
Pattern-RL: Multi-Robot Cooperative Pattern Formation

via Deep Reinforcement Learning

Jia Wang, Jiannong Cao, Milos Stojmenovic, Miao Zhao, Jinlin Chen, Shan Jiang

The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

The Hong Kong Polytechnic University ShenZhen Research Institute, Shenzhen

Email: {csjiawang, csjcao, csmolis, csmiaoz, csjinlin, cssjiang}@comp.polyu.edu.hk

Abstract— Autonomous, arbitrary pattern formation is one
of the most critical applications in multi-robot systems, where
robots are required to form into circles, lines, and meshes
or any other desired configuration. This task is important in
military applications, search and rescue operations, and visual
inspection of infrastructure and equipment tasks to name a
few. Most existing works are very rigid, and only able to form
certain shapes, where slight target changes can cause failure
in the predefined pattern-specific rules and trigger algorithm
redesign. We propose a novel, deep reinforcement learning
based method that generates general-purpose pattern formation
strategies, in the form of deep neural networks (DNN), for any
target pattern. Our method uses the trial-and-error feedback
of each round of training to gradually generate the pattern
formation strategy. Thus, robots are able to query the trained
DNN model to select their optimal directions and speeds in
a fully distributed manner. Considering that reinforcement
learning models do not perform well with large state spaces and
highly variant training samples, we employ auto-encoders to
learn the condensed representation for each state and compute
model-free policy gradients for arbitrary pattern formation.
We experimentally show that groups of robots are able to form
various general target patterns while minimizing the number
of completion time steps.

I. INTRODUCTION

Cooperation is the foundation for multi-robot systems

(MRSs) to better perform tasks than a single robot, with

respect to efficiency and robustness. As one of the most

challenging directions in MRS cooperation, pattern formation

has attracted growing research attention. In many real-world

applications, a group of autonomous robots are required

to behave in a cooperative fashion such as autonomous

vehicle alignment on a highway [1], area coverage using

ground/aerial/underwater robots [2], security and surveil-

lance [3], and cooperative search [4]. With our designed

multi-robot pattern formation protocol, the team level objec-

tives can be achieved through sensing, action planning and

movement control [5].

Fig. 1: Example of pattern formation

The multi-robot pattern formation problem has been ex-

tensively studied from different perspectives [6], [7]. Some

solutions are based on centralized control [8], [9], which

assume that a central server has global knowledge when

planning the actions of the robots; and others are distributed

approaches which can be roughly categorized into three

classes [10], [11]: consensus-based methods, leader-follower

methods, and bio-inspired methods. Consensus-based algo-

rithms [12], [13] require all robots to reach an agreement

initially through communication and then move to corre-

sponding target locations. Leader-follower methods [14],

[15] force each group member to follow the movement of

the selected leader to perform the task. Bio-inspired methods

[16], [17] enable multi-agents to achieve a specific task by

employing attractive and repulsive physical forces. The above

mentioned methods are almost all rule-based. They require to

discretize agent’s continuous actions to compute the pattern

formation strategies. However, a coarse discretization suffers

from low solution quality and a fine discretization makes it

intractable to compute the optimal strategy using mathemati-

cal programming techniques, especially in high-dimensional,

continuous action spaces. In addition, rule based methods do

not cater to all interaction scenarios, and the designed rules

are pattern specific, not very robust, and have great difficulty

guaranteeing optimal performance.

We made a machine learning based attempt to solve the

multi-robot arbitrary pattern formation problem in order

to address the limitations in existing work. As illustrated

in Fig. 1, the robots are initially scattered in the defined

space, but aim to form the target patterns from their starting

positions. The target patterns can be located anywhere in

the space, as only the relative positions of the robots are

important for task completion. Previous work [18] employed

Q-learning methods but only had success for discrete actions,

where the robot can only move in four directions. To enable

continuous movement, we model the pattern formation strat-

egy as deep neural networks and consider the policy gradient

method [19], [20] to update the strategy. However, there

are two major challenges when directly employing policy

gradients to solve this problem. First, the substantial number

of interaction possibilities between robots and the environ-

ment forms high-dimensional state-action spaces. Second,

the intended movement of the other robots is unknown when

a robot plans its own next movement, so it usually takes quite

210

2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

978-1-7281-4550-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00040

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

a long time to converge with a conventional implementation

of policy gradients.

