
1

Contextual Noise Reduction for Domain Adaptive

Near-Duplicate Retrieval on Merchandize Images
Zhen-Qun Yang, Xiao-Yong Wei, Member, IEEE, Zhang Yi∗, Fellow, IEEE, Gerald Friedland, Senior

Member, IEEE

Abstract—In this paper, we have proposed a novel method
which utilizes the contextual relationship among visual words
for reducing the Quantization errors in near-duplicate image
retrieval (NDR). Instead of following the track of conventional
NDR techniques which usually search new solutions by borrowing
ideas from the text domain, we propose to model the problem
back to image domain, which results in a more natural way of
solution search. The idea of the proposed method is to construct
a context graph that encapsulates the contextual relationship
within an image and treat the graph as a pseudo-image, so
that classical image filters can be adopted to reduce the mis-
mapped visual words which are contextually inconsistent with
others. With these contextual noises reduced, the method provides
purified inputs to the subsequent processes in NDR, and improves
the overall accuracy. More importantly, the purification further
increases the sparsity of the image feature vectors, which thus
speeds up the conventional methods by 1662% times and makes
NDR practical to online applications on merchandize images
where the requirement of response time is critical. The way
of considering contextual noise reduction in image domain also
makes the problem open to all sophisticated filters. Our study
shows the classic anisotropic diffusion filter can be employed to
address the cross-domain issue, resulting in the superiority of the
method to conventional ones in both effectiveness and efficiency.

Index Terms — near-duplicate retrieval; contextual noise
reduction; anisotropic diffusion.

I. INTRODUCTION

THANKS to the prevalence of the e-Commerce nowadays,

the merchandize imagery is becoming one of the rapidly

growing genres of web images. However, according to the

study on eBay.com and Taobao.com [1], over 42.6% of those

images are indeed duplicates or near-duplicates. Therefore,

near-duplicate retrieval (NDR), which helps to locate those

duplicates, has been intensively studied in recent years, due to

its potential to a wide range of commercial applications. For

example, it can be used to build price comparison services

for websites like PriceGrabber, Shopping.com and Shopzilla,

where NDR is especially helpful for locating products selling
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on websites of different countries and described in different

languages on which text retrieval works awkwardly. Under

similar scenarios, NDR can also provide valuable clues for

pirated product detection, unauthorized seller identification,

market potential evaluation and so on.

A general purpose NDR framework is usually composed

of local feature extraction and Bag-of-Words (BoW) indexing

[4–8]. More specifically, local interest points (LIPs), which

are the salient points whose features are invariant to the

changes of scale, illumination, and viewpoint [9, 10], are

extracted from an image and converted to “visual words”

that mimic the words in the text documents, and thus the

images can be indexed with BoW, and retrieved with the

sophisticated techniques of traditional information retrieval.

While the effectiveness of the LIPs+BoW framework has been

recognized for general purpose NDR, however, it has seldom

been studied on merchandize imagery domain.

To adopt NDR in merchandize imagery domain, new chal-

lenges are resulting from the scalability and diversity of the

datasets. First, the datasets are usually in web-scale which are

overwhelmingly larger than the conventional ones used for the

general purpose NDR. For instance, the merchandize imagery

dataset used in [1] is in million-scale while the standard

datastes (for general purpose NDR) such as Kentucky [3]

and Oxford [2] are only in thousand-scale. The dramatically

increased scale makes many (computationally) expensive NDR

techniques infeasible, because the requirement of response

time in the aforementioned online or mobile applications is

critical. For example, geometric constraint verification [11–

14], which is popularly employed to verify the geometrical

consistency of the distributions of the visual words when

comparing two images, is considered impractical in these

applications, since the word-to-word comparison is required

in the verification process which is with quadratic time com-

plexity (O(n2)). Second, the datasets are often composed of

images from a diverse range of sub-domains (e.g., in Figure 1,

the merchandize images include those of electronics, food,

books, and clothes) rather than from a specific domain as in

conventional datasets (e.g., in Figure 1, Oxford is composed

of architecture images while Kentucky is mainly composed

of product images). Furthermore, the datasets are with user-

generated content (UGC) in which the image quality (even

for the same product) varies significantly, because they are

captured by various photographers from professionals to ar-

matures, by devices from high resolution DCs to web cameras

(thus to cause so-called sensor gap), under various conditions

from photographic studios to randomly arranged outdoors, and
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Near-Duplicates in Merchandize Images

Near-Duplicates in Oxford (Architecture Images)

Near-Duplicates in Kentucky (Mainly Product Images)

Fig. 1: Near-Duplicate examples of merchandize imagery dataset [1], Oxford [2], and Kentucky [3].

modified with unpredictably heterogeneous styles. Compared

to the conventional datasets which are usually built in a

controlled environment (e.g., Kentucky images are collected

in a laboratory space with the same DC and consistent

illumination), therefore, the diversity of merchandize images

leads to a much larger variance of the image features (for the

same product) and thus makes the matching inherently much

more difficult.

In terms of the LIPs+BoW framework, the challenges

caused by the domain shift will affect the indexing in different

ways. From a feature-level perspective, it results in “noises”

among the visual words of an image, because the process of

converting of a LIP to a visual word can easily be wrong when

the feature of the LIP varies a lot from its original form (e.g.,

when affected by reflections, a LIP from a metal surface can

be mistakenly converted to a visual word that representing

glass-liked materials). From a domain-level perspective, due

to the multi-domain nature of the merchandize datasets, LIPs

from “unseen” sub-domains are inevitable and thus cannot be

converted correctly (e.g., a LIP from a building will definitely

be converted to a wrong visual word if there are no examples

of architecture have been selected to train the codebook1).

To reduce the risk of the mis-mapping, a commonly adopted

method is soft weighting [15, 16]. Rather than mapping a LIP

to a single visual word, soft weighting maps a LIP to multiple

words, in the hope that if one word is mis-mapped, the others

could still represent the image correctly. However, since the

multiple mapping scheme requires additional computational

cost for mapping and comparison, it is impractical to large-

scale datasets (i.e., the challenge of scalability). Furthermore,

it increases the ambiguity of the feature because more words

are used for representing a LIP. This becomes more serious

when the words are from different domains (i.e., the challenge

of diversity, a nature of the merchandize imagery datasets).

In this paper, we propose a novel quantization method for

addressing both the scalability and diversity issues. Instead

of being a post-process (to the LIPs+Bow framework) to

“compensate” or a method using multiple words to “share” the

risk of mis-mapping, the proposed method corrects the “errors”

directly by verifying the contextual relationship among the

mapped words and eliminating those contextually inconsistent

1In LIPs+BoW framework, a codebook (also called vocabulary in literature)
is a dictionary of visual words and is the reference for the LIP-to-Word
conversion.
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Fig. 2: Framework of the contextual noise reduction: 1) LIPs are extracted from the original image; 2) LIPs are mapped to

visual words in the codebook; 3) Context Graph is constructed with the visual words as vertexes and edges are weighted by

the contextual relatedness among words; 4) the visual words that are contextually inconsistent to others are removed by filters,

and the final graph thus reaches a state of contextual harmony.

ones to others. More specifically, as shown in Figure 2, we first

construct a context graph for each image with visual words

as vertexes and their contextual relatedness as edge weights,

and then treat the context graph as an “image” on which the

visual words that are contextually inconsistent to others can be

corrected by employing the sophisticated filters of image noise

reduction. Compared to conventional methods, the advantages

of the proposed method are as follows:

• Complexity Reduction: Existing methods for addressing

the mis-mapping problem are usually with time complex-

ity of O(n2) [11–14] or even NP-hard [1]. By simplifying

the model into the “image” noise reduction on a context

graph, the proposed method archives an approaching

linear complexity (c.f. Section III-C), and is thus more

practical for large-scale NDR.

• Domain Adaptability: For the multi-domain nature of the

merchandize datasets, we address the issue by transform-

ing it to an edge-preserving problem in image noise re-

duction and employing the classic Anisotropic Diffusion

[17] as a solution. As demonstrated in Section IV, this

gives the method a better domain adaptability.

