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Abstract—In this paper, we have proposed a novel method
which utilizes the contextual relationship among visual words
for reducing the Quantization errors in near-duplicate image
retrieval (NDR). Instead of following the track of conventional
NDR techniques which usually search new solutions by borrowing
ideas from the text domain, we propose to model the problem
back to image domain, which results in a more natural way of
solution search. The idea of the proposed method is to construct
a context graph that encapsulates the contextual relationship
within an image and treat the graph as a pseudo-image, so
that classical image filters can be adopted to reduce the mis-
mapped visual words which are contextually inconsistent with
others. With these contextual noises reduced, the method provides
purified inputs to the subsequent processes in NDR, and improves
the overall accuracy. More importantly, the purification further
increases the sparsity of the image feature vectors, which thus
speeds up the conventional methods by 1662% times and makes
NDR practical to online applications on merchandize images
where the requirement of response time is critical. The way
of considering contextual noise reduction in image domain also
makes the problem open to all sophisticated filters. Our study
shows the classic anisotropic diffusion filter can be employed to
address the cross-domain issue, resulting in the superiority of the
method to conventional ones in both effectiveness and efficiency.

Index Terms — near-duplicate retrieval; contextual noise
reduction; anisotropic diffusion.

I. INTRODUCTION

THANKS to the prevalence of the e-Commerce nowadays,

the merchandize imagery is becoming one of the rapidly

growing genres of web images. However, according to the

study on eBay.com and Taobao.com [1], over 42.6% of those

images are indeed duplicates or near-duplicates. Therefore,

near-duplicate retrieval (NDR), which helps to locate those

duplicates, has been intensively studied in recent years, due to

its potential to a wide range of commercial applications. For

example, it can be used to build price comparison services

for websites like PriceGrabber, Shopping.com and Shopzilla,

where NDR is especially helpful for locating products selling
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on websites of different countries and described in different

languages on which text retrieval works awkwardly. Under

similar scenarios, NDR can also provide valuable clues for

pirated product detection, unauthorized seller identification,

market potential evaluation and so on.

A general purpose NDR framework is usually composed

of local feature extraction and Bag-of-Words (BoW) indexing

[4–8]. More specifically, local interest points (LIPs), which

are the salient points whose features are invariant to the

changes of scale, illumination, and viewpoint [9, 10], are

extracted from an image and converted to “visual words”

that mimic the words in the text documents, and thus the

images can be indexed with BoW, and retrieved with the

sophisticated techniques of traditional information retrieval.

While the effectiveness of the LIPs+BoW framework has been

recognized for general purpose NDR, however, it has seldom

been studied on merchandize imagery domain.

To adopt NDR in merchandize imagery domain, new chal-

lenges are resulting from the scalability and diversity of the

datasets. First, the datasets are usually in web-scale which are

overwhelmingly larger than the conventional ones used for the

general purpose NDR. For instance, the merchandize imagery

dataset used in [1] is in million-scale while the standard

datastes (for general purpose NDR) such as Kentucky [3]

and Oxford [2] are only in thousand-scale. The dramatically

increased scale makes many (computationally) expensive NDR

techniques infeasible, because the requirement of response

time in the aforementioned online or mobile applications is

critical. For example, geometric constraint verification [11–

14], which is popularly employed to verify the geometrical

consistency of the distributions of the visual words when

comparing two images, is considered impractical in these

applications, since the word-to-word comparison is required

in the verification process which is with quadratic time com-

plexity (O(n2)). Second, the datasets are often composed of

images from a diverse range of sub-domains (e.g., in Figure 1,

the merchandize images include those of electronics, food,

books, and clothes) rather than from a specific domain as in

conventional datasets (e.g., in Figure 1, Oxford is composed

of architecture images while Kentucky is mainly composed

of product images). Furthermore, the datasets are with user-

generated content (UGC) in which the image quality (even

for the same product) varies significantly, because they are

captured by various photographers from professionals to ar-

matures, by devices from high resolution DCs to web cameras

(thus to cause so-called sensor gap), under various conditions

from photographic studios to randomly arranged outdoors, and
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Fig. 1: Near-Duplicate examples of merchandize imagery dataset [1], Oxford [2], and Kentucky [3].

modi�ed with unpredictably heterogeneous styles. Compared
to the conventional datasets which are usually built in a
controlled environment (e.g., Kentucky images are collected
in a laboratory space with the same DC and consistent
illumination), therefore, the diversity of merchandize images
leads to a much larger variance of the image features (for the
same product) and thus makes the matching inherently much
more dif�cult.