To address the aforementioned challenges, we propose a

novel multi-robot pattern formation scheme via deep rein-

forcement learning named pattern-RL, in which the gen-

eral purpose coordination strategy is learned by the group-

level interactions among robots. In particular, our proposed

method utilizes auto-encoders [21] to learn latent and com-

pressed representations of observation states. As a result,

the policy search space can be greatly narrowed down to

facilitate a quick response from robots to environmental

changes. Moreover, the learning process is build upon the

proximal policy optimization (PPO) [22], in which the gra-

dient updating is performed on the batch of samples instead

of updating a single gradient per data sample. This extension

effectively reduces the variance in the estimation of the

gradient direction, which is especially useful to achieve an

effective and stable pattern formation policy learning.

The main contributions of this work are: (1) To the best of

our knowledge, we are the first to employ deep reinforcement

learning to achieve multi-robot general pattern formation. By

first training over many different basic formations, Pattern-

RL can continuously learn a new difficult formation without

a long training process. Our method outperforms existing

rules based approaches, and is robust to collision avoidance.

(2) Our method is able to solve sequences of multi-robot

pattern formations, which is difficult for rule-based methods

to accomplish. To assist these major contributions, the minor

contributions are: (1) Considering the high dimensionality

of the observation space, our proposed method applies the

cascading usage of auto-encoders to condense representation

learning in order to accelerate the learning process. (2) We

enable each agent to interact with the historical actions and

bound the new policy relatively closely to its predecessor,

which ensures a steady strategy improvement. Experimen-

tal results demonstrate that the performance of pattern-

RL significantly outperforms the collision avoidance based

solutions by reducing the number of time steps required to

form n-regular polygons by 37.5% to 43.8% when testing

between 4 to 20 agents.

II. PATTERN FORMATION PROBLEM

The multi-robot pattern formation problem considers n
homogeneous robots moving on a 2D Euclidean plane to

form a desired pattern C in the shortest possible time. Here

C consists of the desired coordinates of the n robots. All

robots cycle through three stages of behavior: observing,

computing, and moving synchronously. At the observation

stage at time t, a robot i captures all other robot positions’

under its local coordinate system by its observations. Then

the robot computes its action ati and then adjusts its trajectory

and speed. The current configuration of the robot group is P ,

and our objective is to allow each robot to make a sequence

of decisions so that the whole group of robots can form the

predefined pattern C in the shortest possible time without

collisions. The problem is formally defined as:

arg min
π

E[
1

N
ΣN

i=1ti|π] (1)

s.t. pti = pt−1
i +�tati, ∀t (2)

||pti − ptj || > 2R, (i �= j) (3)

||ati|| < vmax (4)

P ≡ C. (5)

Eq. (1) represents our objective, which is to find the policy

π which minimizes the time for N robots to form the

predefined shape C, where ti is the time step for the

ith agent to form the shape. Eq. (2) describes the robot’s

updated position. Eq. (3) enforces a distance gap of 2R
between any two robots to ensure collision avoidance, Eq. (4)

constrains the velocity below the maximum value vmax.

Eq. (5) constrains that multi-robots finally form the target

pattern. It is worth pointing out that traditional distributed

methods address such an objective using rule-based logic.

Therefore, they require a complete re-design of the algorithm

if the designated pattern changes. In contrast, pattern-RL can

adaptively learn the strategy model based on multi-agent1

real-time interaction feedback in order to adapt to the pattern

changes. We study the pattern formation problem from an

algorithmic point of view, and therefore consider robotic

hardware, sensors, and actuators as out of the scope of this

paper.

III. PRELIMINARIES AND FRAMEWORK

We start with an explanation of the RL concept, then we

introduce the framework of the distributed multi-robot pat-

tern formation system. Finally, we elaborate on the learning

algorithm of our proposed pattern-RL solution.