• Extendibility: By transforming the contextual consistency

optimization into an image noise reduction problem, in

this paper, we propose not only a novel method for

addressing the problem, but also a new way of seeking

solutions, in the sense that image noise reduction has

been intensively studied and there is a great amount of

sophisticated techniques can be borrowed. For example,

methods of adaptive noise reduction (e.g., [18]) can be

used for improving the performance and neural networks

can be employed for improving the efficiency (e.g., [19]).

The remainder of this paper is organized as follows. Section II

reviews the LIPs+BoW framework and NDR techniques in

the literature. Section III relates the problem of contextual

noise reduction to the classical image noise reduction. In

Section IV, we address the cross-domain problem by adapting

the classic anisotropic diffusion. The experimental results will

be presented in Section V. Finally, Section VI concludes this

paper.

II. RELATED WORK

A. LIPs+BoW framework for NDR and Recent Trends

LIPs+BoW might be the most popular and promising

framework for NDR, which consists of four processes: LIPs

Extraction, Codebook Learning, Quantization, and Indexing.

Starting with LIPs Extraction, LIPs from images are pooled

and clustered in Codebook Learning, where a model LIP

is calculated for each cluster using mean or medoid of the

member LIPs, and all model LIPs are then treated as visual

words with which the codebook is established. The Codebook

Learning is usually conducted only once as a training process.

For every image, the Quantization process maps its LIPs to

visual words in the codebook, so that the image can be indexed

like a text document consisting of text words [4–8]. The most

straightforward method for Quantization is to assign for each

LIP a visual word that is with the largest similarity among the

other words in the codebook. In Indexing, images are indexed

into inverted files on which NDR can be carried out in the

almost the same way as conventional text retrieval.

Due to its heritage from conventional text information

retrieval, LIPs+BoW framework is straightforward and sophis-

ticated, and has been successfully applied to a wide range of
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applications (e.g., [7, 20–24]. However, ever since the volumes

of real world image datasets are growing up to web-scale,

the framework has been challenged constantly, which makes

the efforts to improve its efficiency and accuracy the main

drive behind the recent trends in NDR. As aforementioned,

the essential challenge to efficiency lies in the expensive word-

to-word comparison process when matching two images. The

main stream for addressing this issue is to build better hashing

functions which map LIPs into a much lower dimensional

space so as to speed up the matching process. Representa-

tive works include locality sensitive hashing (LSH) [25, 26],

hamming embedding (HE) [11, 27], and min-Hash [28, 29].

Meanwhile, intensive studies have also been conducted to

improve the accuracy by verifying geometrical consistency

between two sets of visual words when matching two images.

To this end, every image is converted into a graph in which

its visual words are related to their neighbors to encapsulate

their geometrical relationship, so that image comparison is

transformed into a graph matching problem, which leads to

higher accuracy [11–14]. Alternatively, to mitigate some of the

frequently occurring visual words from dominating the others,

“burstiness” of visual words is often adopted to adjust the

similarities between images by further considering the inter-

image or intra-image frequency of the words [30].

B. Addressing The Core Issue of The Framework

Despite the success of the methods mentioned above (either

efficiency or accuracy oriented), they are not addressing the

core issue of the LIPs+BoW framework directly, but rather

providing compromised solutions. The core issue with the

framework is that the LIPs or visual words of an image are al-

ways considered individually with their geometrical/contextual

relationship ignored. When this happens in Quantization, it

results in mis-mapped words that are inconsistent with others,

which can seriously degenerate the quality of the subsequent

processes and finally causes accuracy decline. It can also

degrade the efficiency, in the way that when visual words are

utilized individually, a NDR system has to adopt as many

words as possible to enrich the representativeness of the

codebook so that the natures of the images can be charac-

terized explicitly. This often leads to large-scale codebooks

consisting of hundreds of thousands words (e.g., 100k in

[11] and 1M in [7]), which dramatically increases the time

for Quantization. The efficiency and accuracy oriented meth-

ods mentioned above are all compromised solutions, because

they are all carried out at post-Indexing stage, where the

Quantization has been finished and the information of the

geometrical/contextual relationship has already been lost.

To reduce the mis-mapped words as early as possible, pre-

Indexing methods are proposed to reduce the mis-mapped

words in the Quantization so that the quality of the mapped

words can be purified at the earliest stage of the framework and

the accuracy can be improved. These include soft assignment

methods [15, 16]. Instead of directly mapping each LIP to a

single word, soft assignment maps each LIP to several words

with each word assigned with a weight that is proportional to

its significance to the LIP (e.g., soft-weighting [15], visual

word ambiguity [16]). With the multiple assignment, soft

assignment increases the chance of a LIP to be mapped to

a correct word. However, it also brings extra computational

cost or may even cause ambiguity for the processes after

Quantization. Therefore, soft assignment is only applied to

the query side in most of the applications.

In [1], the authors propose a pre-Indexing method in which

a word is considered mis-mapped if it is not contextually

consistent to others and thus should be “corrected”. The idea

has been implemented as to solve a combinational optimiza-

tion problem of mapping the LIPs of an image to the best

set of visual words which maximizes the overall contextual

consistency. Despite its success, however, the method in [1]

is still costly, because, to solve the combinational optimiza-

tion problem, binary quadratic programming (BQP) has been

employed which is essentially NP-hard. Furthermore, BQP

is a global optimization process which will sacrifice local

consistency of the image for global harmony and causes words

from “unseen” sub-domains being replaced by those from the

“known” sub-domains forcibly and mistakenly. This limits its

application to merchandize images due to the aforementioned

multi-domain nature of the datasets. In this paper, we fur-

ther explore the idea of utilizing contextual relationship for

Quantization enforcement and propose a new method which is

complexity reduced, domain adaptive, and logically simplified

when compared to [1]. More insights about the difference

between the proposed method and the method in [1] will be

given in Section V-B3.

III. CONTEXTUAL NOISE REDUCTION FROM AN IMAGE

POINT OF VIEW

In this section, we review the problem of contextual noise

reduction from an image point of view for a more intuitive

solution search, and propose a new framework that adopts the

sophisticated image filters for noise reduction.

A. Constructing Context Graph

Before introducing our method, let us first represent the

contextual relationship within an image into a context graph,

then the idea will tell its own tale. A context graph G =
(V, E ,R) is composed of a set V = {vi} of vertexes (where

the vertex vi is placed on the the i-th LIP of the image), a

set E = {eij} of edges, and a set R = {rij} of weights for

edges. G is not necessarily a complete graph, in the way that

a vertex is only connected to its neighbors within a circle of

radius d pixels. With a codebook B = {wn} consisting of a set

of visual words, we set ̟(vi) = wn when a visual word wn

is assigned to the i-th LIP during Quantization. An edge eij
between two vertexes is then weighted with their contextual

relatedness defined by (point-wise) mutual information of the

corresponding visual words as

rij = MI(vi, vj) = log

(

p(̟(vi), ̟(vj))

p(̟(vi)) · p(̟(vj))

)

(1)
where p(̟(vi), ̟(vj)) , p(̟(vi)) and p(̟(vj) are the fre-

quencies of the co-occurrence of ̟(vi) and ̟(vj), the oc-

currence of ̟(vi), and the occurrence of ̟(vj), respectively.
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The contextual relatedness among visual words is learnt in

advance on a training dataset. We are interested in word pairs

that are statistically meaningful, in the sense that the contextual

relatedness is defined with value of non-zero only when the

two words co-occur in the neighboring area more often than

would be expected by chance [31]. X 2 test is employed to

verify this criteria, which is the most popular test in the text

domain for the same purpose. Any word pair fails in the test

will be set with a relatedness value of 02. Figure 3 gives an

example of the context graph. More examples are available at

our demo page3.

B. Adopting Image Noise Reduction to Context Graph

With the context graph, let us imagine the visual words

represent the pixels of an image and the edges indicate the

reversed gradients among pixels, it is easy to see that the visual

words which are contextually inconsistent with its neighbors

are similar to the noise pixels that are with abrupt contrast

to the its neighbors. Therefore, techniques of image noise

reduction can be adopted to fix those contextual noises.