In terms of the LIPs+BoW framework, the challenges
caused by the domain shift will affect the indexing in different
ways. From a feature-level perspective, it results in “noises”
among the visual words of an image, because the process of
converting of a LIP to a visual word can easily be wrong when
the feature of the LIP varies a lot from its original form (e.g.,
when affected by re�ections, a LIP from a metal surface can
be mistakenly converted to a visual word that representing
glass-liked materials). From a domain-level perspective, due
to the multi-domain nature of the merchandize datasets, LIPs
from “unseen” sub-domains are inevitable and thus cannot be
converted correctly (e.g., a LIP from a building will de�nitely
be converted to a wrong visual word if there are no examples

of architecturehave been selected to train the codebook1).
To reduce the risk of the mis-mapping, a commonly adopted

method is soft weighting [15, 16]. Rather than mapping a LIP
to a single visual word, soft weighting maps a LIP to multiple
words, in the hope that if one word is mis-mapped, the others
could still represent the image correctly. However, since the
multiple mapping scheme requires additional computational
cost for mapping and comparison, it is impractical to large-
scale datasets (i.e., the challenge ofscalability). Furthermore,
it increases the ambiguity of the feature because more words
are used for representing a LIP. This becomes more serious
when the words are from different domains (i.e., the challenge
of diversity, a nature of the merchandize imagery datasets).

In this paper, we propose a novel quantization method for
addressing both thescalability and diversity issues. Instead
of being a post-process (to the LIPs+Bow framework) to
“compensate” or a method using multiple words to “share” the
risk of mis-mapping, the proposed method corrects the “errors”
directly by verifying the contextual relationship among the
mapped words and eliminating those contextually inconsistent

1In LIPs+BoW framework, a codebook (also called vocabulary in literature)
is a dictionary of visual words and is the reference for the LIP-to-Word
conversion.
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The contextual relatedness among visual words is learnt in

advance on a training dataset. We are interested in word pairs

that are statistically meaningful, in the sense that the contextual

relatedness is defined with value of non-zero only when the

two words co-occur in the neighboring area more often than

would be expected by chance [31]. X 2 test is employed to

verify this criteria, which is the most popular test in the text

domain for the same purpose. Any word pair fails in the test

will be set with a relatedness value of 02. Figure 3 gives an

example of the context graph. More examples are available at

our demo page3.

B. Adopting Image Noise Reduction to Context Graph

With the context graph, let us imagine the visual words

represent the pixels of an image and the edges indicate the

reversed gradients among pixels, it is easy to see that the visual

words which are contextually inconsistent with its neighbors

are similar to the noise pixels that are with abrupt contrast

to the its neighbors. Therefore, techniques of image noise

reduction can be adopted to fix those contextual noises.

Image noise reduction is often conducted with a convolution

process which adjusts the value of a pixel by iteratively fusing

it with those of its neighbors. The rationale behind is that, in

case most of the surrounding pixels are with values at a normal

level, through the iterative fusion, the value of a noise pixel

can be set back to normal gradually. It is obvious that the idea

can be easily adopted to reduce the contextual noises on the

context graph by gradually adjusting the values of the mis-

mapped words towards the normal level. However, regarding

the fundamental differences between a context graph and a

real image, we have to make following modifications to the

reduction process:

1) Definition of Neighbors: Let us relax the constraints that

the neighbors of a pixels have to be those at its adjacent

rows or columns, and define the neighbors of a visual

word as the ones located in its neighboring area as in

Section III-A (i.e., within a circle of radius d pixels);

2) Definition of Pixel Value: Instead of being a single

value (e.g., gray scale) for an image pixel, a “pixel” on

the context graph is a visual word which is associated

with a list of candidate words that consists of the top-

k words which have the largest similarities with the

corresponding LIP;

3) The Convolution: In image noise reduction, the con-

volution process can be considered as an evolutionary

process that constantly adjusts the value of the target

pixel towards the goal of reducing its gradients to its

neighbors. In this regard, we define the convolution on

the context graph as a process which adjusts the value

of a node by selecting from its candidate list a visual

word which maximizes the contextual consistency of the

node to its neighbors.

