] to implement it
with attention layers due to its ability to selectively aggregate
messages from different neighborhood triples. The attention
mechanism can better reconstruct the anchor triple in the error
detection task on KGs, as it can reduce the attention weights for
noisy or abnormal neighboring triples. Specifically, when the
anchor node is a positive triple, the attention mechanism could
reduce information coming from anomalous neighborhoods;
while the anchor node is an erroneous one, the reconstruction
error between the anchor triple and its neighbors is inevitably
high with equal attention weights, since the target node is
inconsistent with its neighbors. In our method, we perform
self-attention [24] on neighborhood triple embeddings, and
the attention coefficients are computed by a shared attentional
mechanism a : Rd′ × Rd′ → R as:

ej = a(Wcx,Wcxj), (2)

where ej indicates the importance of the jth neighbor to the
target triple, and Wc ∈ Rd′×d is the weight matrix. After
giving the attention coefficients, we apply a softmax function
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to make them comparable as follows:

αj =
exp(ej)∑m
k=1 exp(ek)

, (3)

αj is the normalized attention score of the j-th neighbor
towards the target triple. Once obtained, the context triple
embedding is calculated via a non-linear combination of the
neighboring triple embeddings:

z = σ

 m∑
j=1

αjWcxj

 , (4)

where σ(·) denotes a sigmoid activation function. In practice,
when handling large-scale datasets or the number of neighbors
m is large, researchers often consider a multi-head attention
mechanism to improve the expressive ability or stabilize the
learning process [25]. In our experiments, we found that
the single-head attention has already achieved a satisfactory
performance, so we do not consider the multi-head version
for simplicity. Given the context embedding z and the corre-
sponding anchor triple embedding x, we argue that z could
be used to precisely reconstruct x, if the anchor triple is
normal. This assumption is reasonable and has been widely
recognized as the smoothness or clustering assumption [26] in
the literature, since the normal triple lies in the same community
with neighborhoods, while the malicious one is not.

C. Joint Optimization

In this section, we illustrate how to define an effective error
detector for knowledge graphs based on local self-contradiction
and global neighborhood inconsistency of a triple.

1) Local Dissimilarity: We define a dissimilarity function
to check the self-contradiction within the triple. Many KG
embedding algorithms have developed such functions to model
the translational structure for better learning embeddings [18],
[27], [28]. In our method, we take a simple squared Euclidean
distance [18] as a dissimilarity function. To better capture the
sequential nature of a triple, we utilize the hidden representation
of Bi-LSTM (xh,xr,xt), rather than the initial entities and
relations embeddings (h, r, t) as in most existing methods,
to explicitly compute the reconstruction loss. Specifically, the
local dissimilarity is computed as follows:

dlocal(h, r, t) = ||xh + xr − xt||2. (5)

By minimizing the above dissimilarity, the model is capable
of detecting obvious abnormal triples from a local view by
checking whether there is a self-contradiction in (h, r, t), in
terms of semantic meaning or sequential patterns contained in
the triple. However, it alone is not enough to detect KG errors
effectively, since a false triple can mimic translational patterns.

2) Global Inconsistency: To address this limitation, we con-
sider another TripleNet paradigm that judges triple anomalous
based on its global structure. The basic observation is that
the anomalous triple is more likely to have fake neighbors
that are not related to the target triple, since the anchor triple
does not exist. For this reason, we can compute the difference
between an anchor triple embedding and its context embedding

to determine the degree of abnormality. Formally, we calculate
the difference between them using the following reconstruction
error.

dglobal = ||z− x||2. (6)

Compared with the local-view suspicious measurement, the
above is a community-based approach and complements aligned
with the local measurement. By integrating the two suspicious
measurements, our model offers a comprehensive way to
estimate the suspicious score of a triple as follows:

djoint = dlocal + λdglobal. (7)

λ is a trade-off parameter to balance the importance of two
similarities. With the joint suspicious measurement, it is helpful
for the model to effectively detect errors that deviate from the
community, as well as the translation nature of triples.

To encourage discrimination between positive (golden) triples
and negative (corrupted) triples, we use the margin-based
ranking loss function for model optimization:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[
γ + djoint(h, r, t)− djoint(h

′, r, t′)
]
+
.