Image noise reduction is often conducted with a convolution

process which adjusts the value of a pixel by iteratively fusing

it with those of its neighbors. The rationale behind is that, in

case most of the surrounding pixels are with values at a normal

level, through the iterative fusion, the value of a noise pixel

can be set back to normal gradually. It is obvious that the idea

can be easily adopted to reduce the contextual noises on the

context graph by gradually adjusting the values of the mis-

mapped words towards the normal level. However, regarding

the fundamental differences between a context graph and a

real image, we have to make following modifications to the

reduction process:

1) Definition of Neighbors: Let us relax the constraints that

the neighbors of a pixels have to be those at its adjacent

rows or columns, and define the neighbors of a visual

word as the ones located in its neighboring area as in

Section III-A (i.e., within a circle of radius d pixels);

2) Definition of Pixel Value: Instead of being a single

value (e.g., gray scale) for an image pixel, a “pixel” on

the context graph is a visual word which is associated

with a list of candidate words that consists of the top-

k words which have the largest similarities with the

corresponding LIP;

3) The Convolution: In image noise reduction, the con-

volution process can be considered as an evolutionary

process that constantly adjusts the value of the target

pixel towards the goal of reducing its gradients to its

neighbors. In this regard, we define the convolution on

the context graph as a process which adjusts the value

of a node by selecting from its candidate list a visual

word which maximizes the contextual consistency of the

node to its neighbors.

2As the alternatives to learn the relationship, similar ideas can be found in
[32, 33]

3http://www.cs.cityu.edu.hk/∼xiaoyong/product.images/context/

1

2

3

1 2 3

Fig. 3: Example of a context graph. Noise “pixels”, which are

contextually inconsistent with their neighbors, are indicated by

the thin edges (e.g., those around the eyes and nose).

C. Contextual Noise Reduction

With the modifications, the contextual noise reduction can

then be formulated as an iterative process. To facilitate the

description, superscript will be hereafter used for iteration

number. At each iteration (denoted as I(t)), we have a context

graph G(t) in which vertexes are assigned with visual words

based on the result of the previous iteration (I(t−1)), and

the graph weights are updated with the method introduced

in Section III-A. The task of each iteration I(t) is to select

for each node a new visual word from its candidate list so as

to maximize its contextual consistency to neighbors. That is,

I(t) : ̟(t)(vi) = argmax
w∈C(vi)

H
(

̟(vi) = w | G(t−1)
)

(2)
where C(·) is a function for selecting the candidate list

of visual words from the codebook B for a given vertex

(i.e., the top-k most similar ones to the original LIP), and

H
(

̟(vi) = w | G(t−1)
)

is an object function to measure the

neighborhood contextual consistency (harmoniousness) for the

hypothesis of assigning a visual word w to the vertex vi
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regarding the context graph G(t−1) as

H
(

̟(vi) = w | G(t−1)
)

=
∑

vj∈N (vi)

{

F(vi, vj) ·MI(vi, vj)

}

(3)

where N (vi) is a function for selecting the set of neighbor

vertexes of the target vertex vi from the context graph, and

F(vi, vj) servers as a filter function that determines the

contribution or impact of a neighbor vj to the target vertex

vi. With F(vi, vj) as an analogs to the noise filter in image

domain, Eq.(3) can be considered a convolution defined on the

context graph, which makes it convenient to adopt the existing

image filter for contextual noise reduction. Let us simply take

Gaussian filter as an example, which is one of the most popular

image filters. Fg(vi, vj) can be defined for contextual noise

reduction as

FG(vi, vj) =
1

2πσ2
exp

(

−
D(vi, vj)

2

2σ2

)

(4)

where the subscript G stands for Gaussian, σ is the standard

deviation of the filter, and D(vi, vj) is a function to calculate

the Euclidian distance between the two vertexes (based on

their pixel coordinates). Once the word selection for the whole

graph has been finished, the contextual relatedness (i.e., edge

weights) are also recomputed accordingly. Through the context

graph, the impact of the word selection of a node is indeed

transferable to the other nodes in the graph, making the nodes

“negotiate” to each other before they make decisions. This

finally leads to a harmony state for the graph, in which

the inter-word contextual consistency is ensured to a certain

extent.

Note that the proposed reduction is compatible to almost any

existing Quantization scheme. Therefore, as a starting point for

the iteration, the initial results of word assignment for I(0) can

be obtained by conducting a conventional quantization (e.g.,

simply selecting the word with the largest similarity to the

corresponding LIP). A formal definition of the process is given

in Algorithm 1. It is easy to see the complexity of Algorithm 1

is O(|C(vi)|×m×|V|). According to our empirical study (cf.

SectionV), the optimal settings for C(vi) and m are |C(vi)| ≤
10 and m ≤ 5, which makes |C(vi)| ×m ≪ |V|, and finally

results in an approaching linear complexity of the algorithm

(i.e., O(c|V|)).

IV. DOMAIN ADAPTIVE CONTEXTUAL NOISE REDUCTION

As shown in the previous section, by analyzing contextual

noise reduction from an image point of view, it has greatly

facilitated the solution search. We will see in this section

that it can also provide a way for problem identification, in

the sense that the edge preserving problem in image noise

reduction is tightly related to domain-shift issue in contextual

noise reduction.

A. Edge Preserving and Cross-Domain Issue

In the previous section, to determine the fusion weights,

we adopt Gaussian filter for its popularity and simplicity.

However, Gaussian filter is known to have the blurring effect

Algorithm 1 Iterative Contextual Noise Reduction

Input:

The initial context graph, G(0) = (V, E ,R(0)), where V =

{vi}, E = {eij}, and R(0) = {r
(0)
ij };

The codebook, B = {wn} ;

The contextual noise filter function, F(vi, vj);
The maximum number of iterations, m;

Output:

The resulting context graph, G(m);

The final word selection for all vertexes, {̟(m)(vi)};

1: Conduct any conventional Quantization to obtain the ini-

tial visual selection, {̟(0)(vi)};

2: Update edge weights {r
(0)
ij } according to the word selec-

tion result, {r
(0)
ij } = MI(vi, vj);

3: for t = 1 to m do

4: for i = 1 to |V| do

5: Find the set of candidate visual words for current

vertex vi from the codebook B, C(vi);
6: For each candidate word w in C(vi), calculate the

neighborhood contextual consistency using Eq.(3) by

hypothetically assigning w to vi;

7: Assign vi with the candidate word which maximizes

the neighborhood contextual consistency, Eq.(2);

8: end for

9: Update the word selection {̟(t)(vi)};

10: Update edge weights {r
(t)
ij } = MI(vi, vj);

11: Update the context graph G(t);

12: end for

13: return G(m) and {̟(m)(vi)}.

problem that, while reducing the noise, Gaussian filter will blur

the image and causes the loss of details. The most obvious im-

pact of the blurring is that the edges of the image will dissolve

into the adjacent regions. The reason causes the blurring of

Gaussian filter is that it is isotropic, which means that, when

fusing the neighbors into the target pixel, the contributions

of the neighbors at different directions are considered equally

without any “respects” to the edges. Therefore, the value of

an edge pixel will be set to a weighted average of the pixels

from the regions along the edge.

The reader might have the concern immediately that “Will

this affect the contextual noise reduction?” Our empirical

study shows the answer is YES. Ideally, we should expect

the context graph to be as smooth as possible. In reality,

however, the “edges” also exist on the graph, which is resulting

from the domain shift from training to testing dataset. For

example, in case that in the training dataset, there is only

a limited number of images containing both cars and trees,

the contextual relatedness between the visual words for the

cars and those for the trees will thus tend to be low (cf.

Eq.(1)). This will cause the contextual edges between these

two types of visual words for a testing image which contains

both cars and trees. In this case, using an isotropic filter like

Gaussian will force the visual words along the contextual

edges to be changed to those words that are with higher

contextual relatedness to the words of both cars and trees (e.g.,
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those of buildings, sky, water and so on). These mis-mapped

edge words will significantly mislead the Indexing process and

result in mis-matching during the retrieval. For instance, when

visual words for water are used for indexing the images that

do not contain water, there is a high chance for those images

to be matched to images of water.