A. Reinforcement Learning Setup

Reinforcement learning is a class of machine learning

for solving sequential decision-making problems with un-

known state-transition dynamics [23]. The pattern forma-

tion problem requires multi-robots to make a sequence of

decisions based on the topology of their neighbors. This

problem can be formulated as a partially observed Markov

decision process (POMDP) and solved using the reinforce-

ment learning framework. Typically, a POMDP contains

6-tuple (S,A, T,R,O,Ω), where S,A, T,R are the states,

actions, transitions, and rewards of the system. The partial

observation space O ∼ Ω(s) is relevant to the observation

probability distribution Ω and the system state s ∈ S. In the

following, we formulate the pattern formation problem in the

context of reinforcement learning:

• Observation space O: An observation oti ∈ O of

robot i is defined as the combination of the position data

(coordinates) of all other robots in three consecutive

frames.

• Action space A: An action ati ∈ A controls the

direction and velocity of the robot i at time t.

1The terms agent and robot are considered interchangeable in this paper.

211

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

• Reward R: After robot i takes action ati under

observation oti, the robot receives immediate reward rti
as follows:

rti = rg + rc + βrp. (6)

Based on the aforementioned objective function, we

design the reward rti by jointly considering the fatigue

penalty rg (how many steps robot i has already taken

so far), collision penalty rc, and the formation progress

term rp. Specifically, rg = Rg , which penalizes the

robot at each step to encourage the robots to form

the pattern in the minimal number of time steps. The

second term rc = Rc denotes the collision punishment.

Here Rg and Rc are both negative constants. β is a

magnification factor for the last term rp which evaluates

pattern formation progress by computing the similarity

of the current geometry and the target pattern as follows:

rp = min ‖Pτ − C‖2, τ ∈ Γ, (7)

where Γ represents all possible sorted sets of observed

positions P . As one possible set in Γ, Pτ generates an

order by which the position set has the shortest absolute

difference with the target pattern.

In our problem, after taking action ati at observation oti,
the robot receives reward rti . Correspondingly, the objective

of pattern-RL is to learn the optimal strategy π∗θ with respect

to θ∗ as follows:

θ∗ = argmax
θ

Eτ∼πθ
(

N∑
i=1

T∑
t=1

γtrti). (8)

The coordination strategy is the mapping function O→ A,

which enables the robots to query their optimal directions

and speeds at each step. The coordination strategy πθ is

realized by the deep neural network with parameter θ. τ
represents the collected interaction samples (i.e.,(oti, a

t
i))

based on the current version of strategy πθ at each step. Thus,

we can optimize the coordination strategy by maximizing the

cumulative reward along the moving trajectory.

B. System Framework

The framework and workflow of the proposed method

are illustrated in Fig. 2. The distributed multi-robot pattern

formation system consists of two major working phases:

training and executing. In the training phase, all robots

repeat the trial-and-error process starting from their initial

positions, then query the current strategy model at each

Fig. 2: The multi-robot pattern formation system framework.

step towards forming the pattern. The data collected from

each round are uploaded to the server which updates the

strategy model. In the execution phase, the learned models

are transplanted to each robot, and act as a “brain” to control

its behavior. Thus, a group of robots can execute the pattern

formation problem in a distributed manner. These two phases

can be executed more than once if necessary. Consider

the case where the performance of the execution phase is

unacceptable due to possible configuration changes (i.e., one

robot is missing). We can then move back to the training

phase and further modify the strategy model before updating

the robots with new ’brains’. Our Pattern-RL method consists

of two components: the auto-encoder and the strategy model.

Their details are given as follows:

Auto-Encoder. An auto-encoder is an unsupervised learn-

ing algorithm that applies back-propagation, setting the target

values equal to the inputs. In practice, it is inefficient to

train the model with raw observations as inputs since the

observation space is large and we cannot know the spatial

relations between different observations. In this paper, we

obtain dense and low-dimensional vector representations

for observations oti via the auto-encoder network. The key

idea of using the auto-encoder networks is to reduce the

dimension of the observations and shrink the search space.

Specifically, at each time step, the auto-encoder takes an

observation vector oti as input, and outputs an encoded state

eti as the input of the strategy networks.

