
Unseen Anomaly Detection on Networks

via Multi-Hpersphere Learning

Shuang Zhou ∗ Xiao Huang ∗ Ninghao Liu † Qiaoyu Tan ‡ Fu-Lai Chung ∗

Abstract

Network anomaly detection is a crucial task since a
few anomalies can cause huge losses. Semi-supervised
anomaly detection methods can effectively leverage a
small number of labels as prior knowledge to enhance
detection accuracy. But in real-world scenarios, novel
types of anomalies (i.e., unseen anomalies) usually ex-
ist on networks which may present different characteris-
tics with the seen anomalies and are hard to be identi-
fied by prior semi-supervised anomaly detection meth-
ods. In this paper, we propose the novel problem of
unseen network anomaly detection that aims to iden-
tify both seen and unseen anomalies to eliminate poten-
tial dangers. Accordingly, we propose a method called
Multi-hypersphere Graph Learning (MHGL) to effec-
tively leverage existing labels by learning fine-grained
normal patterns to discriminate anomalies. Experi-
ments demonstrate that MHGL outperforms state-of-
the-art methods significantly.
Keywords: Anomaly Detection; Attributed Net-

works; Unseen Anomaly

1 Introduction

Network anomaly detection is a crucial task that aims
to identify instances that present strange behaviors and
deviate from corresponding normal background signifi-
cantly [1]. In real-world networked systems, such as so-
cial networks [2, 3] and payment transaction networks
[4], a few anomalies, e.g., financial frauds, may cause
tremendous loss. Therefore, detecting such network
anomalies is of great significance.

Based on feature compactness, anomalies roughly
fall into two groups [5, 6]: scattered anomalies (a.k.a.,
point anomalies) and rare categories (a.k.a., clustered
anomalies or group anomalies). Scattered anomalies
are individual instances that randomly appear in fea-
ture space, and deviate with the majority of other in-
dividual samples [7]. Whereas, rare categories denote
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some minority groups of data objects that exhibit com-
pact properties in feature space (i.e., share similar be-
havior patterns) and deviate significantly from the vast
majority as a whole [8, 9]. Although many methods
[10, 11, 12, 13, 14] have been proposed for network
anomaly detection, they are mainly unsupervised meth-
ods and cannot leverage existing labels as prior knowl-
edge and may find data noise [15]. In practice, a few
number of labeled anomalies are usually available which
can be exploited for effective network anomaly detec-
tion. Recently, semi-supervised methods [4, 15] have
been proposed to effectively leverage the limited labels
to identify more anomalies with similar characteristics.
However, in real-world scenarios, networks usually exist
novel types of anomalies (i.e., unseen anomalies), be-
cause: (1) The limited amount of labeled seen anoma-
lies can hardly cover all types of anomalies in practice;
(2) New types of anomalies will emerge on networks as
time goes. For instance, frauds may misuse new bio-
metric technologies or devices for illegal gains. Exist-
ing semi-supervised network anomaly detection meth-
ods may fail to identify such unseen anomalies, since
corresponding labels are not available during training
and unseen anomalies may present different character-
istics with the known anomalies. Therefore, it is neces-
sary to propose a tailored approach that can effectively
detect both seen and unseen network anomalies to elim-
inate potential dangers.

However, there are several difficulties to achieve this
goal. First, networks contain heterogeneous information
(i.e., node attributes and network structure), and exist-
ing solutions [31, 32] from other domains (e.g., images
or multi-dimensional data) cannot be effectively applied
to graph structural data. But the structure information
can benefit network anomaly detection and should not
be ignored. For example, a group of financial frauds are
usually linked with each other, and the network struc-
ture helps to effectively identify more frauds. Hence,
how to leverage the heterogeneous information to iden-
tify network anomaly is really a problem. Second, (un-
seen) anomalies usually present unknown patterns [6]
while normal patterns are complicated, which may cause
anomalies mix with the normal patterns (e.g., anoma-

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited



lies might camouflage themselves as normal users [33])
and are hard to be detected. Existing efforts [16] that
learn an advanced classifier by automatically selecting
a threshold to reject nodes not belonging to seen classes
as unseen classes may not properly handle the issue. Be-
cause the normal nodes with the same label often have
diverse patterns, simply taking it as a binary classifica-
tion problem may lead to sub-optimal performance.