B. Anisotropic Diffusion

Fortunately, the problem of edge preserving has been in-

tensively studied in image domain. The most popular method

is called anisotropic diffusion which is proposed in 1990 by

Perona and Mailik [17]. The idea is to construct an anisotropic

filter which encourages the fusion between intra-region pixels

and limits the fusion between inter-region pixels (i.e., those

at two sides of an edge). By simply modifying the method

proposed in [17], it is easy to construct an anisotropic filter

for contextual noise reduction as

FA(vi, vj) =
1

D(vi, vj)
P(‖∇(vi, vj)‖) (5)

where the subscript A stands for anisotropic diffusion,

∇(vi, vj) is the gradient from vj to vi which we can implement

easily by reversing the contextual relatedness as

∇(vi, vj) = 1−MI(vi, vj), (6)

and P(·) is the so-called conductance function4 defined as

P(‖∇(vi, vj)‖) = exp

[

−(
‖∇(vi, vj)‖

ξ
)2
]

(7)

where ξ is a constant which controls the fusion rate. In Eq.(8),

the contribution of a neighbor is mainly determined based on

its contextual gradient to the target vertex. The anisotropic

diffusion is implemented with the non-increasing function P(·)
which encourages the fusion when the gradient is low (e.g.,

in the intra-region areas), and limits the fusion when the

gradient is high so as to preserve the edges (where the inter-

region gradient is high enough). This filter can be seamlessly

integrated into the contextual noise reduction in Algorithm 1

by replacing the Gaussian filter.

One may doubt that, because pixels may have similarly

large gradients on both edges and noises, how the scheme

can reduce the noises and remain edges at the same time.

To answer the question, we have to point out a fundamental

difference between edge and noise pixels: the edge pixels

are comparably continuous and the noise pixels are usually

isolated. As illustrated in Figure 4, when the filter is on an

edge pixel (e.g., C or D), the contributions of its neighbors

on the same side of the edge will dominate those on the other

side, and thus force the target pixel to be consistent with its

intra-region neighbors. By contrast, when the filter is on a

noise pixel (e.g., B or E), even the contributions of all the

neighbors have been limited, their impacts on the target are

even, so that the word selected is still the one which maximizes

4There are indeed two conductance functions that have proposed in [17].
The one presented in this paper has been randomly selected, because our
empirical study shows there is no significant difference between the two
functions when applied to NDR.

A B

C

D

E
F

Fig. 4: Anisotropic contributions of the neighbor pixels to a

target pixel at intra-region (A, B, E or F), and inter-region (C

or D) areas.

Eq. (3). There might be other anisotropic filters which perform

better regarding the trade of between noise reduction and edge

preserving. However, this is beyond the topic of this paper. The

reader is referred to [34] for more details.

C. Median Filtering

Beside anisotropic diffusion, median filtering is also widely

used in image noise reduction due to its edge preserving

property. To adopt median filtering into the framework, we

can define a median filter as

FM(vi, vj) =

{

MI(vi, vj) if MI(vi, vj) is the median,

0 otherwise,

(8)
where M stands for the median filtering and the “median”

means the median value among all contextual relatedness of

vi to its neighbours (i.e., MI(vi, vj)s). The filter is logically

simple. However, it is computationally complex, because an

additional sorting process has to be conducted for each can-

didate word to find the median.

V. EXPERIMENTS

A. Dataset Construction and Evaluation Metric

To evaluate the performance, we use the dataset in [1],

which includes one million (i.e., 1,106,280) merchandize

images from eBay.com and Taobao.com. The dataset is open

to public and is considered the one with the largest number of

near duplicate images (12,901 images) so far. Due to its nature

of user-generated-content, a wide range of modifications are

included among the near-duplicates of the dataset, which

contains the changes of illuminations, capturing devices, and

scales, together with rotation, cropping, mirroring and text

overlay. The dataset consists of three subsets:



8

• Training Set which includes 1% (i.e., 10,000 images)

of the entire dataset and will be used for learning the

codebooks and inter-word contextual relationship;

• Basic Set which includes another 10% (i.e., 112,092

images) of the dataset and will be used as a basis for

testing the performance of algorithms;

• Distracter Set which includes the rest part of the dataset

(i.e., 984,188 images) and samples randomly selected

from this set will be added to the Basic Set during

the testing to generate larger datasets and investigate the

robustness of the algorithms.

There are no exact duplicates in the dataset and no overlaps

among the three subsets. The ground-truth of the dataset is

generated by fully annotating the Basic Set, where 12,901

images are found to form 4,141 near duplicate groups. We

use each of those images as a query. In our experiments, all

images are normalized to fit an 800 × 800 pixel box while

preserving their aspect ratios.

There are five parameters in the proposed methods, namely

the radius that defines the neighborhood d, the number of

candidate visual words for each LIP (#can), the maximum

number of iterations for Algorithm 1 (m), the standard devia-

tion for Gaussian filter (σ) and the fusion rate for Anisotropic

filter (ξ). We set d = 30 which is an optimal setting found

in [1]. We also set #can = 10, because according to our

empirical study, the proposed methods become less sensitive to

this parameter when #can > 5. Here we enlarge the number

to increase the chance of a correct word is included in the

candidate list. We set σ = d
3 = 10 and ξ = 0.2 which are the

popular setting in image domain. Unless mentioned otherwise,

we set m = 5 in this paper. It has been confirmed as an optimal

settings from the experiments in Section V-B2.

In the experiments, we use each of the near-duplicate images

as a query. The retrieved images are ranked according to

their similarities to the query. The search performance is then

evaluated with mean average precision (MAP ), in which AP

is defined as

AP =
1

min (R,n)

n
∑

j=1

Rj

j
Ij (9)

where R is the number of duplicate images to a query, Rj is

the number of duplicate images in the top-j retrieved images,

and Ij = 1 if the image ranked at jth position is a near-

duplicate (ND) and 0 otherwise. We set n=100, while MAP

is calculated as the mean AP of the 12,901 queries.

B. Study of the Essential Characteristics

In this section, we study the essential characteristics of

the proposed methods by utilizing them for contextual noise

reduction on the most widely adopted Quantization scheme

that selects for each LIP the visual word with the largest

similarity. By using different methods for LIP extraction, we

build two baselines as follows:

• SIFT [9] based method, which is considered one of the

most popular methods, where we employ Difference of

Gaussians (DoG) for LIP detection and SIFT feature for
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Fig. 5: Performance over different dataset scales. SIFTM

(CMM ) is seriously overlapped with SIFTA (CMA).

description. SIFT is used as a representative of sparsely

LIP sampling;

• Color-Moment (CM ) based method [1], which extracts

patches (of a fixed size of 20×20 pixels) for each image

and uses color-moment feature for description. Given the

fact that all images are normalized to fit an 800 × 800
pixel box during the experiments, the CM features are

densely sampled.

Gaussian filter FG, anisotropic filter FA and median filter

FM are applied on the baselines respectively for contextual

noise reduction, resulting in 6 new methods SIFTG, CMG,

SIFTA, CMA, SIFTM , and CMM , in which superscript is

used to indicate which filter has been used. We use the Train-

ing Set to learn the codebooks and the contextual relatedness

among word pairs. All codebook are of size 2k (words) at this

moment to speed up the computationally expensive processes

of parameter tuning and feature comparison. The experiments

using large codebooks will be reported and discussed in

Section V-C.

As an overview for the performances of the 8 methods

under investigation, the results with MAP at the top-100

retrieved images are shown in Figure 5, in which we vary

the dataset scale to observe the scalability of different meth-

ods. The dataset scale is changed by first using the fully

annotated Basic Set as a basis and randomly adding samples

from the Distracter Set to generate larger sets. The results

show that, overall, with contextual noise reduction, SIFTG

and SIFTA (SIFTM ) outperform the baseline SIFT by

36.57%±8.17, 46.31%±12.69 (46.69%±12.68), and CMG

and CMA (CMM ) outperform CM by 46.28% ± 9.24 and

52.03%±11.58 (52.02%±12.03). In the following sections, we

conduct more experiments to grasp an in-depth understanding

of the proposed methods.