2As the alternatives to learn the relationship, similar ideas can be found in
[32, 33]

3http://www.cs.cityu.edu.hk/∼xiaoyong/product.images/context/
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Fig. 3: Example of a context graph. Noise “pixels”, which are

contextually inconsistent with their neighbors, are indicated by

the thin edges (e.g., those around the eyes and nose).

C. Contextual Noise Reduction

With the modifications, the contextual noise reduction can

then be formulated as an iterative process. To facilitate the

description, superscript will be hereafter used for iteration

number. At each iteration (denoted as I (t )), we have a context

graph G(t ) in which vertexes are assigned with visual words

based on the result of the previous iteration (I (t � 1)), and

the graph weights are updated with the method introduced

in Section III-A. The task of each iteration I (t ) is to select

for each node a new visual word from its candidate list so as

to maximize its contextual consistency to neighbors. That is,

I (t) : $ (t)(vi ) = argmax
w∈C(vi)

H
�
$ (vi ) = w j G(t−1)

�

(2)
where C(�) is a function for selecting the candidate list

of visual words from the codebook B for a given vertex

(i.e., the top-k most similar ones to the original LIP), and

H
�
̟(vi ) = w j G(t � 1)

�
is an object function to measure the

neighborhood contextual consistency (harmoniousness) for the

hypothesis of assigning a visual word w to the vertex vi
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regarding the context graph G(t � 1) as

H
�
̟(vi ) = w j G(t � 1)

�
=

X

vj2N (vi)

(

F (vi , vj ) � MI(vi , vj )

)

(3)

where N (vi ) is a function for selecting the set of neighbor

vertexes of the target vertex vi from the context graph, and

F (vi , vj ) servers as a filter function that determines the

contribution or impact of a neighbor vj to the target vertex

vi . With F (vi , vj ) as an analogs to the noise filter in image

domain, Eq.(3) can be considered a convolution defined on the

context graph, which makes it convenient to adopt the existing

image filter for contextual noise reduction. Let us simply take

Gaussian filter as an example, which is one of the most popular

image filters. Fg(vi , vj ) can be defined for contextual noise

reduction as

FG(vi ; vj ) =
1

2�� 2
exp

�
�

D(vi ; vj )2

2� 2

�
(4)

where the subscript G stands for Gaussian, σ is the standard

deviation of the filter, and D(vi , vj ) is a function to calculate

the Euclidian distance between the two vertexes (based on

their pixel coordinates). Once the word selection for the whole

graph has been finished, the contextual relatedness (i.e., edge

weights) are also recomputed accordingly. Through the context

graph, the impact of the word selection of a node is indeed

transferable to the other nodes in the graph, making the nodes

“negotiate” to each other before they make decisions. This

finally leads to a harmony state for the graph, in which

the inter-word contextual consistency is ensured to a certain

extent.

Note that the proposed reduction is compatible to almost any

existing Quantization scheme. Therefore, as a starting point for

the iteration, the initial results of word assignment for I (0) can

be obtained by conducting a conventional quantization (e.g.,

simply selecting the word with the largest similarity to the

corresponding LIP). A formal definition of the process is given

in Algorithm 1. It is easy to see the complexity of Algorithm 1

is O(jC(vi )j � m � jVj ). According to our empirical study (cf.

SectionV), the optimal settings for C(vi ) and m are jC(vi )j �
10 and m � 5, which makes jC(vi )j � m � jVj , and finally

results in an approaching linear complexity of the algorithm

(i.e., O(cjVj)).

IV. DOMAIN ADAPTIVE CONTEXTUAL NOISE REDUCTION

As shown in the previous section, by analyzing contextual

noise reduction from an image point of view, it has greatly

facilitated the solution search. We will see in this section

that it can also provide a way for problem identification, in

the sense that the edge preserving problem in image noise

reduction is tightly related to domain-shift issue in contextual

noise reduction.