(8)
where []+ denotes the positive part of x, γ > 0 is the margin
hyperparameter, S is the set of correct triples and S ′ is the set
of corrupted triples. S ′ is constructed by randomly corrupting
the head or tail entity, which is defined as:

S ′(h,r,t) = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} . (9)

D. Error Detection
After the model is properly trained, we can infer the

suspicious degree of an arbitrary triple. Specifically, given
a triple (h, r, t) from G, we calculate its suspicious score
fs(h, r, t) as below:

fs(h, r, t) = djoint(h, r, t). (10)

When fs(h, r, t) is larger, the triple is more likely to be a
noisy fact. In practice, to make the suspicious scores of the
two terms comparable, we add a normalization layer after the
Bi-LSTM network to obtain a normalized triple embedding z.
The algorithm 1 specifies the overall optimization procedure.
Our framework first builds a triple network by treating each
triple as a node and connecting them with sharing entities. Then
it performs the triple-based representation learning from both
jointly capturing the local sequential information within a triple
and the global contextual information among the neighborhood
triples. And finally, by checking local inconsistencies and global
reconstruction errors, our framework identifies anomalous
triples of the given knowledge graph in a ranking list.

IV. EXPERIMENTS

We conduct extensive experiments over two real-world
datasets to evaluate the effectiveness of our proposed method,
and we aim to answer the following questions. Q1. How
effective is the proposed TripleNet method compared to the
state-of-the-art methods in detecting errors on KGs? Q2. How
efficient is TripleNet compared to other anomaly detection
baselines? Q3. How much does each component of TripleNet
contribute to its prominent performance?
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Algorithm 1: Proposed TripleNet framework
Input: Knowledge graph G, triple neighbors number m,

margin γ, trade-off parameter λ.
Output: Suspicious scores of input triples.
/* Triple embedding learning: */

1 Initialize network parameters;
2 Construct triple network T ;
3 while not converged do
4 for (h, r, t) ∈ S do

/* Local Triple Representation: */
5 Compute the basis triple embeddings x using

Bi-LSTM, defined in Eq.(1);
/* Global Triple Representation: */

6 Obtain the contextal embeddings of triples based on
neighboring triples, defined in Eq.(2)-(4);

/* Joint Optimization: */
7 Estimate the joint reconstruction loss from both the

translational structure and community aspects,
defined in Eq.(7);

8 Update the model parameters with stochastic gradient
descent by minimizing Eq.(8).

/* Error Detection Process: */
9 Input the triple (h, r, t) into the TripleNet model and

calculate the suspicious score as defined in Eq.(10);

TABLE II: Statistics of the knowledge graph datasets.
# Triples (n) # Entity # Relation

NELL 231,634 46,682 821
DBpedia 2,920,168 976,404 504

A. Datasets

To verify the effectiveness of TripleNet, we conduct ex-
periments over two benchmark knowledge graph datasets,
NELL [4] and DBpedia [29], which are publicly accessible
and vary in source domains, size, and sparsity. The statistical
information of the datasets is summarized in Table II.

B. Baseline Methods

To comprehensively evaluate the performance of the pro-
posed method, we compare it with five state-of-the-art algo-
rithms, including TransE [18], ComplEx [30], DistMult [31],
KGIST [32], and KGTtm [33]. Specifically, the first three are
typical knowledge graph representation methods, including
translation-based and bilinear-mapping models. The other two
are state-of-the-art error detection baselines in knowledge
graphs, which aim to detect abnormal triples.

C. Experimental Settings

In this section, we introduce the overall experimental setups
of this work, including dataset processing, evaluation metrics,
and parameter settings.

1) Data pre-processing.: We resort to injecting synthetic
errors to stimulate the real-world erroneous environment, since
there are no labeled errors in our two KG datasets. According
to Section ??, the entity naturally exist in real-word KGs. Thus
a mismatched triple could either be a non-related pair of entities
with a link, or a triple that contains a false relation. Following
the previous research [33], we inject these two types of errors
into our datasets: false relation error and connection error.

The idea of generating a false relation error is to swap the
relation of a golden standard triple with a false one. To make
sure the generated one is false, we first randomly select a triple
from the dataset and perturb it by replacing the relation while
keeping its head and tail entities. We resort to producing the
connection error is to insert a false link between a non-related
pair of entities. To get a non-related pair, we randomly select
two entities and a relation in our dataset and connect them
into a triple, while making sure that the generated triple is not
in the original dataset. Note here we use index i and j here
to indicate the relation and that the tail does not necessarily
come from the same triple.

To demonstrate that our method could perform effective and
stable error detection on KGs, which have different portions of
errors, we set up the error ratio p from {1%, 2%, 3%, 4%, 5%}.
We uniformly and randomly inject a mix of false relation errors
and connection errors, with a ratio p/2% correspondingly, so
that each sample triple has an equal probability of being picked
up to construct an incorrect triple. Therefore, in our experiments,
the goal is to automatically detect these perturbed triples.