1) Does Contextual Noise Reduction Work?: In Figure 5,

the advantage of using contextual noise reduction can be



9

TABLE I: Performance gains over the change of dataset scale.

Dataset Sacle 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

SIFTG to SIFT 21.54% 27.84% 32.12% 35.16% 34.44% 39.49% 39.38% 41.64% 44.73% 49.34%

SIFTA to SIFT 26.45% 33.03% 36.98% 40.39% 42.81% 48.65% 51.70% 56.03% 59.89% 67.05%

SIFTM to SIFT 26.45% 32.40% 38.57% 42.42% 42.89% 48.42% 51.95% 55.40% 61.35% 67.05%

CMG to CM 29.04% 34.51% 42.66% 45.30% 45.53% 48.45% 49.28% 52.49% 56.63% 58.87%

CMA to CM 31.82% 38.30% 45.68% 48.56% 51.14% 53.77% 56.62% 60.20% 64.79% 69.41%

CMM to CM 31.84% 37.94% 43.67% 47.77% 50.78% 54.80% 57.72% 60.63% 65.05% 69.97%
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observed while SIFTG, SIFTA, SIFTM , CMG, CMA

and CMM outperform the baselines. The rationale behind

is that by further integrating the contextual relationship into

the Quantization, visual words can work collaborative to

represent the image features, which allows more patterns and

more details to be contained in the resulting BoW feature

vectors, and finally leads to higher accuracy in matching.

This effect becomes more obvious when one compares CMG

and CMA (CMM ) to CM , where the performance gain

are 46.28% ± 9.24 and 52.03% ± 11.58 (52.02% ± 12.03)

respectively, which are much more significant than those of

SIFTG and SIFTA (SIFTM ) to SIFT . More importantly,

we can also find in Figure 5 that when individual patches

start to collaborate in CMG and CMA (CMM ), they can

even outperform SIFT . This is an solid indication of the

advantage of using the contextual noise reduction, because

conventionally CM has been considered as a much weaker

feature than SIFT .

Let us take a look at how this affects the ranking of NDR.

In Figure 6, we evaluate the ranked lists of the 8 methods (on

the Basic Set) by investigating how the AP changes from the

top to the bottom of the lists. It can be seen that the majority

of the improvement by utilizing contextual noise reduction is

indeed coming from the section of the top-30 items in the lists.

This is an indication that the near-duplicates at the bottom of
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(CMM ) is seriously overlapped with SIFTA (CMA).

the lists have been successfully boosted to the top position.

In NDR, this is highly desired, because most users are only

interested in the items ranked at the top positions, and in the

applications built on smart phones or tablets, the screens are

usually with too limited sizes to display too many items.

2) Domain Adaptivity of Filters: Comparing three filters

(i.e., Gaussian, Anisotropic, and Median), Table I shows the

results of performance gains of the methods over dataset scale

changes. We can see that the Anisotropic and Median filters

appear more reliable than Gaussian, in the senses that 1)

in terms of performance gains, SIFTA (CMA) is superior

to SIFTG (CMG) by 25.47% ± 8.00% (12.00% ± 3.53%)

while SIFTM (CMM ) is superior to SIFTG (CMG)

by 25.51% ± 7.34% (20.92% ± 7.49%); and 2) divided

by the scale point 500k, the performance gain of SIFTA

(CMA) increases from 35.93% ± 6.44% (43.10% ± 7.93%)

to 56.68%± 7.21% (60.96%± 6.30%) while that of SIFTM

(CMM ) increases from 36.55%±7.04% (42.40%±7.62%) to

56.83%±7.44% (61.64%±6.00%). It is more significant than

that of SIFTG (CMG) which increases from 30.22%±5.63%
(39.41%±7.32%) to 42.92%±4.20% (53.15%±4.55%). This

is an indication for the advantage of using domain adaptive

filters, because when more examples from the Distracter

Set are added into the experiments, the domain-shift will

be enlarged, and the chance of having words from “unseen”

domains increases.

The comparison between the three filters can also been seen
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Fig. 8: Query images and corresponding ranked lists. The methods with domain adaptive filters (e.g., CMA (CMM )) are able

to exclude items from irrelevant domains from the list.

in Figure 7, which has been obtained on the Basic Set during

the parameter tuning for m the number of iteration. At the

early stage of the iterations, both Gaussian and Anisotropic

(Median) filters are able to boost the performance by us-

ing contextual information for noise reduction. However, the

methods with Gaussian filter drops gradually after the 6-th

and the 3-rd iteration in CMG and SIFTG respectively.

This is due to the isotropic nature of Gaussian filter, which

blurs the contextual edges and causes unreasonable selection

of visual words that are contextually related to the words

at both sides of the edges but semantically unwarranted (cf.

Section IV). Fortunately, the drop stops soon, since we have

limited the number of candidates for each LIP, which prevents

the Quantization from selecting more unreasonable words.

For methods with Anisotropic (Median) filters, at the early

stage of iterations, their performances are nearly the same as

those of Gaussian filter, but continue to climb when Gaussian

methods start to drop, and reaches a plateau afterwards. This

further confirms the advantage of using domain adaptive filters.

Nevertheless, we will see later in Sections V and VI, the

difference between the two types of filters is in fact not

apparent enough on the Basic Set where the domain shift from

the Training Set is considered minor when compared to that

of Kentucky (offline product images) or Oxford (architecture
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images).

To have an intuitive understanding, Figure 8 shows the query

images and corresponding ranked lists returned by CM , CMG

and CMA (CMM , the results of CMM for these queries

are just the same as CMA). We can see from the query

image of “leather shoe” that, CM , which only considers color

moments of the object, unreasonably ranks the clothes at the

3rd position, because the clothes are matched to the leather

surface of the shoe and the red&white banner is matched

to the banner and the red frame of the query image. The

result is improved when contextual noise reduction has been

considered in CMG. However, the cloth image is still among

top-6. Finally, when domain constraints have been considered

in CMA (CMM ), the cloth image has been successfully

excluded. Similar observations can be found for the queries

of “Wall-E” and the “iPod shuffle”. Furthermore, for all the

three queries, those non-ND images among the top-6 items

retrieved by CMA (CMM ) are all the products with similar

colors and materials as the query images. This is a highly

demand feature for product image retrieval, because, in case

the ND images of the query cannot be found, users would be

interested in the products with similar styles.

3) Global vs. Local Optimization: It is interesting to com-

pare the methods proposed in this paper to the ones in

[1] which are also utilizing the contextual relationship for

optimizing the quantization (denoted as SIFTCC and CMCC

hereafter to be consistent with the ones used in the paper). In

Table II, we summarize each method with its performance

gains upon the SIFT and CM , and corresponding time

costs. The time cost is defined as the average time used

for answering a query on the Basic Set. The two groups of

methods obtain very similar performance in the comparison,

in the sense that the average performance gain of the methods

using Anisotropic or Median filter over the method in [1] is

4.52%, while the methods using Gaussian filter demonstrate

comparable performance to the method in [1]. However, the

methods proposed in this paper are with approaching linear

complexity and are obviously more efficient than SIFTCC

and CMCC that are trying to solve a NP-hard problem

(i.e., the binary quadratic programming), in the way that

CMG (CMA) is faster than CMCC by 36.90% (32.18%)

and SIFTG (SIFTA) is faster than SIFTCC by 13.02%
(13.61%). Nonetheless, as the methods with Median filters,

CMM and SIFTM are exceptions of this observation, be-

cause the additional sorting process for searching medians is

time consuming.

The essential difference of the two groups of methods

lies in the scale of optimization, in the way that SIFTCC

and CMCC are global optimization which concerns more

about the overall contextual consistency of the image, while

proposed methods in this paper are all local-based optimization

which focus on the local contextual consistency of the neigh-

borhood and thus has the advantage of preserving the details

of the image. However, through the iterative process, the

optimization is able to extend the local consistency globally

and gradually to the other parts of the image. By contrast,

SIFTCC and CMCC never has chance to extend its impacts

to the details once the optimization is done. This is indicated

TABLE II: Comparison of mean average precision (MAP),

time cost per query (milliseconds) between pre-Quantization

and post-Quantization methods, and the results of significance

test (at level 0.05, and X ≫ Y indicates that X is significantly

better than Y).