Inspired by the fact that learning normal patterns
may discriminate anomalies, we propose to address the
above difficulties by mapping the heterogeneous net-
work information into a unified latent space and learn-
ing fine-grained feature patterns to identify anomalies.
Specifically, we firstly adopt established graph neural
networks (GNNs) to map nodes in the network into
a latent space. Then, we conduct multi-hypersphere
learning on the latent space to generate diverse normal
patterns via multiple hyperspheres. After that, both
seen and unseen anomalies could be directly identified
based on these hyperspheres.

The challenges of developing such an intuitive so-
lution are two-fold. The first one is how to accurately
identify fine-grained feature patterns with the purpose
of conducting multi-hypersphere learning. Although
conventional clustering methods, such as K-means [17],
can be directly applied to get multiple feature clusters,
these methods may lead to sub-optimal performance,
as they ignore that normal patterns are complex and
may mistake unseen anomalies as normal ones. There-
fore, accurately modeling fine-grained patterns are nec-
essary. Second, since anomalies are rare while the ma-
jority of samples are normal in practice, how to define
an effective learning objective to leverage existing la-
bels and handle the imbalanced data distribution to de-
tect both seen and unseen anomalies is another chal-
lenge. Note that traditional hypersphere learning ob-
jective [18] is not suitable for our purpose as it only
learns one hypersphere in latent space, whereas we want
to conduct multi-hypersphere learning to effectively de-
tect both seen and unseen anomalies.

To address the first challenge, we propose a compo-
nent called Pattern Distribution Estimator. It can map
the heterogeneous network information into a latent
space and then accurately model the complex feature
patterns into fine-grained patterns by estimating their
pattern distributions. Second, we devise a novel multi-
hypersphere learning objective to learn fine-grained nor-
mal patterns by enclosing each of them within a corre-
sponding hypersphere in the latent space, while pushing
labeled seen anomalies far away. After training, seen
anomalies are mapped to far-away regions and are iden-
tified, while normal data are further enclosed within
the learned multiple hyperspheres to discriminate un-

seen anomalies. We finally define anomaly score as the
Euclidean distance between a testing instance and its
closest hypersphere center in the latent space to dis-
criminate all the anomalies with normal data. We sum-
marize our contributions below.

• Problem: To the best of our knowledge, we are
the first to investigate and formally define the
novel problem of unseen anomaly detection on
networks. In particular, we simulate real-world
scenarios and emphasize on detecting both seen and
unseen anomalies.

• Algorithm: We propose a principled method
MHGL to identify seen and unseen anomalies. It
combines the advantages of graph neural networks
and our proposed multi-hypersphere learning to
learn an effective anomaly detection model.

• Experimental Findings: We perform exten-
sive experiments to verify the effectiveness of our
method, and the results comprehensively demon-
strate the superior performance of MHGL for un-
seen anomaly detection on networks. Besides,
we also discuss how many labels are sufficient to
achieve fair performance and how each component
contributes to the overall performance.

2 Problem Statement

In this paper, we use bold uppercase letters, bold
lowercase letters, lowercase letters, and calligraphic
fonts to denote matrices (e.g., X), vectors (e.g., h),
scalars (e.g., s), and sets (e.g., V), respectively. Notably,
the input is an attributed network G = (V, E ,X), where
V is the set of nodes, i.e., {v1, v2, ..., vn} and E is the
set of edges. The node attributes are represented by
X = [x1, x2, ..., xn] ∈ Rn×f , xi ∈ Rf is the attribute
vector associated with node vi and f is the attribute
dimension.
Problem: Unseen Anomaly Detection on Net-
works. Given an attributed network G = (V, E ,X),
V = Vtrain ∪ Vtest, where Vtrain denotes training set
and Vtest denotes testing set. Specifically, Vtrain =
Ntrain ∪ Strain, where Ntrain is a set of labeled normal
nodes and Strain denotes a set of labeled seen anoma-
lies; Vtest = Ntest ∪ Stest ∪ U , where Ntest and Stest
are respectively the rest of normal nodes and the rest of
seen anomalies, while U is a set of unseen anomalies that
have never appeared in Vtrain. Our goal is to learn an
anomaly detection model, which can effectively leverage
existing labels, and output a ranking list where (both
seen and unseen) anomalies1 own higher anomaly score
than normal data and are detected from the network.