2) Evaluation Metrics: The model ranks all the triples in
the dataset according to their predicted suspicious scores to
evaluate the performance of our method with comparing to
all the baselines. A larger score will result in a higher rank,
which indicates a higher probability of being an error. Based
on the ranking, we further evaluate our error detection results
by calculating the two evaluation measures defined as follows:
Precision@K evaluates the proportion of true errors that we
discovered in the top K triples.
Recall@K measures the proportion of true errors that we
discovered in the total number of ground truth errors.

Precision@K =
| Errors Discovered |

⋂
|Top K in Ranking |

| Top K in Ranking |

Recall@K =
| Errors Discovered | ∩ | Top K in Ranking |

| Total Errors |

3) Parameter Settings: We use the codes released or pro-
vided of the baselines to conduct experiments. We implement
our TripleNet in PyTorch. The embedding size is fixed to 100
for all models. We optimize all models with Adam optimizer,
where the batch size is fixed at 1024. We use the default Xavier
initializer to initialize our model parameters, and the initial
learning rate is 0.001. For TripleNet_Local, TripleNet_Global,
TripleNet_GAT, we set the hidden dimension of Bi-LSTM
layers to 100. The number of neighbors is computed by taking
the average number of neighbors of all triples in a dataset. By
making this setting, we make sure that our model could adapt
to datasets with different levels of density of neighbors, in
order to best utilize the neighborhood information. For our two
datasets, NELL and DBpedia, the corresponding numbers of
neighbors are set to 5, and 3, which are the average number of
neighbors for all triples in the two datasets, respectively. For
each sample in the synthetic dataset, we treat it as a positive
instance and follow the negative sampling approach in [33]
to construct negative samples. Since we may inject different
errors in different runs, to reduce randomness, we use the
random seed and report the average results of ten runs.
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TABLE III: Error detection results of Precision@K and Recall@K based on two datasets with error ratio p = 5%.
Precision@K

Dataset NELL DBpedia

Top@K 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

TransE 0.637 0.531 0.427 0.412 0.366 0.645 0.548 0.476 0.423 0.383
ComplEx 0.601 0.526 0.454 0.419 0.348 0.603 0.533 0.472 0.431 0.357
DistMult 0.631 0.532 0.472 0.423 0.401 0.662 0.539 0.489 0.438 0.420
KGIST 0.675 0.586 0.496 0.459 0.431 0.701 0.613 0.501 0.498 0.450
KGTtm 0.681 0.600 0.512 0.452 0.405 0.760 0.628 0.586 0.474 0.436
Ours 0.738 0.623 0.538 0.477 0.435 0.844 0.729 0.632 0.557 0.497

Recall@K

Dataset NELL DBpedia

Top@K 1% 2% 3% 4% 5% 1% 2% 3% 4% 5%

TransE 0.127 0.212 0.256 0.330 0.366 0.129 0.219 0.286 0.338 0.383
ComplEx 0.120 0.210 0.272 0.335 0.348 0.121 0.213 0.283 0.345 0.357
DistMult 0.126 0.213 0.283 0.338 0.401 0.132 0.216 0.293 0.350 0.420
KGIST 0.134 0.234 0.298 0.367 0.431 0.140 0.245 0.301 0.398 0.450
KGTtm 0.136 0.240 0.307 0.362 0.405 0.152 0.251 0.352 0.379 0.436
Ours 0.148 0.249 0.323 0.382 0.436 0.169 0.292 0.379 0.445 0.497

Fig. 2: Anomaly Discovery Curve.

TABLE IV: The running time for each iteration (in seconds).
TransE ComplEx DistMult KGIST KGTtm Ours

NELL 1 1 40 52 4 1
DBpedia 20 21 96 122 33 38

D. Effectiveness of TripleNet (Q1)

We first evaluate the effectiveness of our TripleNet model
over the baselines on two benchmark datasets. Table III and
Figure 2 report the results of comparing methods for error
detection on two metrics, i.e., Precision@K and Recall@K.
We have the following three observations.
• From Table III, we can observe that TripleNet consistently

performs better than other baselines over all the datasets
with a great margin. In particular, TripleNet improves over

the second-best results by 5% at K = 1%, and 10% at
K = 2% in NELL and DBpedia datasets, respectively. In
general, compared to error detection methods, knowledge
graph representation baselines such as TransE, ComplEx, and
DistMult yield worse results in general. The reason is that
the general KG representation learning frameworks do not
consider the errors in KG, thus do not learn discriminative
representations for normal and noisy triples. This result
demonstrates the need to develop task-specific algorithms
for error detection.