A. Edge Preserving and Cross-Domain Issue

In the previous section, to determine the fusion weights,

we adopt Gaussian filter for its popularity and simplicity.

However, Gaussian filter is known to have the blurring effect

Algorithm 1 Iterative Contextual Noise Reduction

Input:

The initial context graph, G(0) = (V,E,R (0)), where V =

f vi g, E = f eij g, and R (0) = f r(0)ij g;

The codebook, B = f wn g ;

The contextual noise filter function, F (vi , vj );
The maximum number of iterations, m;

Output:

The resulting context graph, G(m );

The final word selection for all vertexes, f ̟(m )(vi )g;

1: Conduct any conventional Quantization to obtain the ini-

tial visual selection, f ̟(0)(vi )g;

2: Update edge weights f r(0)ij g according to the word selec-

tion result, f r(0)ij g = MI(vi , vj );
3: for t = 1 to m do

4: for i = 1 to jVj do

5: Find the set of candidate visual words for current

vertex vi from the codebook B, C(vi );
6: For each candidate word w in C(vi ), calculate the

neighborhood contextual consistency using Eq.(3) by

hypothetically assigning w to vi ;

7: Assign vi with the candidate word which maximizes

the neighborhood contextual consistency, Eq.(2);

8: end for

9: Update the word selection f ̟(t )(vi )g;

10: Update edge weights f r(t )ij g = MI(vi , vj );

11: Update the context graph G(t );

12: end for

13: return G(m ) and f ̟(m )(vi )g.

problem that, while reducing the noise, Gaussian filter will blur

the image and causes the loss of details. The most obvious im-

pact of the blurring is that the edges of the image will dissolve

into the adjacent regions. The reason causes the blurring of

Gaussian filter is that it is isotropic, which means that, when

fusing the neighbors into the target pixel, the contributions

of the neighbors at different directions are considered equally

without any “respects” to the edges. Therefore, the value of

an edge pixel will be set to a weighted average of the pixels

from the regions along the edge.

The reader might have the concern immediately that “Will

this affect the contextual noise reduction?” Our empirical

study shows the answer is YES. Ideally, we should expect

the context graph to be as smooth as possible. In reality,

however, the “edges” also exist on the graph, which is resulting

from the domain shift from training to testing dataset. For

example, in case that in the training dataset, there is only

a limited number of images containing both cars and trees,

the contextual relatedness between the visual words for the

cars and those for the trees will thus tend to be low (cf.

Eq.(1)). This will cause the contextual edges between these

two types of visual words for a testing image which contains

both cars and trees. In this case, using an isotropic filter like

Gaussian will force the visual words along the contextual

edges to be changed to those words that are with higher

contextual relatedness to the words of both cars and trees (e.g.,
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those of buildings, sky, water and so on). These mis-mapped

edge words will significantly mislead the Indexing process and

result in mis-matching during the retrieval. For instance, when

visual words for water are used for indexing the images that

do not contain water, there is a high chance for those images

to be matched to images of water.

B. Anisotropic Diffusion

Fortunately, the problem of edge preserving has been in-

tensively studied in image domain. The most popular method

is called anisotropic diffusion which is proposed in 1990 by

Perona and Mailik [17]. The idea is to construct an anisotropic

filter which encourages the fusion between intra-region pixels

and limits the fusion between inter-region pixels (i.e., those

at two sides of an edge). By simply modifying the method

proposed in [17], it is easy to construct an anisotropic filter

for contextual noise reduction as

FA (vi ; vj ) =
1

D(vi ; vj )
P(kr (vi ; vj )k) (5)

where the subscript A stands for anisotropic diffusion,

r (vi , vj ) is the gradient from vj to vi which we can implement

easily by reversing the contextual relatedness as

r (vi ; vj ) = 1 � MI (vi ; vj ); (6)

and P(�) is the so-called conductance function4 defined as

P(kr (vi ; vj )k) = exp
�
� (

kr (vi ; vj )k
�

)2
�

(7)

where ξ is a constant which controls the fusion rate. In Eq.(8),

the contribution of a neighbor is mainly determined based on

its contextual gradient to the target vertex. The anisotropic

diffusion is implemented with the non-increasing function P(�)
which encourages the fusion when the gradient is low (e.g.,

in the intra-region areas), and limits the fusion when the

gradient is high so as to preserve the edges (where the inter-

region gradient is high enough). This filter can be seamlessly

integrated into the contextual noise reduction in Algorithm 1

by replacing the Gaussian filter.

