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ABSTRACT
Attributed network anomaly detection has become an essential tool

in various networked systems such as social media and e-commerce

businesses. It aims to detect nodes that significantly deviate from

their corresponding background. In conventional anomaly detec-

tion, the background is defined as the vast majority. But in net-

works, anomalies can be local and look normal when compared

with the majority. While several efforts have explored to consider

communities as the background, it remains challenging to learn

suitable communities for effective anomaly detection. Also, the

patterns of anomalies are unknown and it is nontrivial to define

criteria of anomalies. To bridge the gap, in this paper, we argue

that, by using appropriate models, it is sufficient to simply consider

neighbor nodes as the background to detect anomalies. Correspond-

ingly, we propose a novel abnormality-aware graph neural network

(AAGNN). It utilizes subtractive aggregation to represent each node

as the deviation from its neighbors (the background). Normal nodes

with high confidence are employed as labels to learn a tailored hy-

persphere as the criterion of anomalies. Experiments demonstrate

that AAGNN surpasses state-of-the-art methods significantly.
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1 INTRODUCTION
Attributed network anomaly detection (ANAD) has attracted in-

creasing attention from both industry and academia, since attrib-

uted networks are widely witnessed in various real-world systems,

including social media [10, 23], molecular networks [27], and aca-

demic networks [24]. In these systems, a small number of anomalies

(e.g., fraudsters and terrorists) could cause serious issues. The goal

of ANAD aims to automatically identify anomalies, whose patterns

or behaviors significantly deviate from background [1, 5, 14].
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There are two main difficulties in developing an effective ANAD

model. First, differ from the anomalies in other domains (e.g., multi-

dimensional data, image), where the background is usually defined

as the majority instances [17], network anomalies are more complex

with local patterns [14]. These local anomalies often align with the

vast majority yet deviate from the local community, making them

hard to be detected in practice. Although several efforts have been

made to identify suitable community as background [8, 20], it is a

non-trivial task to effectively devise a good community. Second, it

is hard to characterize the properties of abnormal instances in prac-

tice since they usually present unknown patterns [17]. To this end,

existing efforts [13, 18] assort to measure nodes’ pattern deviation

via reconstruction residuals so as to characterize abnormality. How-

ever, residual-based methods may be sub-optimal in identifying

local anomalies due to their reliance on all instances. Thus, defining

a suitable background that is easy to obtain and could present local

abnormal patterns clearly still remains an open problem.

Inspired by the fact that anomalies are rare and tend to link

with normal nodes in networks [6, 17], a natural idea is to simply

employ a node’s local neighborhood structure as the background to

measure its pattern deviation. Specifically, we can first leverage the

advanced graph neural networks [12, 25] (GNNs) to map normal

and abnormal nodes into different latent areas by considering their

local neighborhood communities, and then adopt a classifier to

discriminate the representations of normal nodes and anomalies.

The challenges of developing such an intuitive solution are two-

fold. The first is how to effectively determine the pattern deviation

of nodes based on neighborhood community. Directly applying

established GNNs architectures to discriminate the difference be-

tween normal nodes and anomalies by leveraging their community

structures is problematic. It is mainly because GNNs assume that

nodes linked together tend to be similar, while in ANAD setting,

we hypothesize that the degree of deviation for normal nodes and

anomalies compared with their neighborhood are different. Sec-

ond, since anomalies are rare while the majority of samples are

normal in practice, how to define an effective learning objective

to leverage such imbalanced data samples is another challenge. Al-

though traditional training objectives (i.e., cross-entropy loss) can

be directly applied, it may be unsuitable as it omits the extremely

imbalanced data distribution [1]. Several recent efforts [3, 7, 19]

propose to minimize reconstruction error for model training, but

reconstruction-based objectives do not directly target for anomaly

detection and lead to sub-optimal performance [16]. Thus, a tailored

learning objective is needed to effectively train ANAD model.