1In this paper, we mainly focus on detecting rare categories.
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Figure 1: Overview of the Multi-hypersphere Graph Learning method. It first leverages GNNs to obtain node
representations in latent space, then estimates diverse fine-grained feature patterns, and finally samples high-
confidence data to conduct multi-hypersphere learning. After training, seen anomalies are mapped to far-away
regions and are identified, while normal data are further enclosed within the learned multiple hyperspheres to
discriminate unseen anomalies.

3 Proposed Method

In this section, we present the details of the proposed
Multi-hypersphere Graph Learning (MHGL) method
for unseen anomaly detection on networks. Specifically,
our method MHGL addresses the discussed challenges
with the following key components: (1) Pattern Dis-
tribution Estimator, a tailored component that enables
to accurately model fine-grained patterns by estimating
pattern distributions to identify unseen abnormal pat-
terns in the constructed latent space; and (2) a multi-
hypersphere graph learning algorithm, which is devised
to learn multiple hyperspheres to enclose fine-grained
normal patterns to further discriminate both seen and
unseen anomalies on the network. An overview of the
proposed method MHGL is depicted in Figure 1.

3.1 Pattern Distribution Estimator We hypothe-
size that the feature patterns of normal data and anoma-
lies are complex, which may mix with unseen abnormal
patterns thus hampering effective detection. To address
this issue, we propose to divide the feature patterns into
various fine-grained patterns to identify unseen abnor-
mal patterns. Accordingly, we propose a component
called Pattern Distribution Estimator (PDE), which is
composed of two key building blocks: (1) a network en-
coder for learning node representations; (2) a distribu-
tion modeling block to estimate the fine-grained normal
patterns as well as abnormal patterns on networks.
Network Encoder. In order to effectively leverage
the heterogeneous network information for anomaly de-
tection, we build the network encoder module. Specif-
ically, it consists of multiple GNN layers that encode
each node to a low-dimensional representation in latent
space. Generally, most of existing GNNs adopt a neigh-
borhood message-passing mechanism to compute node
representations by aggregating information from nodes’
neighborhood. Formally, a vanilla GNN layer can be

defined as two key functions:

(3.1)
hk
Ni

= Aggregatek
(
hk−1
j ,∀vj ∈ Ni

)
,

hk
i = Combinek

(
hk−1
i ,hk

Ni

)
,

where hk
i is the node representation of vi at the k-

th layer and Ni is a set of nodes adjacent to node
vi. Note that, the Aggregate is to receive messages
from the neighborhood and the Combine is to compute
nodes’ new representation based on the representation
from the previous GNN layer and the information from
neighbors.

To further capture the long-range dependencies on
network to learn informative representations, we stack
multiple GNN layers in the network encoder. Thus, it
can be described as:

(3.2) H = GNNk(Hk−1,A),

where H is a matrix of output representations generated
by the network encoder, which has incorporated nodes’
attribute and structure information in a unified latent
space. Note that the network encoder is compatible
with established GNNs, and we employ GCN [19] in
our implementation.
Pattern Distribution Estimation. After adopting
the Network Encoder, we can represent all the nodes
in the latent space, thus obtaining complex normal and
abnormal feature patterns. The next is to identify fine-
grained feature patterns which can discriminate unseen
abnormal patterns. Although conventional clustering
methods, such as K-means [17], can be directly applied
to get multiple feature clusters, they may lead to
sub-optimal performance, as they do not consider the
diversity of normal patterns and may treat unseen
anomalies as normal data by mistake. Accordingly, we
adopt a Gaussian Mixture Model (GMM) [20] to model
the complex feature patterns into fine-grained patterns
by estimating their pattern distributions. Specifically,
given the representations of normal data and anomalies
respectively, the GMM represents each fine-grained
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pattern as a mixture of Gaussian distributions by

(3.3) p(hj | λ) =

k∑
i=1

ωig (hj | µi,Σi) ,

where hj ∈ Rd is the representation of node vj , λ =
{wi, µi,Σi} are the GMM parameters, k is the number
of Gaussians (e.g., pattern distributions), wi,i=1,...,k are

the mixture weights with a constraint that
∑k

i=1 ωi = 1,
g (hj | µi,Σi) are the component Gaussian densities.
Each component density is a Gaussian function with
mean vector µi and covariance matrix Σi. Here, it
summarizes the probability density of hj belonging to
the i-th pattern distribution, and we use γji to denote
it for simplicity.