One may doubt that, because pixels may have similarly

large gradients on both edges and noises, how the scheme

can reduce the noises and remain edges at the same time.

To answer the question, we have to point out a fundamental

difference between edge and noise pixels: the edge pixels

are comparably continuous and the noise pixels are usually

isolated. As illustrated in Figure 4, when the filter is on an

edge pixel (e.g., C or D), the contributions of its neighbors

on the same side of the edge will dominate those on the other

side, and thus force the target pixel to be consistent with its

intra-region neighbors. By contrast, when the filter is on a

noise pixel (e.g., B or E), even the contributions of all the

neighbors have been limited, their impacts on the target are

even, so that the word selected is still the one which maximizes

4There are indeed two conductance functions that have proposed in [17].
The one presented in this paper has been randomly selected, because our
empirical study shows there is no significant difference between the two
functions when applied to NDR.

A B

C

D

E
F

Fig. 4: Anisotropic contributions of the neighbor pixels to a

target pixel at intra-region (A, B, E or F), and inter-region (C

or D) areas.

Eq. (3). There might be other anisotropic filters which perform

better regarding the trade of between noise reduction and edge

preserving. However, this is beyond the topic of this paper. The

reader is referred to [34] for more details.

C. Median Filtering

Beside anisotropic diffusion, median filtering is also widely

used in image noise reduction due to its edge preserving

property. To adopt median filtering into the framework, we

can define a median filter as

FM (vi ; vj ) =

(
MI (vi ; vj ) if MI (vi ; vj ) is the median;
0 otherwise;

(8)
where M stands for the median filtering and the “median”

means the median value among all contextual relatedness of

vi to its neighbours (i.e., MI(vi , vj )s). The filter is logically

simple. However, it is computationally complex, because an

additional sorting process has to be conducted for each can-

didate word to find the median.

V. EXPERIMENTS

A. Dataset Construction and Evaluation Metric

To evaluate the performance, we use the dataset in [1],

which includes one million (i.e., 1,106,280) merchandize

images from eBay.com and Taobao.com. The dataset is open

to public and is considered the one with the largest number of

near duplicate images (12,901 images) so far. Due to its nature

of user-generated-content, a wide range of modifications are

included among the near-duplicates of the dataset, which

contains the changes of illuminations, capturing devices, and

scales, together with rotation, cropping, mirroring and text

overlay. The dataset consists of three subsets:
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� Training Set which includes 1% (i.e., 10,000 images)

of the entire dataset and will be used for learning the

codebooks and inter-word contextual relationship;

� Basic Set which includes another 10% (i.e., 112,092

images) of the dataset and will be used as a basis for

testing the performance of algorithms;

� Distracter Set which includes the rest part of the dataset

(i.e., 984,188 images) and samples randomly selected

from this set will be added to the Basic Set during

the testing to generate larger datasets and investigate the

robustness of the algorithms.

There are no exact duplicates in the dataset and no overlaps

among the three subsets. The ground-truth of the dataset is

generated by fully annotating the Basic Set, where 12,901

images are found to form 4,141 near duplicate groups. We

use each of those images as a query. In our experiments, all

images are normalized to fit an 800 � 800 pixel box while

preserving their aspect ratios.

There are five parameters in the proposed methods, namely

the radius that defines the neighborhood d, the number of

candidate visual words for each LIP (#can), the maximum

number of iterations for Algorithm 1 (m), the standard devia-

tion for Gaussian filter (σ) and the fusion rate for Anisotropic

filter (ξ). We set d = 30 which is an optimal setting found

in [1]. We also set #can = 10, because according to our

empirical study, the proposed methods become less sensitive to

this parameter when #can > 5. Here we enlarge the number

to increase the chance of a correct word is included in the

candidate list. We set σ = d
3 = 10 and ξ = 0.2 which are the

popular setting in image domain. Unless mentioned otherwise,

we set m = 5 in this paper. It has been confirmed as an optimal

settings from the experiments in Section V-B2.