Strategy model. As illustrated in Fig. 3, our strategy

model includes two fully connected neural networks (i.e.,

a policy network and a value network). The outputs of the

policy network are the mean and deviation of two normal

distributions which represent the direction and speed the

robots can chose from respectively. The robots select a

random variable from each distribution which represents their

action. The standard deviations of the distributions in the

initial phases of training are relatively large, which enable

robots to select from a wide range of action possibilities. As

training progresses, the standard deviations become smaller,

specifying which possible actions are optimal. Meanwhile,

the value network Vφ is implemented to evaluate the quality

of each action. By taking an observation and action pair as

input, it estimates the cumulative future reward for taking

the proposed course of action. The future rewards refer to

an estimate of how close the set of robots will come to

forming the designated pattern. The value network guides

towards the training goal of the policy network. Fluctuations

in one network would interfere with the learning of the other

network, so we optimize the networks separately which leads

to greater stability and better results in practice. Details on

how to train these networks are explained in the next section.

C. Strategy Learning Algorithm

The core of our approach is the learning algorithm that

can handle the high dimensionality of the state-action space

problem. The policy gradient (PG) method can naturally

handle the large state-action space problem by a function

approximator. However, since this method performs only one

212

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

Interact with
environment

Policy Gradient Strategy m
odel

E
nvironm

ent

Auto-encoder

Policy network Value network

Strategy model

Policy network Value network

Fig. 3: Pattern-RL algorithm architecture.

gradient update per data sample, the naive implementation

would make the strategy slow to converge. We extend the

recently proposed policy gradient algorithm PPO [22] to our

framework in order to learn a pattern formation strategy

which performs robustly and effectively when the total

number of robots is large.

The learning algorithm of our method is formally de-

scribed in Algorithm 1. The training process alternates be-

tween parallel sampling of trajectories of multiple robots, and

optimizing the strategy model with the sampled data. To learn

a pattern, in each step, we let each robot run the current strat-

egy and store the samples {(oi, ai, ri)n|i = 1, 2, ..., N ;n =
1, 2, ..., E} into the memory. With the samples drawn from

memory, we first train an auto-encoder which yields the

embedded representation eti for the observation (lines 5-7).

Since the action taken by a robot only affects its follow-up

trajectory, the accumulated reward function Φπ only counts

the prospective rewards after time t (line 11). We construct

a surrogate loss Jθ by jointly considering the advantage Âπ

and the KL penalty constraint (line 13), where Âπ represents

the estimated difference between the accumulated reward for

the current policy and the average state value. This loss is

optimized with the Adam optimizer for M iterations in order

to update the policy network (lines 8-13). Consequentially,

the value network Vφ(e
t
i) which outputs the baseline to

estimate the advantage value is updated (lines 14-18). The

coefficient λ for the KL penalty is adaptively updated and

set according to lines 19-22. We set the weights of the KL

penalty within the range set on line 23, and add it to the loss

function (line 13). Albeit simple, this modification ensures

the deviation of the new policy from the preceding policy is

relatively small, which assures the learning process becomes

more stable.

The executing algorithm of our method is summarized in

Algorithm 2. After the training process, the policy network

πθ is mounted on each robot. At the execution stage, each

robot i receives the sensor observation oti and then generates

the action ati with the policy network πθ. Each robot then

iteratively goes through the cycles of observation, computa-

tion, and action, until the final pattern is achieved.

Algorithm 1: Distributed multi-robot coordination

learning algorithm.

for E-episodes do
Initialize from the random positions;
� Play game and update memory.
Run policy πθ T-steps, collecting samples

{
oti, a

t
i, r

t
i

}
for

each agent i;
Store samples in mem;
for P-steps do

� Train the auto-encoder.
I(μ) = ΣN

i=1Σ
T
t=1(Iμ(o

t
i)− oti)

2 ;
Update μ by the gradient method w.r.t. I(μ);

for M-steps do
� Update the policy network.
Draw samples

{
oti, a

t
i, r

t
i

}
i=1:mG

from mem;

eti = Iμ(o
t
i) ;

Φπ = Σt′>tγ
t′−trt

′
i ;

Compute advantage Âπ = Φπ − Vφ(e
t
i) ;

J(θ) = ΣN
i=1Σ

T
t=1

πθ(a
t
i|eti)

πold(a
t
i|eti)

Âπ − λKL(πθ|πold)

Update θ by the gradient method w.r.t. J(θ);

for B-steps do
� Update the value network.
Draw samples

{
oti, a

t
i, r

t
i

}
i=1:mG

from mem;

eti = Iμ(o
t
i) ;

ν(φ) = ΣN
i=1Σ

T
t=1(Φπ − Vφ(e

t
i))

2 ;
Update φ by the gradient method w.r.t. ν(φ);

� Adapt the KL penalty coefficient.
if KL(πθ|πold) > βhighKLtarget then

λ← αλ ;

if KL(πθ|πold) < βLowKLtarget then
λ← λ/α ;

� Set the weight of KL penalty
coefficient within a range.