To address the aforementioned issues, in this paper, we propose

a simple yet effective Abnormality-Aware Graph Neural Network

framework, termed as AAGNN, for ANAD. The core ideas are two-

fold. First, it utilizes a subtractive aggregation approach to represent
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each node by considering the pattern deviation between itself and

its neighborhood community. In this way, the generated node rep-

resentations are anomaly-distinguishable to some extend. This is

because the representations of normal nodes tend to be similar

as they have slight deviation with their neighbors, while anom-

alies tend to deviate from their neighbors significantly. As a result,

normal nodes tend to locate together in the latent space, while

abnormal ones reside in different areas. Second, it devises a novel

hypersphere learning objective to effectively distinguish the nor-

mal and abnormal samples by enclosing normal nodes within a

hypersphere while retaining anomalies outside of the hypersphere

in the latent space. Normal nodes with high confidence are em-

ployed as labels to train the model. After training, AAGNN can

learn compact normal patterns and reasonably infer the nodes far

away from the hypersphere center (i.e., significantly deviate from

the normal patterns) as anomalies (shown in Figure 4 (b)).

Our main contributions are summarized as follows:

• We propose a novel graph neural network (AAGNN) to ef-

fectively characterize node abnormality by measuring its

pattern deviation with corresponding neighborhood.

• We devise an effective hypersphere learning objective to

optimize the proposed AAGNN model.

• Empirical results on three real-world datasets demonstrate

the superiority of AAGNN over the state-of-the-art methods

in detecting abnormal nodes in networks.

2 PROBLEM DEFINITION
In this paper, we use bold uppercase letters for matrices (e.g., X),
bold lowercase letters for vectors (e.g., h), lowercase letters for

scales (e.g., 𝑠) and calligraphic fonts to denote set (e.g.,V). Notably,

we are given an attributed network G = (V, E,X) with 𝑛 nodes as

input, where V = {𝑣1, 𝑣2, ..., 𝑣𝑛} denotes the set of nodes (|V | = 𝑛)

and E is the set of edges. Each node is associated with an attribute

vector x𝑖 ∈ R𝑓 , in which 𝑓 is the feature dimension. X = [x1, x2, ...,
x𝑛] ∈ R𝑛×𝑓 presents the feature matrix for all nodes.

Definition 1. Attributed Network Anomaly Detection. Given
an attributed network, the goal is to measure nodes’ anomaly score,

such that anomalies that significantly deviate from the background

would have large anomaly scores and be detected.

3 AAGNN MODEL DESIGN
In this section, we present the main component of the proposed

AAGNN model and describe the model learning process for ANAD.

An overview of AAGNN is shown in Figure 1.

3.1 Abnormality-aware Graph Neural Layer
Our AAGNN consists of a single abnormality-aware graph neural

layer, which is tailored for ANAD. It leverages subtractive aggrega-

tion to measure nodes’ pattern deviation with the neighborhood

(i.e., characterize node abnormality). Intuitively, if a node owns

rare patterns or presents strange behaviors, its pattern deviation

with the neighborhood is significant; whereas normal nodes gener-

ally present similar patterns with their neighborhood, thus owning

trivial abnormality.

For a given node 𝑖 , the input of the layer is node attribute vector

x𝑖 ∈ R𝑓 , the output is an abnormality-aware node representation

Figure 1: Overview of AAGNN model. It utilizes subtractive
aggregation to represent each node as the pattern deviation
from its neighborhood. Since normal nodes own trivial de-
viation (i.e., low abnormality), their output representations
are mapped closely; whereas anomalies present significant
deviation (i.e., large abnormality), their output representa-
tions aremapped to faraway regions. After training, normal
nodes are further enclosed to discriminate anomalies. (Red
color denotes abnormal, blue color denotes normal.)
h𝑖 ∈ R𝑑 . To that end, firstly, a shared linear mapping function

𝜙 (·;W) parameterized byW ∈ R𝑓 ×𝑑 is applied to all the nodes to

get low-dimensional representation z𝑖 ∈ R𝑑 . Then, the abnormality-

aware node representation is computed by using its own representa-

tion subtract the aggregated representation from the corresponding

𝑘-hop neighborhood. Formally, AAGNN learns the abnormality-

aware representation of node 𝑖 by:

z𝑖 = 𝜙 (x𝑖 ;W),
h𝑖 = 𝜎

(
z𝑖 − Aggregate

(
z𝑗 ,∀𝑗 ∈ N𝑘

𝑖

))
,

(1)

where N𝑘
𝑖
denotes the 𝑘-hop neighborhood of node 𝑖 , x𝑗 is the

attribute vector of a neighboring node 𝑗 , and 𝜎 (·) is a non-linear
activation function. We further propose two different aggregators

to aggregate node information from their 𝑘-hop neighborhood.