In the experiments, we use each of the near-duplicate images

as a query. The retrieved images are ranked according to

their similarities to the query. The search performance is then

evaluated with mean average precision (MAP ), in which AP

is defined as

AP =
1

min (R,n)

nX

j =1

Rj

j
Ij (9)

where R is the number of duplicate images to a query, Rj is

the number of duplicate images in the top-j retrieved images,

and Ij = 1 if the image ranked at jth position is a near-

duplicate (ND) and 0 otherwise. We set n=100, while MAP

is calculated as the mean AP of the 12,901 queries.

B. Study of the Essential Characteristics

In this section, we study the essential characteristics of

the proposed methods by utilizing them for contextual noise

reduction on the most widely adopted Quantization scheme

that selects for each LIP the visual word with the largest

similarity. By using different methods for LIP extraction, we

build two baselines as follows:

� SIFT [9] based method, which is considered one of the

most popular methods, where we employ Difference of

Gaussians (DoG) for LIP detection and SIFT feature for
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Fig. 5: Performance over different dataset scales. SIFTM

(CMM ) is seriously overlapped with SIFTA (CMA ).

description. SIFT is used as a representative of sparsely

LIP sampling;

� Color-Moment (CM ) based method [1], which extracts

patches (of a fixed size of 20 � 20 pixels) for each image

and uses color-moment feature for description. Given the

fact that all images are normalized to fit an 800 � 800
pixel box during the experiments, the CM features are

densely sampled.

Gaussian filter FG , anisotropic filter FA and median filter

FM are applied on the baselines respectively for contextual

noise reduction, resulting in 6 new methods SIFTG , CMG ,

SIFTA , CMA , SIFTM , and CMM , in which superscript is

used to indicate which filter has been used. We use the Train-

ing Set to learn the codebooks and the contextual relatedness

among word pairs. All codebook are of size 2k (words) at this

moment to speed up the computationally expensive processes

of parameter tuning and feature comparison. The experiments

using large codebooks will be reported and discussed in

Section V-C.

As an overview for the performances of the 8 methods

under investigation, the results with MAP at the top-100

retrieved images are shown in Figure 5, in which we vary

the dataset scale to observe the scalability of different meth-

ods. The dataset scale is changed by first using the fully

annotated Basic Set as a basis and randomly adding samples

from the Distracter Set to generate larger sets. The results

show that, overall, with contextual noise reduction, SIFTG

and SIFTA (SIFTM ) outperform the baseline SIFT by

36.57% � 8.17, 46.31% � 12.69 (46.69% � 12.68), and CMG

and CMA (CMM ) outperform CM by 46.28% � 9.24 and

52.03%� 11.58 (52.02%� 12.03). In the following sections, we

conduct more experiments to grasp an in-depth understanding

of the proposed methods.

1) Does Contextual Noise Reduction Work?: In Figure 5,

the advantage of using contextual noise reduction can be
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TABLE I: Performance gains over the change of dataset scale.

Dataset Sacle 100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k

SIF T G to SIF T 21.54% 27.84% 32.12% 35.16% 34.44% 39.49% 39.38% 41.64% 44.73% 49.34%

SIF T A to SIF T 26.45% 33.03% 36.98% 40.39% 42.81% 48.65% 51.70% 56.03% 59.89% 67.05%

SIF T M to SIF T 26.45% 32.40% 38.57% 42.42% 42.89% 48.42% 51.95% 55.40% 61.35% 67.05%

CM G to CM 29.04% 34.51% 42.66% 45.30% 45.53% 48.45% 49.28% 52.49% 56.63% 58.87%

CM A to CM 31.82% 38.30% 45.68% 48.56% 51.14% 53.77% 56.62% 60.20% 64.79% 69.41%

CM M to CM 31.84% 37.94% 43.67% 47.77% 50.78% 54.80% 57.72% 60.63% 65.05% 69.97%
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Fig. 6: Evaluation of MAP at the top-k of the ranked

lists. SIFTM (CMM ) is seriously overlapped with SIFTA

(CMA ).

observed while SIFTG , SIFTA , SIFTM , CMG , CMA

and CMM outperform the baselines. The rationale behind

is that by further integrating the contextual relationship into

the Quantization, visual words can work collaborative to

represent the image features, which allows more patterns and

more details to be contained in the resulting BoW feature

vectors, and finally leads to higher accuracy in matching.