• The previous error detection methods (KGIST and KGTtm)
are always surpassed by our model across two datasets, in
terms of two evaluation metrics. This is mainly because our
model is capable of exploiting the sequential pattern within
the triples, as well as their global structure for error detection.



PREPRINT 7

TABLE V: Ablation Study on NELL with 5% ratio of errors.

Top@K 1% 2% 3% 4% 5%
P
r
e
c
is
io
n
@
K Triple_Local 0.674 0.571 0.497 0.446 0.406

Triple_Global 0.714 0.619 0.526 0.464 0.422

Triple_GAT 0.738 0.623 0.538 0.477 0.435

Top@K 1% 2% 3% 4% 5%

R
e
c
a
ll
@
K Triple_Local 0.135 0.228 0.291 0.357 0.406

Triple_Global 0.143 0.247 0.315 0.371 0.422

Triple_GAT 0.148 0.249 0.323 0.382 0.436

The other two methods could only use the learned rules or
sampled paths in the detection. Both rule-based or path-based
methods are coarser than our fine-granularity detector based
on individual triple and its neighborhoods. Note that KGIST
utilizes extra label information for training, but we only use
self-contained information of KGs. These results demonstrate
the effectiveness of our model in capturing local and global
information for error detection in KGs.

• From Table III and Figure 2, we can see that the proposed
model consistently outperforms other baselines across dif-
ferent K values, in terms of Precision@K and Recall@K.
And with the increasing number of K, the performance gap
between our method and other baselines tends to increase.
It is because other baselines could only detect the errors
with obvious patterns and thus, noisy triples may escape the
detection. We contribute this success of our method to the
joint optimization of individual triple-level and global-level
error detectors. This result further validates the effectiveness
of our model for error detection.

E. Efficiency Analysis of TripleNet (Q2)

To answer Q2, we record the running time of one iteration for
all models. All experiments are conducted with one NVIDIA
RTX 2080 Ti GPU. From Table IV, we can observe that
TransE and ComplEx run faster than other methods in general,
since they only need to calculate the mean square losses. The
semantic-based method DistMult costs more time than TransE
and ComplEx on all datasets. Compared to error detection
methods, our model is comparable to the path-based error
detection method KGTtm on average, while it runs faster than
the rule-based method, KGIST, especially in the large-scale
dataset, DBpedia. This observation validates the efficiency of
our model compared to baseline methods.

F. Ablation Study (Q3)

To test the effect of the components in the proposed method,
we carry out an ablation study. Specifically, we introduce
three variants. TripleNet_Local, TripleNet_Global to validate
the effectiveness of modeling translational patterns based
on the Bi-LSTM layer, for the community-based suspicious
measurement, and self-attention network for context embedding
aggregation, respectively. TripleNet_Local only considers the

local dissimilarity measurement defined in Eq. (5), which is
different from TransE because it includes the Bi-LSTM layer
to explicitly model the sequential patterns. TripleNet_Global
only considers the global dissimilarity measurement defined
in Eq.(6). Note that TripleNet_GAT indicates our final version
that adopts the attention mechanism to implement the Readout
function. Table V summarizes the results on two datasets with
5% errors.

We have the following observations according to the results.
First, TripleNet_Local performs better than TransE, but worse
than TripleNet_GAT. It validates the effectiveness of the Bi-
LSTM layer in capturing sequential patterns within the triples
for better representation learning. Second, TripleNet_Global
performs better than TripleNet_Local in most cases. It indicates
that the majority of anomalous triples could be better detected
by checking the global structure among the triples, while
some are deceptive and can be detected by checking their
local sequential structure. Third, TripleNet_GAT outperforms
both TripleNet_Local and TripleNet_Global with a great
margin. This result indicates the complementary effects of
local and global measurements for joint anomaly detection. It
validates our motivation to jointly consider the translational
nature within triples and their global connectivity for a more
accurate error detection. It demonstrates the effectiveness of
the attention network in selectively aggregating neighborhood
triple information for target triple reconstruction.

V. RELATED WORK

In this section, we discuss two types of KG error detection
methods that are most relevant to ours, including embedding-
based and rule-mining-based error detection methods. We then
contextualize our work in the literature and distinguish our
task from other KG tasks, such as KG completion and KG
link prediction.