Baseline Method Group MAP Time Cost

CM CMCC pre-Quantization 0.4081 115

CM CMG post-Quantization 0.4173 84

CM CMA post-Quantization 0.4263 87

CM CMM post-Quantization 0.4264 246

SIFT SIFTCC pre-Quantization 0.4332 217

SIFT SIFTG post-Quantization 0.4356 191

SIFT SIFTA post-Quantization 0.4531 192

SIFT SIFTM post-Quantization 0.4531 408

Results of

Significance Tests

SIFTA, SIFTM ≫ SIFTG, SIFTCC ,

CMA, CMM ≫ CMG, CMCC

TABLE III: Configurations of methods under investigation.

Method Configuration Feature

SIFTA

20k
BoW+Anisotropic Filter SIFT

SIFTG

20k
BoW+Gaussian Filter SIFT

SIFT20k BoW SIFT

CMA

20k
BoW+Anisotropic Filter Color-Moment

CMG

20k
BoW+Gaussian Filter Color-Moment

CM20k BoW Color-Moment
HE BoW+SOFT+HE SIFT
WGC BoW+SOFT+HE+WGC SIFT
EWGC BoW+SOFT+HE+EWGC SIFT
Syn-Expan BoW+Synonyms SIFT
DT BoW+SOFT+HE+DT+BUR SIFT

by the results of significant tests, in which the superiority

of the local-based optimization to the global optimization is

incremental, but significantly stable. To further demonstrate

this advantage, in Figure 9, we reconstruct the query image by

attaching the mapped visual words to their original positions

of the image. With global optimization, the signature on the

baseball has been “merged” into the background, because the

red threads around the ball are dominating patterns in the

image, which leads the overall selection of visual words to

cloth liked materials and the details of the signature have

thus been sacrificed, resulting in the “blur” of the contextual

boundary of the signature to the background. By contrast,

with local-based optimization, the signature has been better

represented by the words of strokes on the white background

and the contextual details haven preserved successfully.

C. Comparison with the State-of-the-art

In this section, we conduct more comprehensive compar-

isons to investigate the accuracy and efficiency of the proposed

methods. Five state-of-the-art NDR methods in the literature

have been added in the experiments including

• Hamming Embedding (HE) [27], the method employs

hamming codes to assign binary signatures to LIPs so

as to decrease the visual ambiguity introduced by soft-

weighting (SOFT) [15];

• Weak Geometric Consistency (WGC) [11], the method

improves the accuracy of macthing by adding weak or

partial geometric constraints;

• The enhanced WGC (EWGC) [12], the method improves

WGC by further including translation information;
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Fig. 9: Query image (left) and the results of reconstructing the query with the visual words selected by global optimization of

CMCC and local-based optimization of CMA (shown on the middle and right respectively).

TABLE IV: Performance comparison with the state-of-the-art on Basic Set and the results of significance test (at level 0.05,

and X ≫ Y indicates that X is significantly better than Y). The best results are bold.

SIFTA

20k
SIFTG

20k
SIFT20k CMA

20k
CMG

20k
CM20k WGC EWGC HE Syn-Expan DT

Mean Average Precision (MAP) 0.5617 0.5438 0.4080 0.5263 0.5105 0.3894 0.5404 0.5144 0.5352 0.4834 0.5406
Time Cost (milliscond/query) 205 202 246 98 96 134 1895 1604 705 367 3411

With Anisotropic Filter WGCA EWGCA HEA Syn-ExpanA DTA

Mean Average Precision (MAP) 0.6552 0.6193 0.6487 0.5929 0.6567

Time Cost (milliscond/query) 2045 1731 749 518 3582

Results of

Significance Tests

DTA,WGCA ≫ HEA ≫ EWGCA ≫ Syn-ExpanA ≫ SIFTA

20k
≫ SIFTG

20k
, DT,WGC ≫ HE,

CMA

20k
≫ EWGC,CMG

20k
≫ Syn-Expan ≫ SIFT20k ≫ CM20k

• Synonym-based Query Expansion (Syn-Expan) [32]5, the

method defines visual words that highly co-occur to each

other as visual synonyms and uses them to conduct query

expansion for performance improvement;

• Delaunay Triangulation (DT) [13], the method proposes

to model the geometric relations among visual words in

a more principled way by using Delaunay Triangulation,

and thus makes the mapping between images more robust.

The “burstiness” of visual words (BUR) [30] is also

considered in this method. It has been reported with the

highest performance in literature.

According to the study [1], the performances of most methods

are approaching optimal on Basic Set when the vocabulary

is set to the range of 10k to 40k. Therefore, to be fair

and consistent, for the experiments in this section, we unify

the vocabulary size to 20k which is 10 times larger than

the size we used in Section V-B (i.e., 2k)6. To ease the

discussion, we add a subscript for each method to indicate

the vocabulary size (e.g., SIFTA
20k). The performances of all

methods are optimized (with the condition that the vocabulary

size equals to 20k) with the configurations summarized in

Table III. Note that to compare different ways of using

spatial context, we have not combined HE and other advanced

techniques into Syn-Expan. This makes the performance of

Syn-Expan lower than those reported in [32]. In addition,

we exclude Median filter from this experiment, because its

5We thank Drs. Zhang Lei and Cai Rui, the authors of [32], for sharing the
binary code and helping with the experiments.

6In fact, the size 20k is also a popular setting in literature (e.g.,
[11][13][30]).

time complexity increase significant with the larger codebook

size and its performance always appears similar to that of

Anisotropic filter. All methods are implemented in C++ and all

the experiments are conducted on a station with Intel Xeon(R)

2.67G Hz and 30G memory.

To fully explore the nature of these methods, we compare

them on three datasets, 1) Basic Set, the dataset with the

largest number of fully annotated queries so far. It is employed

for investigating the basic characteristics of each method;

2) Kentucky [3], a dataset similar to Basic Set which is

composed of mostly product images and has been popularly

employed in previous studies. It is employed for testing the

generalizability of each method; and 3) Oxford [2], which

is another standard benchmark which is composed of build-

ing images. It is employed for conducting the cross-domain

experiments.

1) General Comparison on Basic Set: The comparison of

the 11 methods is shown in Table IV. In terms of accuracy,

for the methods using SIFT feature, SIFTA
20k and SIFTG

20k

outperform all conventional methods by 11.69% ± 12.18,

which has further confirmed the advantage of using contextual

noise reduction. For CMA
20k and CMG

20k, even with compa-

rably much weaker feature than SIFT, they can outperform

SIFT20k, EWGC and Syn-Expan by 21.21%±10.56, and has

demonstrated comparable performances to HE. Beside benefit-

ing from the contextual noise reduction, CM -based methods,

which are built based on the color information of the images,

have taken the advantage of working on the merchandize

imagery domain, because colors are of great importance to

identify a product. However, popular LIP features like SIFT
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TABLE V: Performance comparison with the state-of-the-art on Kentucky and the results of significance test (at level 0.05,

and X ≫ Y indicates that X is significantly better than Y). The best results are bold.

SIFTA

20k
SIFTG

20k
SIFT20k CMA

20k
CMG

20k
CM20k WGC EWGC HE Syn-Expan DT

Mean Average Precision (MAP) 0.8683 0.8213 0.6238 0.8913 0.8101 0.6039 0.8645 0.8430 0.8608 0.6944 0.8586
Time Cost (milliscond/query) 31 31 38 29 28 34 150 163 87 42 264

With Anisotropic Filter WGCA EWGCA HEA Syn-ExpanA DTA

Mean Average Precision (MAP) 0.9263 0.9024 0.9187 0.8725 0.9125
Time Cost (milliscond/query) 174 183 105 62 279

Results of

Significance Tests

WGCA ≫ HEA, DTA ≫ EWGCA ≫ CMA

20k
≫ Syn-ExpanA, SIFTA

20k
,WGC,HE ≫ DT ≫

≫ EWGC ≫ SIFTG

20k
≫ CMG

20k
≫ Syn-Expan ≫ SIFT20k ≫ CM20k

TABLE VI: Performance comparison with the state-of-the-art on Oxford and the results of significance test (at level 0.05, and

X ≫ Y indicates that X is significantly better than Y). The best results are bold.