To ensure obtaining fine-grained feature patterns,
PDE estimates the patterns in a hierarchical manner.
The main idea is to further split coarse-grained patterns
into smaller ones. As aforementioned, γji indicates how
likely a node vj lying in the i-th pattern distribution Pi,
and we simply assign node vj to the distribution that it
owns the largest probability ξj via

(3.4) ξj = arg max
i∈{1,2,...,k}

γji,

and assign it to the corresponding node set Si. Hence,
the granularity of each pattern can be reflected by the
size of the node set Si. The detailed algorithm is sum-
marized in Algorithm 1. For the sake of optimal param-
eters that best match the distribution of the training
data, we adopt Expectation-Maximization (EM) algo-
rithm [21] for optimization. After optimization, PDE
can model the normal and abnormal patterns into fine-
grained patterns, respectively.

Algorithm 1 Pattern Distribution Estimation (PDE).
Input: Node setN , node representations H, distribution number

k, node set size u.

Output: Fine-grained feature patterns P , a node set Si for each

pattern.
1: Based on Eq. 3.3, model input representations by k distribu-

tions;
2: Get pattern distributions Pi,i∈{1,2,...,k};

3: Apply Eq. 3.4 to take node vj , ∀vj ∈ N into Si;
4: for i = 1 to k do
5: if

∣∣Si∣∣ > u then

6: Compute split number k′ =
|Si|
u

;
7: Take k′,Si as input, do PDE to further split Pi;
8: Add the obtained P i

new,Sinew into P,Si;
9: end if

10: end for

11: Return fine-grained patterns P , node sets S.

3.2 Multi-hypersphere Graph Learning In pre-
vious sub-section, we introduce how to use the PDE
to learn fine-grained feature patterns. The follow-up
question is how to conduct multi-hypersphere learning,

which can enclose the normal patterns to further dis-
criminate both seen and unseen anomalies in the la-
tent space. In this sub-section, we first present how
to obtain hypersphere centers from the learned nor-
mal pattern distributions, then introduce a tailored
multi-hypersphere learning objective, and finally de-
scribe how to perform model training to facilitate the
unseen anomaly detection on networks.
Hypersphere Center Computation. In order to
perform multi-hypersphere learning in the latent space,
it is necessary to find a suitable hypersphere center for
each fine-grained normal pattern. We exploit the PDE
to find nodes that most likely belong to corresponding
feature pattern to compute hypersphere centers. Specif-
ically, we adopt Eq. 3.4 to infer a set of nodes Si that
most likely lie in the fine-grained pattern Pi . Therefore,
the hypersphere centers ci for all the fine-grained pat-
terns can be obtained by averaging the corresponding
node representations, namely

(3.5) ci =
1

|Si|
∑

vj∈Si

hj .

Multi-hypersphere Learning Objective. To facili-
tate multi-hypersphere learning in the latent space for
effective anomaly detection, we propose a tailored multi-
hypersphere learning objective. The intuitive idea is to
enclose normal instances within corresponding hyper-
sphere while pushing anomalies far away from all the
normal hyperspheres by jointly learning the parameters
of the network encoder and minimizing the volume of
the data description hyperspheres. Formally, the multi-
hypersphere learning objective is defined as:

(3.6)

min
Θ

1

p · n

p∑
i=1

n∑
j=1

‖hj − ci‖22 +

σ

q · p

q∑
r=1

p∑
i=1

(
‖hr − ci‖22

)−1

+
λ

2
‖Θ‖2F ,

where ci ∈ Rd is the center for the i-th normal hyper-
sphere, Θ denotes all the learnable network parameters,
p is the number of normal patterns P , n denotes the
number of nodes in pattern Pi, σ serves as a weight to
control the balance between the labeled normal and the
abnormal term, and q is the number of labeled anoma-
lies. The first term is a quadratic loss for penalizing the
distance of each normal node representation to the cor-
responding hypersphere center ci. The second term is to
penalize the inverse of distances such that anomalies will
be mapped far away from all the normal hyperspheres.
The last term is a network weight decay regularizer with
hyperparameter λ > 0.