A. Knowledge Graph Error Detection

KG error detection is one of the two subtasks of KG refine-
ment, the goal of which is to make a KG more comprehensive
and accurate. KG error detection aims at removing erroneous
information from an existing KG, while the other subtask,
KG completion, aims at adding more knowledge. We will
discuss KG completion in the later subsection. The two tasks
are strictly distinct, and generally, there are no approaches
that could do both [34]. Existing KG error detection methods
can be further categorized into embedding-based methods or
rule-mining-based methods.

B. Embedding-based Error Detection

KG embedding-based error detection methods generally
follow two steps. First, they use some KG representation
algorithms to map entities and relations to a lower-dimensional
space. Then they use the obtained embedding vectors to define
an anomaly score or confidence score for each triple to measure
the suspiciousness of entities, relations, or triples.

To obtain lower dimensional embeddings, existing methods
include tensor factorization-based models [35], [36], trans-
lational distance models such as TransE [18], and semantic
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matching models such as ComplEx [30]. The main family is
the translational distance models [37]. The first work of this
family is TransE, which reflects the idea that the embedding
vector of the subject plus the embedding vector of the relation
should be close to the vector of the object for a given triple,
meaning h+ r ≈ t. TransH [38] and TransR [39] expand upon
TransE, a model’s relation-specific approach, by modeling a
relation as a translating operation on a hyperplane or even
modeling relations and entities in two distinct spaces. This
allows the two models to deal with 1-to-N, N-to-1, and N-to-N
relations that TransE cannot manage. TransM [40] tries to
solve this problem by relaxing the Translation Requirement
mentioned above.

There are also other embedding-based methods. For instance,
the Triple trustworthiness measurement model for knowledge
graph (KGTtm) [41] uses a crisscrossed neural network-based
structure, combining different elements through a multi-layer
perceptron fusioner to generate confidence scores for each triple.
Besides, ComplEx [30] first employs complex vector space
and uses Hermitian dot product to do relation composition for
a head entity, relation, and the conjugate of a tail entity.

C. Rule-mining-based Error Detection

In data mining, association rule mining is a kind of method
that analyzes the co-occurrence of items in itemsets and
leverages these association rules for error detection.

All of these approaches are based on association rule
mining [42], which is a simple but effective method for error
detection. AMIE [43] introduces an altered confidence metric
based on the partial completeness assumption, which applies a
particular relationship of an entity to obtain all relationships of
that type for that entity. The following work of AMIE named
AMIE+ [44] adapts to larger knowledge graphs and takes
examples of complete and incomplete assertions as training data,
and predicts completeness of predicate types observe during
the training process. [45] proposed a Graph-Repairing Rules
named GRRs [45], aiming to identify incomplete, conflicting,
and redundant information in graphs and indicated how to
correct these errors. [46] propose to use (in-)completeness
meta-information to better assess the quality of rules learned
from incomplete KGs. RUGE [47] enables an embedding model
to learn simultaneously from labeled triples, unlabeled triples,
and soft rules in an iterative manner. KALE [48] was proposed
to jointly embed knowledge graphs and logical rules, the key
idea of which is to represent and model triples and rules in a
unified framework.

D. Link Prediction

The goal of KG link prediction is to evaluate the trustwor-
thiness of the relations between entity pairs, and it is different
from the error detection task because the former evaluates the
connectivity of an entity pair, but the latter one further considers
if an entity pair mismatches the corresponding relation.

E. KG Completion

KG completion intends to increase the coverage of KGs [34]
by predicting missing information, such as entities, types of

entities, and relations. Predicting the types of entities mainly
utilize some classification methods that are trained on labeled
data. In [49], [50], they treat the KG completion problem as
predicting the conditional probability of an entity give other
entities, and if they are connected, the probability would be
high.

In summary, although these tasks have strictly different goals,
they share some common techniques in solving the problem.
For example, they all used embedding-based or rule-mining-
based methods as the solutions. However, to achieve better
performance on each task, the representation and rule mining
algorithms should be tailored for the specific task. And that
is why we need to propose a novel tailored KG embedding
method for the error detection task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the error detection problem
based on triple-level embedding. We propose a novel error
detection framework, termed TripleNet. Our general idea is
to utilize KG self-information to calculate local inconsistency,
which uses triples’ self-contained sequential information; and
global mismatch, which uses KG’s contextual information
to reconstruct a triple given a KG, and form them into the
suspicious score. Extensive experiments on two real-world
knowledge graph datasets demonstrate the rationality and
effectiveness of TripleNet. In the future, we would like to
explore the use of the embedding method in TripleNet to guide
KG reasoning and question answering. More sophisticated and
advanced models [27], [28] will also be explored further in
our future research.
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