SIFTA

20k
SIFTG

20k
SIFT20k CMA

20k
CMG

20k
CM20k WGC EWGC HE Syn-Expan DT

Mean Average Precision (MAP) 0.5417 0.4921 0.3861 0.3041 0.2713 0.2642 0.5438 0.5087 0.4975 0.4267 0.5349
Time Cost (milliscond/query) 42 41 54 33 33 57 330 341 186 82 420

With Anisotropic Filter WGCA EWGCA HEA Syn-ExpanA DTA

Mean Average Precision (MAP) 0.6847 0.6223 0.5982 0.5424 0.6724
Time Cost (milliscond/query) 352 368 214 97 442

Results of

Significance Tests

WGCA ≫ DTA ≫ EWGCA ≫ HEA ≫ WGC, Syn-ExpanA, SIFTA

20k
≫ DT ≫ EWGC ≫ HE,

SIFTG

20k
≫ Syn-Expan ≫ SIFT20k ≫ CMA

20k
≫ CMG

20k
≫ CM20k

usually ignore this information, and their performances are

thus less promised in this specific domain.

In terms of efficiency, SIFTA
20k, SIFTG

20k, CMA
20k and

CMG
20k are apparently much faster than conventional methods,

in the sense that their time costs are (on average) 1662%

times less than those of WGC, EWGC, and DT. It is worth

mentioning that with an additional contextual noise reduction

process employed in the Quantization, the total time costs

of SIFTA
20k and CMA

20k are even reduced when compared

to SIFT20k and CM20k. The reason is that with when the

contextual noises being reduced from the Quantization, the

purity and sparsity of the BoW feature vectors have been

improved, which has significantly saved the time for matching

(the most expensive process in LIPs+BoW framework).

As discussed in Section II, the method proposed in this

paper work in Quantization stage of the LIPs+BoW framework

and thus are compatible to most of the conventional methods

that are conducted in the post-Indexing stage. To investigate if

this is true, we further combine the five state-of-the-art meth-

ods with Anisotropic filters, resulting in WGCA, EWGCA,

HEA, Syn-ExpanA and DTA. Their results are shown in the

second section of Table IV, in which the performances of five

methods have been improved by 21.39% on average with slight

time cost increased (less than 8% for WGC, EWGC, HE, and

DT). This confirms our claim in Section II that, by using

Anisotropic filter to improve the clarity of the Quantization

directly, the quality of the proceeding processes will also be

improved.

2) Comparison of Generalizability on Kentucky: To test the

generalizability of each method, we extend the performance

comparison to Kentucky benchmark [3], which consists of

10,200 product images forming 2,550 near-duplicate groups

(4 images for each group). We use each of the images as

a query, resulting in 10,200 queries. The Training Set is

used for training in SIFTG
20k, SIFTA

20k, CMG
20k, CMA

20k

and Syn-Expan. The results are shown in Table V, where the

methods proposed in this paper continue to show superiority to

conventional methods. This is consistent with the results in the

previous section, thanks to the similarity between Kentucky

and Basic Set. Moveover, the CM -based method CMA
20k

surprisingly outperform all its competitors on Kentucky. This

is due to the fact that scale change has not been considered in

Kentucky when the images were captured, which has relaxed

the requirement for scale invariant of a local feature, and thus

reduced the biggest advantage of CM patches when compared

to SIFT LIPs. The same observation has also been found in

[1, 11]. Furthermore, comparing between the methods using

different contextual noise filters, the advantage of the domain

adaptive filter becomes more obvious than the experimental

results in Section V-B, in the way that CMA
20k (SIFTA

20k)

outperform CMG20k (SIFTG
20k) by 10.02% (5.71%).

In the second section of Table V, the results again confirm

the advantage of integrating Anisotropic filter, which brings

additional 10.57% performance gain (on average) for the

five state-of-the-art methods. The improvement is significantly

stable.

3) Cross-Domain Experiments on Oxford: In this section,

we further enlarge the domain shift by moving from merchan-

dize imagery dataset to architecture image dataset. Oxford

[2] is employed for this purpose, which is another standard

benchmark consisting of 5,062 images of particular Oxford

landmarks, with 55 query images and manually labeled ground

truth. An additional set of 100,071 images (Flickr 100k) also

provided by the authors of Oxford [2] is used for training

in SIFTG
20k, SIFTA

20k, CMG
20k, CMA

20k and Syn-Expan. The

results in Table VI show that SIFTA
20k can still outperform all

the conventional methods except WGC while demonstrating

comparable performances to WGC. The CM -based methods

lose their advantage in architecture image domain when the

scale invariance increases significantly. However, the advan-

tage of using the domain adaptive filter is still apparent,

indicated by the fact that CMA
20k (SIFTA

20k) outperform

CMG
20k (SIFTG

20k) by 12.09% (10.08%).

In the second section of Table VI, the results confirm
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the advantage of integrating Anisotropic filter, which brings

additional 24.26% performance gain for the five state-of-the-

art methods. The improvement is significantly stable.

D. Issues and Possible Solutions

While the encouraging results of the proposed methods

have been observed in the experiments, we have also found

three issues which are worth further investigations. First, the

Anisotropic filter may fail when a certain number of mis-

mapped words is distributing closely, because in this case,

these mis-mapped works will form a “region”, to which the

filter cannot distinguish from a normal region and thus will

choose to “respect” it. This phenomenon is usually found

on images including reflections of lights which make the

regions around the reflections overexposed and further cause

densely distributed mis-mapped words. Reflection removal

algorithms developed in image processing can be used as a

pre-processing to address this problem. Second, the optimal

number of iterations is indeed image dependent, which is

within a range of 2 to 17 according to our investigation on a

randomly selected subset consisting of 30 images. An adaptive

algorithm that determines the number of iterations on-the-fly

for each image can be possibly developed based on the number

of words, and the overall strength of the intra-image contextual

relatedness. Third, for objects with “smooth” textures, the

features on the boundaries are of great importance. However,

the current framework of the proposed method will make

the boundaries being “absorbed” by the inner regions of the

objects or backgrounds during the quantization. This can be

solved by specifically maintain a certain portion of boundary

words in the codebook and give them priority to be assigned

along boundaries. Alternatively, boundary descriptors, which

have been developed in computer vision, can be employed to

compensate for the shortages of the descriptors used in this

paper.

VI. CONCLUSIONS

In this paper, we study the use of contextual relationship

among visual words to reduce the mis-mapped words in

Quantization. A context graph is constructed to encapsulate

the contextual relationship within an image, and treated as

a pseudo-image, on which we can apply the sophisticated

image filters to reduce the contextual noises and thus improve

the quality of the Quantization. The cross-domain issue has

also been addressed in the method by integrating the classic

Anisotropic diffusion filter and Median filter into the scheme.

The experimental results have validated the effectiveness and

efficiency of the proposed method.

Beside being a practical approach for near-duplicate re-

trieval, the method proposed in this paper has demonstrated

that, by treating the context graph as a pseudo-image, it greatly

facilities the solution search and problem identification, which

leaves rooms for future explorations of adopting classical

image noise reduction techniques to Quantization enhance-

ment. We will conduct more studies following this direction

in our future work. Moreover, it is interesting to investigate

the performances of different filters on different near-duplicate

modifications, in the sense that they might cause different

types of contextual noises.

REFERENCES

[1] X.-Y. Wei, Z.-Q. Yang, C.-W. Ngo, and W. Zhang, “Visual
typo correction by collocative optimization - a case study on
merchandize images,” IEEE Transactions on Image Processing,
vol. 23, no. 2, pp. 527–540, 2014.

[2] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman,
“Object retrieval with large vocabularies and fast spatial match-
ing,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[3] D. Nistér and H. Stewénius, “Scalable recognition with a
vocabulary tree,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2006.