When minimizing the objective function, normal
hyperspheres are contracted in the latent space. By
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training the model with fine-grained normal data and
a few labeled seen anomalies, it will (i) map seen
anomalies to far-away regions, (ii) learn a description
boundary for each fine-grained normal pattern, such
that unseen anomalies, which may originally reside in
the complex normal patterns, can also be identified.
Therefore, the trained model can effectively detect both
seen and unseen anomalies. Specifically, for a given test
node vj , we can naturally define the anomaly score as
the Euclidean distance between its own representation
and the closest normal hypersphere center ci in the
latent space, i.e.,

(3.7) score(vj) = min‖hj − ci‖22,∀i ∈ {1, 2, . . . , p}.
Model Learning. Ideally, the proposed learning ob-
jective requires both labeled normal and abnormal in-
stances from corresponding fine-grained patterns re-
spectively for model training. However, such a require-
ment is demanding since existing labels lack such fine-
grained information. To overcome this issue, we propose
to use pseudo-labels for model training.

The pseudo-labels are generated by leveraging the
learned fine-grained pattern distributions from PDE.
Note that, during the initialization stage of our method,
we have adopted PDE to model the complex feature
patterns into various fine-grained pattern distributions.
Here, for each fine-grained pattern, we sample some
high-confidence data to build initial hyperspheres and
then generate virtual representations as pseudo-labels
for multi-hypersphere training. Specifically, there are
three steps: (1) For each pattern, we take the labeled
nodes with probability value ξj (see Eq. 3.4) larger than
a suitable threshold t as its high-confidence data; (2)
For each hypersphere center, we calculate its distance
with the corresponding high-confidence data and take
the largest distance as its initial radius r, thus form-
ing initial hyperspheres; (3) Finally, we repeatedly sam-
ple two representations from the corresponding hyper-
sphere, combining them to generate virtual representa-
tions as pseudo-labels. Specifically, the virtual repre-
sentations are generated by

(3.8) hnew = (1− β) · ha + β · hb,

where β is a random variable in the range of (0, 1). The
detailed algorithm is summarized in Algorithm 2.

4 Experiment

In this section, we perform empirical evaluations on
real-world attributed networks to answer the following
research questions: RQ1. How effectively does our
method for anomaly detection, especially the unseen
anomaly detection? RQ2. How is the label leveraging
efficiency of our method? As there exists a trade-off
between high performance and high cost, we intend to

Algorithm 2 Multi-hypersphere Graph Learning.
Input: Attributed network G = (V, E,X), training epochs T ,

augmentation factor α.

Output: A node list with anomaly score.

1: Randomly initialize MHGL, base on Eq. 3.2 to get H;
2: Adopt the PDE to obtain x normal patterns and y abnormal

patterns, and a node set Si for each pattern;

3: Calculate hypersphere centers ci,i∈[1,x+y];
// Identify high-confidence data

4: Select a suitable probability value as threshold t;

5: Add node vj into high-confidence set F i, if ξj > t, ∀vj ∈ Si;
// Compute initial radius for hyperspheres

6: For i-th hypersphere, take arg max
j∈Fi

(
deuc

(
F i

j , ci

))
as ri;

7: For each hypersphere, take node vj ∈ V with deuc (ci,hj) 6 ri
as final high-confidence set Hi;

8: while t < T do

9: for i = 1 to α ·
∣∣Hi

∣∣ do
10: // Generate pseudo-labels
11: Use Eq. 3.8 to generate hnew;

12: Add hnew into Di as pseudo-labels for ci;

13: end for
14: Based on Eq. 3.6, minimize loss with Di;

15: Update Θ via stochastic gradient descent;
16: end while

17: Compute anomaly scores based on Eq. 3.7 for Vtest.

explore how many labels are sufficient for achieving fair
performance. RQ3. What is the contribution of each
module of our method to its overall performance?