Mean aggregator. It aggregates the 𝑘-hop neighborhood informa-

tion by simply averaging the representations:

h𝑖 = 𝜎 (z𝑖 −
1

|N𝑘
𝑖
|

∑
𝑗 ∈N𝑘

𝑖

z𝑗 ) . (2)

Attention aggregator. We also examine attention mechanism for

information aggregation, which is a single-layer neural network pa-

rameterized by a weight vector a ∈ R2𝑑 . For a node 𝑖 , the attention
score 𝛼𝑖 𝑗 indicates the similarity between node 𝑖 and node 𝑗 :

𝛼𝑖 𝑗 =
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [z𝑖 ⊕ z𝑗 ]))∑

𝑗 ∈N𝑘
𝑖
𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (a𝑇 [z𝑖 ⊕ z𝑗 ]))

, (3)

where ⊕ denotes vector concatenation. The final abnormality-aware

representation for node 𝑖 is generated by:

h𝑖 = 𝜎 (z𝑖 −
∑
𝑗 ∈N𝑘

𝑖

𝛼𝑖 𝑗 z𝑗 ) . (4)

With subtractive aggregation, the two AAGNN variants incorpo-

rate both attributes and network structure to measure the pattern

deviation between nodes and their neighborhood, and ultimately

generate abnormality-aware node representations. Because normal

nodes, which own trivial pattern deviation with neighborhood, are



mapped closely together; whereas anomalies, which present sig-

nificant deviation (i.e., large abnormality), are mapped to faraway

regions in the latent space (shown in Figure 1).

Algorithm 1 Abnormality-aware Graph Neural Network AAGNN.

Input: Attributed network G = (V, E,X), training epochs 𝑇 ,

weight decay 𝜆.

Output: A node list with anomaly score.

1: Randomly initialize AAGNN, based on Eq. 1 to get h;
2: Calculate the hypersphere center c = 1

|V |
∑
𝑖∈V h𝑖 ;

3: Estimate the distance between all nodes and the center vector

via ∥h𝑗 − c∥2
2
,∀𝑗 ∈ V , and label 𝑝% of the nodes with smallest

distances as pseudo-labeled normal data S;
4: Randomly split S into training set R and validation setD with

appropriate proportion (e.g., 3:2);

5: Take the rest of nodes as testing set T = V − S;
6: while 𝑡 < 𝑇 do
7: Minimize L =

1

|R |
∑
𝑖∈R ∥h𝑖 − c∥2

2
+ 𝜆

2
∥Θ∥2

𝐹
;

8: Update Θ by using stochastic gradient descent;

9: Evaluate model performance on the validation set D;

10: end while
11: Compute anomaly scores based on Eq. 6 for the testing set T .

3.2 Hypersphere Learning Objective
In previous section, we introduce how to use AAGNN to obtain

abnormality-aware node representation. The follow-up question

is how to train our model in order to facilitate anomaly detection

task. Following common protocol [21], we optimize our model by

designing a simple hypersphere learning objective. The intuitive

idea is to encode normal instances within a hypersphere while

retaining anomalies outside the hypersphere by jointly learning

the network parameters and minimizing the volume of the data

description hypersphere.

Formally, the hypersphere learning objective is defined as:

𝑚𝑖𝑛
Θ

1

𝑛

𝑛∑
𝑖=1

∥h𝑖 − c∥2
2
+ 𝜆

2

∥Θ∥2𝐹 , (5)

where c ∈ R𝑑 is hypersphere center obtained by averaging all the

normal node representations, Θ denotes all the learnable parame-

ters. The first term is a quadratic loss for penalizing the distance of

every node representation to the center c. The second term is a net-

work weight decay regularizer with hyperparameter 𝜆 > 0. When

minimizing the objective function, the hypersphere is contracted.