λ← clip(λ, ϑlow, ϑhigh)

IV. EXPERIMENTAL EVALUATION

In this section, we conduct experiments to evaluate the

performance of pattern-RL. Specifically, we begin by intro-

ducing the experimental settings and explaining the details

of the implementation. Then we discuss the efficiency and

stability of the learning algorithm by analyzing its learning

curve. Next, we employ our method to form various patterns

and evaluate their accuracy. Finally, further experiments are

conducted to compare pattern-RL with the existing methods

in terms of time efficiency.

A. Experimental Setup

All simulations are carried out on a computer with an

i7-5820K CPU and an 8GB of RAM. Our algorithms are

implemented in Python 2.7 with tensorflow 1.2 and the ex-

periments are conducted using the Webots2 platform, which

simulates a team of robots. The simulated robots have the

following features: (1) Robots cannot communicate but they

know other robots’ positions. (2) The robots have compatible

compasses that have a common north orientation.

2https://www.cyberbotics.com/

213

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Distributed multi-robot coordination exe-

cution algorithm.

Input : Pattern formation strategy πθ .

Output: Trajectory p
t0:tg
i .

for i ∈ {1, ..., N} do
� For each given agent i.
while P �= C do

Update time t← t+ 1;
Receive sensor measurements oi ;
Extract Feature et ←auto-encoder(oi);
at
i ← πθ(ei);

pt+1
i ← pti + at

i;

TABLE I: The hyper-parameters of our experiment on train-

ing a pattern formation model.

parameters value parameters value
β in Eq.6 5 E in Alg.1 800
ϑhigh in Alg.1 10 P in Alg.1 256
Rg in Eq.6 -0.5 M in Alg.1 256
Rc in Eq.6 -20 B in Alg.1 256
γ in Alg.1 0.9 T in Alg.1 6000
βhigh in Alg.1 2 βlow in Alg.1 0.67
KLtarget in Alg.1 0.01 α in Alg.1 0.5
ϑlow in Alg.1 10−4

B. Model Configuration and Computational Complexity

To conduct the experiment, we design a policy network as

a deep neural network with 3 hidden layers that consists

of 256, 128,and 128 rectified linear units (ReLUs) units,

respectively. The third hidden layer is fed into the output

layers with hyperbolic tangent (tanh) activation function for

aμ and softplus activation function for astd. Thus, this output

enables us to select the action ati from a Gaussian distribution

N(aμ, astd), where aμ and astd refers to the mean and the

standard deviation of the desired velocity. Meanwhile, the

value network is implemented as a fully connected neural

network with 3 hidden layers (i.e., 128, 128, and 256 ReLu

units on each layer) and a single neuron output layer.

Learning a new pattern with 10 robots from scratch, the

training process takes an average of 0.5 hours (about 300
episodes) to converge to a satisfactory solution. Similar to

the curriculum learning paradigm, when a strategy model

is trained, learning a similar pattern will take less time

to converge. The hyper-parameters of our experiment are

summarized in Table I. Specifically, we set the learning rate

of the policy network to be 10−4 and value network to be

2× 10−4. When executing the strategy, the response time of

generating new actions for each step takes 1.2 ms on average.

C. Study of the learning curve

To evaluate the learning stability of pattern-RL, Fig. 5

illustrates the learning curves of 10 robots jointly training a

sequence of patterns (i.e., a circle, a cross, a line, and a heart).

The experiment is repeated 4 times. The averaged rewards of

each episodes are illustrated in Fig. 5. We compare Pattern-
RL with the standard PPO (i.e., with clipped surrogate

objective and no auto-encoder). One can see that pattern-
RL achieves the fast convergence speed and receives higher

reward values in each iteration. This experiment indicates

the effectiveness of the auto-encoder and KL constraint.