4.1 Datasets We employ three real-world attributed
networks that have been widely used in prior researches
[22, 23, 24] to evaluate the performance of different
methods. Details of the datasets are as follows:

• Computer is from the Amazon co-purchase graph
[25] in which nodes represent products and edges
denote co-purchase relationships. Nodes fall into
10 classes based on product category, and node at-
tributes are a bag-of-words representation of users’
comments.

• Photo is also from the Amazon co-purchase graph
[25] in which nodes denote products and the edges
reflect co-purchase relationships. Node attributes
are a bag-of-words representation of a product’s
reviews.

• CS is a co-author network from the Microsoft Aca-
demic Graph [26], in which nodes represent au-
thors and the edges indicate co-author relation-
ships. Node attributes are a bag-of-words repre-
sentation of the keywords from an author’s papers.

Following the standard anomaly detection settings
[9, 29, 30], we take the nodes from the smallest classes
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Table 1: Data statistics of the three real-world at-
tributed networks with anomalies.

Datasets CS Computer Photo

nodes 18,333 13,381 7,487
edges 81,894 245,778 119,043

attributes 6,805 767 745
classes 15 10 8

rare categories 3 2 2
total anomalies 909 580 696
anomalies prop. 4.96% 4.33% 9.30%
seen anomalies 420 297 331

unseen anomalies 489 283 365

(i.e., rare categories) as anomalies, while the remain-
ing nodes are considered as normal data. As afore-
mentioned, in real-world scenarios, a limited number
of labels on normal instances and anomalies are usually
available and there exist novel types of anomalies (i.e.,
unseen anomalies). To further replicate the scenarios,
we follow related works [27] by taking one rare cate-
gory as seen anomalies while considering the remained
rare categories as unseen anomalies, and then randomly
sample a few (e.g., q = 20) nodes from the seen anoma-
lies as labels. On top of that, p% of the normal nodes
are randomly sampled as labeled normal data. Both of
the labeled seen anomalies and the labeled normal data
are used as training set, while the remaining data serves
as testing set. The details of the datasets are shown in
Table 1.

4.2 Experimental Settings
Comparative Methods. We compare our proposed
method with state-of-the-art semi-supervised methods
for network anomaly detection. Details of these com-
pared baseline methods are as follows:

• SPARC [9] is a cost-sensitive based method for
rare category detection on attributed networks.

• DeepSAD [18] is a popular deep learning method
that utilizes both labeled normal and abnormal in-
stances for anomaly detection. In our experiments,
it leverages node attributes as the input features.

• OpenWGL [16] is an advanced GNNs that can
identify unseen classes. Here, we adopt it for
unseen anomaly detection.

• GDN [15] is a state-of-the-art GCN-based method
that leverages a few labeled anomalies for effective
network anomaly detection.

• OCGNN [29] is an advanced method which com-
bines GNNs with the classical one-class objective
for network anomaly detection. It can only exploit
normal instances to discriminate anomalies.

Evaluation Metrics. We follow previous works [12,
15, 30] and adopt three standard evaluation metrics
(AUC, AUPR, and Precision@K) to measure the effec-
tiveness of all the methods.
Implementation Details. We implement the pro-
posed framework in PyTorch. Specifically, the network
encoder consists of four GCN layers (dimension size is
256, 128, 64, and 32, respectively), with ReLU as ac-
tivation function. In all the experiments, we optimize
the objective function via Adam optimizer with suitable
learning rate lr and a weight decay of 0.0005. Besides,
we set the initial distribution number k = 10, train-
ing epochs T = 300, and augmentation factor α = 2.
We leverage the generated virtual representations (see
Eq. 3.8) for model training, and tune the rest of hyper-
parameters, e.g., node set size u (see ALG. 1), lr, and σ,
by selecting ones with the best evaluation performance
on the available labeled data. For all the comparative
methods, codes are publicly accessible. For fair compar-
ison, we follow a previous work [15] to split the existing
labels into train and validation set with a suitable pro-
portion (3:2), select the hyper-parameters with the best
performance on the validation set, and report the results
on the same testing data.