By training the model with normal nodes, it will extract the com-

mon patterns of normal nodes such that the description boundary

of normal nodes can be obtained and the anomalies can be discrim-

inated. Specifically, for a given test node 𝑖 , we can naturally define

the anomaly score 𝑠 by the distance of the node representation to

the hypersphere center in the latent space, i.e.,

𝑠 (𝑖) = ∥h𝑖 − c∥2
2
. (6)

3.3 Model Learning
Ideally, the proposed learning objective encourages learning a hy-

persphere by enclosing normal nodes to discriminate anomalies.

Table 1: Data statistics of the three real-world attributed net-
works with injected anomalies.

Dataset # nodes # edges # attributes # anomalies

BlogCatalog 5,196 171,743 8,189 300

Flickr 7,575 239,738 12,047 450

PubMed 19,797 44,338 500 600

To this end, it requires labeled normal instances for model train-

ing. However, such a requirement is not available in practice, since

it is time-consuming and expensive to filter the normal data out,

especially when the data is in large scale. To address this issue,

we propose to use pseudo-labeled normal data for model train-

ing, without requiring any ground-truth. It is worth to note that

the pseudo-labeled normal instances are allowed to contain false

positive samples, as long as the majority of them are normal.

In particular, the pseudo-labeled normal data can be obtained

by the virtue of AAGNN. Specifically, we find that, even after ran-

dom initialization, AAGNN can generate anomaly-distinguishable

node representations, i.e., normal node representations generally

are close to each other, whereas anomaly representations tend to

deviate far away from the normal ones in the latent space. Inspired

by this observation, we propose to generate pseudo-labeled normal

data with two steps: (1) We simply average all the nodes’ represen-

tations and adopt the averaged result as the hypersphere center

c; (2) We calculate the Euclidean distance between all nodes and

the center point, and then take 𝑝% of nodes with smallest distances

as the pseudo-labeled normal instances for training, while using

the remained nodes for testing. After training, we make use of Eq.

6 to calculate the anomaly score for the testing set. The detailed

algorithm is summarized in Algorithm 1.

4 EXPERIMENTS
We evaluate AAGNN on several datasets and aim to answer three

questions. Q1: Compared with the state-of-the-art anomaly detec-

tion models, can AAGNN achieve better performance? Q2:What

are the impacts of hyperparameters on AAGNN? Q3: How much

does each component of AAGNN contribute?

Datasets. We employ three real-world attributed networks (Blog-

Catalog, Flickr, and PubMed) that have been widely used in prior

researches [4, 11, 15, 26] to evaluate model performance. Due to

the shortage of ground-truth anomalies, we follow the perturbation

scheme introduced in [4, 22] to inject a combined set of anom-

alies (i.e., structural anomalies and contextual anomalies) for each

dataset. The statistics of the three datasets are shown in Table 1.

Baselines. We compare our methods with five anomaly detection

baselines, including residual analysis method (Radar [13]), commu-

nity analysis method (MADAN [9]), and deep learning methods

(DOMINANT [3], AnomalyDAE [7], and AEGIS [2]). For all base-

lines, we retain the settings described in the corresponding papers.

ImplementationDetails.We implement two AAGNNmodel vari-

ants (AAGNN-M and AAGNN-A) by adopting the mean aggregator

and the attention aggregator, respectively. Both variants consider

nodes’ one-hop neighborhood to capture abnormality. The repre-

sentation dimension is set as 256. We set 𝑝 = 50 (see Step 3 of

Algorithm 1) to obtain the pseudo-labeled normal data for model

training, and consider the remaining nodes as testing set.



Table 2: Performance comparison results w.r.t. AUC and
AUPR on three datasets.

Methods BlogCatlog Flickr PubMed

AUC AUPR AUC AUPR AUC AUPR

Radar 0.6970 0.2851 0.6985 0.2747 0.6688 0.2971

MADAN 0.7273 0.2780 0.7104 0.2749 0.6467 0.1132

Dominant 0.7416 0.3381 0.7382 0.3245 0.7460 0.2997

AnomalyDAE 0.7427 0.3381 0.7381 0.3246 0.7497 0.3376

AEGIS 0.7429 0.3397 0.7381 0.3242 0.7732 0.3735

AAGNN-M 0.8171 0.4336 0.8456 0.4224 0.8459 0.3988

AAGNN-A 0.8184 0.4354 0.8299 0.4209 0.8564 0.4281

Figure 2: The Effect of parameter 𝑘 on the two AAGNN
model variants.