This effect becomes more obvious when one compares CMG

and CMA (CMM ) to CM , where the performance gain

are 46.28% � 9.24 and 52.03% � 11.58 (52.02% � 12.03)

respectively, which are much more significant than those of

SIFTG and SIFTA (SIFTM ) to SIFT . More importantly,

we can also find in Figure 5 that when individual patches

start to collaborate in CMG and CMA (CMM ), they can

even outperform SIFT . This is an solid indication of the

advantage of using the contextual noise reduction, because

conventionally CM has been considered as a much weaker

feature than SIFT .

Let us take a look at how this affects the ranking of NDR.

In Figure 6, we evaluate the ranked lists of the 8 methods (on

the Basic Set) by investigating how the AP changes from the

top to the bottom of the lists. It can be seen that the majority

of the improvement by utilizing contextual noise reduction is

indeed coming from the section of the top-30 items in the lists.

This is an indication that the near-duplicates at the bottom of
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Fig. 7: Performance over the number of iterations. SIFTM

(CMM ) is seriously overlapped with SIFTA (CMA ).

the lists have been successfully boosted to the top position.

In NDR, this is highly desired, because most users are only

interested in the items ranked at the top positions, and in the

applications built on smart phones or tablets, the screens are

usually with too limited sizes to display too many items.

2) Domain Adaptivity of Filters: Comparing three filters

(i.e., Gaussian, Anisotropic, and Median), Table I shows the

results of performance gains of the methods over dataset scale

changes. We can see that the Anisotropic and Median filters

appear more reliable than Gaussian, in the senses that 1)

in terms of performance gains, SIFTA (CMA ) is superior

to SIFTG (CMG ) by 25.47% � 8.00% (12.00% � 3.53%)

while SIFTM (CMM ) is superior to SIFTG (CMG )

by 25.51% � 7.34% (20.92% � 7.49%); and 2) divided

by the scale point 500k, the performance gain of SIFTA

(CMA ) increases from 35.93% � 6.44% (43.10% � 7.93%)

to 56.68% � 7.21% (60.96% � 6.30%) while that of SIFTM

(CMM ) increases from 36.55% � 7.04% (42.40% � 7.62%) to

56.83% � 7.44% (61.64% � 6.00%). It is more significant than

that of SIFTG (CMG ) which increases from 30.22%� 5.63%
(39.41% � 7.32%) to 42.92% � 4.20% (53.15% � 4.55%). This

is an indication for the advantage of using domain adaptive

filters, because when more examples from the Distracter

Set are added into the experiments, the domain-shift will

be enlarged, and the chance of having words from “unseen”

domains increases.

The comparison between the three filters can also been seen
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Fig. 8: Query images and corresponding ranked lists. The methods with domain adaptive �lters (e.g.,CM A (CM M )) are able
to exclude items from irrelevant domains from the list.

in Figure 7, which has been obtained on theBasic Setduring
the parameter tuning form the number of iteration. At the
early stage of the iterations, both Gaussian and Anisotropic
(Median) �lters are able to boost the performance by us-
ing contextual information for noise reduction. However, the
methods with Gaussian �lter drops gradually after the6-th
and the 3-rd iteration in CM G and SIF T G respectively.
This is due to the isotropic nature of Gaussian �lter, which
blurs the contextual edges and causes unreasonable selection
of visual words that are contextually related to the words
at both sides of the edges but semantically unwarranted (cf.
Section IV). Fortunately, the drop stops soon, since we have

limited the number of candidates for each LIP, which prevents
the Quantization from selecting more unreasonable words.
For methods with Anisotropic (Median) �lters, at the early
stage of iterations, their performances are nearly the same as
those of Gaussian �lter, but continue to climb when Gaussian
methods start to drop, and reaches a plateau afterwards. This
further con�rms the advantage of using domain adaptive �lters.
Nevertheless, we will see later in Sections V and VI, the
difference between the two types of �lters is in fact not
apparent enough on theBasic Setwhere the domain shift from
the Training Set is considered minor when compared to that
of Kentucky (of�ine product images) orOxford (architecture