4.3 Effectiveness Results (RQ1)
Overall Performance. To replicate the real-world
scenarios that people want to detect as many anoma-
lies as possible to eliminate potential risks, we evaluate
the overall performance (i.e., detect both seen and un-
seen anomalies) of all the methods. We set the num-
ber of labeled anomalies as 20 and the labeled normal
ratio as 10%. We present the evaluation results w.r.t.
AUC, AUPR, and Precision@K in Table 2. According to
the results, we have the following observations: (1) For
overall anomaly detection, our method MHGL outper-
forms all the comparative methods by a large margin in
two datasets, while achieving comparable performance
in the CS dataset. (2) For comparative anomaly de-
tection methods, SPARC, GDN and DeepSAD, which
leverage both normal and abnormal data for training,
have achieved great performances and significantly out-
perform OCGNN, which only learns normal patterns to
discriminate anomalies. It demonstrates that effectively
leveraging existing labels and learning both normal and
abnormal patterns is a key to achieve great performance
for anomaly detection. (3) Network anomaly detection
methods (e.g., SPARC, GDN, and our MHGL) can out-
perform DeepSAD, a conventional anomaly detection
method which cannot leverage network structure infor-
mation. It indicates that it is necessary to propose tai-
lored methods to leverage the heterogeneous informa-
tion on networks for anomaly detection.
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Table 2: Overall performance comparison in AUC, AUPR, and Precision@K on the three datasets.

Methods
Computer Photo CS

AUC AUPR P@600 AUC AUPR P@600 AUC AUPR P@600

SPARC 0.8291 0.5217 0.4833 0.6977 0.2940 0.3383 0.8432 0.5493 0.6433
DeepSAD 0.8246 0.5064 0.4747 0.7002 0.3022 0.3489 0.7956 0.5129 0.6438
OpenWGL 0.8399 0.5357 0.4650 0.7416 0.3202 0.2296 0.8032 0.3275 0.3779

GDN 0.9486 0.7529 0.6537 0.7424 0.4969 0.4781 0.7264 0.5276 0.7074
OCGNN 0.9104 0.2752 0.3031 0.6765 0.2178 0.3241 0.7257 0.1403 0.2116

MHGL (Ours) 0.9925 0.8768 0.8300 0.8604 0.5183 0.4950 0.8503 0.5217 0.6498

Table 3: Performance comparison w.r.t. Precision@K for unseen anomaly detection on the three datasets.

Methods
Computer Photo CS

P@400 P@500 P@600 P@400 P@500 P@600 P@400 P@500 P@600

SPARC 0.0425 0.0500 0.0550 0.0625 0.0640 0.0683 0.0000 0.0080 0.0150
DeepSAD 0.1105 0.1030 0.0971 0.0791 0.0787 0.0786 0.0849 0.0871 0.0858
OpenWGL 0.1012 0.0840 0.0733 0.2518 0.2201 0.1842 0.1077 0.1007 0.0867

GDN 0.1026 0.1638 0.1937 0.0440 0.0518 0.0562 0.0119 0.0615 0.0827
OCGNN 0.1645 0.1483 0.1325 0.2945 0.2532 0.2034 0.1420 0.1349 0.1187

MHGL (Ours) 0.1835 0.3190 0.3700 0.3543 0.3184 0.2925 0.1928 0.1830 0.1683

Performance on Unseen Anomaly Detection. In
the experiments, we also evaluate the performance of
all the methods in identifying unseen anomalies (i.e.,
novel types of anomalies) on networks. We still set
the number of labeled anomalies as 20 and the labeled
normal ratio as 10% for all the datasets. We present
the evaluation results w.r.t. Precision@K in Table 3.
Note that, we temporarily mask all the seen anomalies
in the output ranking list as normal, such that we can
fairly evaluate these methods’ effectiveness on unseen
anomaly detection. Accordingly, we can see that the
proposed method MHGL significantly outperforms all
the comparison methods w.r.t. Precision@K on the
three datasets. It verifies the effectiveness of our method
for unseen anomaly detection on networks.