4.1 Evaluation
To answer Q1, we report the results of all the methods in terms of

AUC and AUPR scores in Table 2. We have the following observa-

tions: (1) The proposed AAGNNmodels outperform all the baselines

on the three datasets. In particular, compared with the best results

of the baselines, our framework obtains a significant improvement,

e.g., about 9.1% on AUC and 9.6% on AUPR on average. The main

reason is that our AAGNN model can produce abnormality-aware

representation and further map the normal node representations

close to each other while mapping the anomalies far away, thus dis-

criminating normal nodes with anomalies. (2) The AAGNN model

variant with the attention-aggregator achieves better performance

in two datasets. The reason might be that it leverages attention

mechanism and attaches more weights on the similar neighbors

w.r.t. the target node when aggregating neighborhood information.

It helps the normal nodes own smaller pattern deviation with their

neighborhood (i.e., smaller abnormality), thus being discriminated

from anomalies. (3) Deep learning methods outperform the con-

ventional anomaly detection methods as they are adept at dealing

with the high-dimensional node attributes and the sparse, complex

network structures.

4.2 Parameter Analysis
We now explore the impact of different 𝑘-hop neighborhood to-

wards AAGNN in order to answer Q2. Specifically, we vary 𝑘 from

1 to 5 and summarize the results w.r.t. AUC score in Figure 2.

We can see that the performance of the two AAGNN variants

decreases when the 𝑘 value increases. It can be explained by the

Homophily principle, i.e., nodes tend to be more similar with their

one-hop neighbors than those far-away neighbors. Therefore, the

pattern deviation (i.e., abnormality) of normal nodes is relatively

smaller when only considering one-hop neighborhood, which en-

ables the normal nodes to be more distinguishable with anomalies.

So considering effectiveness, we recommend setting 𝑘 a small value

(e.g.,1) to capture node abnormality for ANAD.

Figure 3: Ablation study to analyze the effect of abnormality-
aware representation.

Figure 4: The visualization of node representations from
the trained models. The proposed model can generate
abnormality-aware representations such that the anomalies
and normal nodes are distinguishable in latent space.

4.3 Ablation Study
The core component of AAGNN is the abnormality-aware graph

neural layer, a tailored feature extractor to obtain abnormality-

aware representation. To analyze its effect (answerQ3), we conduct
an ablation study by comparing it with other GNNs while keeping

the same training process. On top of AAGNN-M and AAGNN-A,

we adopt GCN [12] and GAT [25] to obtain node representation for

model training. The results are shown in Figure 3.

It is obvious that the two model variants based on GCN and GAT

cannot attain satisfactory performance. It is mainly because general

GNNs can hardly characterize node abnormality [2]. In contrast,

AAGNN can measure nodes’ pattern deviation with their neigh-

borhood to characterize abnormality, such that normal nodes have

similar representations (i.e., mapped closely to each other in the

latent space), while anomalies own different representations from

the normal (i.e., mapped to different regions with the normal nodes

in the latent space). To support our claims, we provide a visualiza-

tion of the node representations from the trained GAT-based model

and AAGNN-A model in Figure 4. Specifically, for each model, we

randomly select 2000 node representations from the Flickr dataset.

We can observe that (1) for GAT, the representations of normal

nodes and anomalies are mixed indistinguishably, making it hard to

identify anomalies; (2) But the node representations from our model

are anomaly-distinguishable. In short, the above results verify the

superiority of abnormality-aware representation for ANAD.

5 CONCLUSION
In this paper, we propose a novel model called Abnormality-Aware

Graph Neural Network (AAGNN) for attributed network anomaly

detection. AAGNN characterizes node abnormality with subtractive

aggregation to represent each node as the pattern deviation from

its neighborhood. The learned node representations are anomaly-

distinguishable. We further equip AAGNN with a hypersphere

learning objective to enable unsupervised anomaly detection. After

training, normal nodes representations are encouraged to cluster

around a hypersphere center, whereas anomaly representations

remain outside of the hypersphere. Through empirical evaluations,

we demonstrate that AAGNN outperforms state-of-the-art methods

significantly.
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