[4] J. Sivic and A. Zisserman, “Video google: A text retrieval
approach to object matching in videos,” in IEEE International
Conference on Computer Vision, 2003.

[5] O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman, “Total
recall: Automatic query expansion with a generative feature
model for object retrieval,” in IEEE International Conference
on Computer Vision, 2007, pp. 1–8.

[6] D. Nister and H. Stewenius, “Scalable recognition with a
vocabulary tree,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2006, pp. 2161–2168.

[7] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman,
“Object retrieval with large vocabularies and fast spatial match-
ing,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2007.

[8] H. Jégou, H. Hedi, and C. Schmid, “A contextual dissimilarity
measure for accurate and efficient image search,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2007,
pp. 1–8.

[9] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91–110, 2004.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up
robust features (SURF),” Computer Vision and Image Under-
standing, vol. 110, no. 3, pp. 346–359, 2008.

[11] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-
features for large scale image search,” International Journal of
Computer Vision, vol. 87, no. 3, pp. 316–336, 2010.

[12] W.-L. Zhao, X. Wu, and C.-W. Ngo, “On the annotation of web
videos by efficient near-duplicate search,” IEEE Transactions on
Multimedia, vol. 12, no. 5, 2010.

[13] W. Zhang, L. Pang, and C.-W. Ngo, “Snap-and-ask: answer-
ing multimodal question by naming visual instance,” in ACM
International Conference on Multimedia, 2012, pp. 609–618.

[14] D.-Q. Zhang and S.-F. Chang, “Detecting image near-duplicate
by stochastic attributed relational graph matching with learn-
ing,” in ACM International Conference on Multimedia, 2004,
pp. 877–884.

[15] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-
features for object categorization and semantic video retrieval,”
in ACM International Conference on Image and Video Retrieval,
2007, pp. 494–501.

[16] J. C. van Gemert, C. J. Veenman, A. W. M. Smeulders, and J.-
M. Geusebroek, “Visual word ambiguity,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 32, no. 7,
pp. 1271–1283, 2010.

[17] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990.

[18] B. Widrow, J. Glover, and et. al, “Adaptive noise cancelling:
Principles and applications,” Proceedings of the IEEE, vol. 63,
no. 12, pp. 1692–1716, 1975.

[19] H. Burger, C. Schuler, and S. Harmeling, “Image denoising:
Can plain neural networks compete with bm3d?” in IEEE
Conference on Computer Vision and Pattern Recognition, 2012.



15

[20] J. Yuan, L.-Y. Duan, Q. Tian, and C. Xu, “Fast and robust short
video clip search using an index structure,” in ACM SIGMM
International Workshop on Multimedia Information Retrieval,
2004, pp. 61–68.

[21] E. Y. Chang, J. Z. Wang, C. Li, and G. Wiederhold, “Rime:
A replicated image detector for the world-wide web,” in SPIE
Symposium of Voice, Video, and Data Communications, 1998,
pp. 58–67.

[22] A. H. A, K. ho Hyun B, and R. B. A, “Comparison of sequence
matching techniques for video copy detection,” in Conference
on Storage and Retrieval for Media Databases, 2002.

[23] R. Fergus, P. Perona, and A. Zisserman, “Object class recog-
nition by unsupervised scale-invariant learning,” in IEEE Con-
ference on Computer Vision and Pattern Recognition, 2003, pp.
264–271.

[24] F. Wang and C.-W. Ngo, “Rushes video summarization by
object and event understanding,” in TRECVID BBC Rushes
Summarization Workshop at ACM Multimedia, 2007, pp. 25–
29.

[25] Y. Ke, R. Sukthankar, and L. Huston, “An efficient parts-
based near-duplicate and sub-image retrieval system,” in ACM
International Conference on Multimedia, 2004, pp. 869–876.

[26] P. Jain, B. Kulis, and K. Grauman, “Fast image search for
learned metrics,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2008.

[27] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding
and weak geometric consistency for large scale image search,”
in European Conference on Computer Vision: Part I, 2008, pp.
304–317.

[28] O. Chum, J. Philbin, M. Isard, and A. Zisserman, “Scalable
near identical image and shot detection,” in ACM International
Conference on Image and Video Retrieval, 2007.

[29] O. Chum, J. Philbin, and A. Zisserman, “Near duplicate image
detection: min-hash and tf-idf weighting,” in British Machine
Vision Conference, 2008.

[30] H. Jégou, M. Douze, and C. Schmid, “On the burstiness of
visual elements,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 1169–1176.

[31] D. Pearce, “A comparative evaluation of collocation extrac-
tion techniques,” in International Conference on Language
Resources and Evaluation, 2002.

[32] W. Tang, R. Cai, Z. Li, and L. Zhang, “Contextual synonym
dictionary for visual object retrieval,” in ACM international
conference on Multimedia, 2011, pp. 503–512.

[33] Y. Jiang, “Randomized visual phrases for object search,” in
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Washington, DC, USA, 2012, pp. 3100–3107.

[34] J. Weickert, Anisotropic Diffusion In Image Processing.
Stuttgart, Germany: Teubner-Verlag, 1998.

Zhen-Qun Yang is a Ph.D candidate in the College
of Computer Science, Chengdu, Sichuan University,
China. She was a Research Assistant with the Dept.
of Computer Science, City University of Kong Kong
from 2007 to 2008 and a Senior Research Assistant
with the Dept. of Chinese, Linguistics and Trans-
lation of City University of Hong Kong in 2009.
Her research interests include multimedia retrieval,
image processing and pattern recognition, and neural
networks.

Xiao-Yong Wei is a Professor with the College of
Computer Science, Sichuan University, China, and a
postdoctoral fellow with the International Computer
Science Institute, University of California, Berkeley,
USA. He received his Ph.D. degree in Computer
Science from City University of Hong Kong in 2009.
He is one of the founding members of the VIREO
multimedia retrieval group, City University of Hong
Kong. He was a Senior Research Associate in Dept.
of Computer Science and Department of Chinese,
Linguistics and Translation of City University of

Hong Kong in 2009 and 2010, respectively. He had worked as a Manager
of Software Department at Para Telecom Ltd., China, from 2000 to 2003.
His research interests include multimedia retrieval, data mining, and machine
learning.

Zhang Yi received the Ph.D. degree in mathematics
from the Institute of Mathematics, The Chinese
Academy of Science, Beijing, China, in 1994. Cur-
rently, he is a Professor at the Machine Intelligence
Laboratory, College of Computer Science, Sichuan
University, Chengdu, China. He is the co-author of
the books: Convergence Analysis of Recurrent Neu-
ral Networks (Kluwer Academic Publishers, 2004),
Neural Networks: Computational Models and Ap-
plications (Springer, 2007), and Subspace Learning
of Neural Networks (CRC Press, 2010). He was an

Associate Editor of IEEE Transactions on Neural Networks and Learning
Systems (2009 2012). He is an Associate Editor of IEEE Transactions on
Cybernetics (2014 ). He is a Fellow of IEEE. His current research interests
include Neural Networks and Big Data.

Gerald Friedland is the director of the Audio
and Multimedia group at the International Com-
puter Science Institute (ICSI), a private, non-profit
research lab affiliated with the University of Cali-
fornia, Berkeley. He is also teaching in the EECS
department as an adjunct professor. His research
interests focus on multimedia content analysis, its
applications, and social implications. Dr. Friedland
has published more than 200 peer-reviewed articles
in conferences, journals, and books. His co-authored
text book on Multimedia Computing published in

August 2014 with Cambridge University Press and his co-authored book
on “Multimodal Location Estimation of Images and Videos” appeared with
Springer in October 2014. He is the recipient of several research and industry
recognitions, among them the European Academic Software Award and
the Multimedia Entrepreneur Award by the German Federal Department of
Economics. He also leads the team that won the ACM Multimedia Grand
Challenge in 2009 and 2015, respectively. Dr. Friedland received his doctorate
and master degree in computer science from Freie Universitaet Berlin in 2002
and 2006, respectively. He is a senior member of ACM and IEEE.