4.4 Label Leveraging Efficiency (RQ2) This
subsection examines the label leveraging efficiency of
our method. Efficiently utilizing labels is necessary in
real-world scenarios, as it is difficult to obtain large
amount of labeled data in practice. However, if not
providing a sufficient amount of labels, it is difficult to
achieve fair performance in identifying anomalies (es-
pecially unseen anomalies), as the task is really chal-
lenging. Therefore, we examine the label leveraging ef-
ficiency of the proposed model as well as another net-
work anomaly detection methods and intend to explore
how many labels are sufficient for fair performance. Ac-
cordingly, we set two sets of experiments to examine the
efficiency of utilizing labeled anomalies and labeled nor-
mal data, respectively. For the former one, the number
of labeled anomalies in training varies from 5 to 40, with
labeled normal data fixed as 10%. For the latter one,
we fix the number of labeled anomalies as 20 and vary

the amount of labeled normal data from 3% to 10% in
training. For all these experiments, the testing data is
fixed unchanged. The results are reported in Figure 2
and Figure 3. As shown in Figure 2, the performance of
GDN and our proposed MHGL increases when exploit-
ing more labeled anomalies, whereas for OCGNN, which
cannot leverage existing labeled anomalies, its perfor-
mance is not improved. We further find that, when only
a few (e.g., 5) labeled anomalies are available, adding
labels usually get more obvious gains on performance
than the scenarios where a large amount of labels (e.g.,
30) are available. The results demonstrate that adopt-
ing labeled anomalies is conducive for better detection
performance, which is intuitive and also consistent with
the conclusions from related works [18]. As for leverag-
ing normal data, the results in Figure 3 show that all
the anomaly detection methods can achieve greater per-
formance by providing more labeled normal data. How-
ever, as aforementioned, there exists a trade-off between
high detection performance and high cost. So consider-
ing effectiveness, we recommend to adopt a small value
(e.g., 20 labeled anomalies and 7% normal data) to
achieve fair performance.

4.5 Ablation Study (RQ3) To better examine the
contribution of each component in our method, we
also include several variants of MHGL for ablation
study. We respectively exclude the PDE, the multi-
hypersphere learning, and both of them, thus result-
ing in three model variants: MHGL-, HGL, and HGL-.
Note that excluding the PDE means that we use alter-
native method, such as K-means, for hypersphere cen-
ter computation, and excluding the multi-hypersphere
learning denotes merely building one hypersphere in
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Figure 2: AUC Performance w.r.t. using different number of labeled anomalies.

Figure 3: AUC Performance w.r.t. using different ratio of labeled normal data.

the latent space for model training. We present the
overall anomaly detection results w.r.t. AUC and
Precision@600 in Figure 4. Our observations are two-
fold: (1) By incorporating the PDE, MHGL outper-
forms MHGL- for anomaly detection. Specifically, the
averaged performance improvement w.r.t. AUC score
and Precision@600 is 0.04 and 0.13, respectively. It
is because PDE can accurately estimate the distribu-
tion of fine-grained normal and abnormal patterns. (2)
By conducting multi-hypersphere learning, MHGL out-
performs HGL significantly. For instance, the aver-
aged performance boost w.r.t. AUC score and Preci-
sion@600 exceed 0.04 and 0.15, respectively. Since un-
seen anomalies usually present unknown patterns and
may mix with normal patterns in latent space, learning
the fine-grained normal patterns within multiple hyper-
spheres enables to identify unseen anomalies (as shown
in Figure 1), thus enhancing the accuracy for network
anomaly detection.

5 Conclusion

In this paper, we formally investigate the problem of
unseen anomaly detection on networks. To handle
this problem, we propose a novel multi-hypersphere
graph learning framework MHGL, which consists of
two main components: pattern distribution estimator
(PDE) and multi-hypersphere learning. The PDE can
encode nodes’ attributes and network structure informa-
tion into a unified latent space and estimate the compli-
cated pattern distribution of normal and abnormal data,
thus identifying unseen abnormal patterns in the la-
tent space. The subsequent multi-hypersphere learning
enables to enclose fine-grained normal patterns within
multiple hyperspheres to further discriminate anoma-
lies. Through empirical evaluations, we demonstrate

Figure 4: Ablation study to analyze the effect of each
component in MHGL.

that our proposed method MHGL can outperform state-
of-the-art anomaly detection methods significantly.
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