Intuitively, this is because it forces the updated policy to be

close to the previous one, so an agent can more easily adapt

to other’s intentions (actions) from its previous policies and

gradually improve it. Also, this experiment gives an intuition

on how to choose the weight for KL constraint. We need

to enfeeble the KL constraint so that robots can explore

many more possible ways to form the pattern. However,

weakening KL constraint comes at the cost of increasing the

training time. Through many experiments we found that with

α = 0.5, the adaptive change of the KL constraint provided

good performance while keeping the training cost relatively

small by around 380 episodes.

D. Study of the pattern formation efficiency

We compare pattern formation efficiency with a rule-based

baseline model NH-ORCA[24]. NH-ORCA first creates rules

to calculate the optimal target position for each robot, and

then let the robots move there using the ORCA algorithm.

We evaluate groups of n robots forming n-regular polygons

trained with pattern-RL and with NH-ORCA. The average

travel distances starting from initial random positions to the

target patterns are shown in the Fig. ?? (b). In general, the

path generated by the pattern-RL is smoother and it outper-

forms the baseline method in each scenario. For example, it

achieves a reduction of 37.5% to 43.8% in travelling distance

as the number of agents increased from 4 to 20, respectively.

This experiment demonstrates that although our method takes

time to learn a strategy, it is more efficient in the execution

process.

E. The trajectories of forming irregular patterns

We measure the time step metric to evaluate the perfor-

mance of our proposed approach. The time step counts the

total number of steps for each robot to form the predefined

pattern (i.e., a circle, a heart, a line, and a triangle) based on

the trained strategy model. Fig. 6 illustrates the trajectories

of each robot to form the target pattern. The initial positions

of the robots are in the lightest color. As the robot moves,

the colors of circles get more saturated. Finally, robots move

to the positions highlighted by the small red circles. From

the experimental results, one see that the robots are able to

achieve time efficiency by following the optimal trajectories

without collisions.

V. CONCLUSION

In this paper, we applied deep reinforcement learning

to address the distributed multi-robot coordination problem

and demonstrated its applicability on the successive pattern

formation problem. Our proposed approach enables each

robot to learn the general formation strategy automatically.

Our method not only accelerates the training process by

employing the auto-encoder to compress the high-order

state space, but also stabilizes it by bounding the weights

in the successive policy networks to be relatively close.

Experimental results show that our method outperforms the

214

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c) (d)

Fig. 4: Multi-robot pattern formation: Ten robots (a) start from random positions transiting to form (b) a heart pattern, (c)

a circle pattern, and (d) a cross pattern.

0 200 400 600 800 1000
Episodes

-100

-50

0

50

M
o
v
in

g
 a

v
e
ra

g
e
d
 r

e
w

a
rd

Pattern RL
PPO

(a)

0 200 400 600 800 1000
Episodes

-100

-50

0

50
M

o
v
in

g
 a

v
e
ra

g
e
d
 r

e
w

a
rd

(b)

Fig. 5: The average rewards of forming (a) a cross pattern

and (b) a circle pattern during the training process.

Fig. 6: The trajectories of robots. Starting from light color

circles, the multi-robots form a circle pattern, a heart pattern,

a line pattern, and a triangle pattern.

existing pattern formation methods in term of time efficiency

as well as generality. Experiments on a real robot test-bed

will be conducted in the future. We also plan to extend

our framework and use it on other multi-robots coordination

problems in 3D space.

ACKNOWLEDGEMENT

This work was supported by Shenzhen Basic Research

Funding Scheme under JCYJ20170818104222072.

REFERENCES

[1] J. Wei, J. M. Dolan, and B. Litkouhi, “Autonomous vehicle social
behavior for highway entrance ramp management,” in Intelligent
Vehicles Symposium (IV), 2013 IEEE. IEEE, 2013, pp. 201–207.

[2] C. Robin and S. Lacroix, “Multi-robot target detection and tracking:
taxonomy and survey,” Autonomous Robots, vol. 40, no. 4, pp. 729–
760, 2016.

[3] A. Farinelli, L. Iocchi, and D. Nardi, “Distributed on-line dynamic
task assignment for multi-robot patrolling,” Autonomous Robots, pp.
1–25, 2016.

[4] A. Macwan, J. Vilela, G. Nejat, and B. Benhabib, “Multi-robot
deployment for wilderness search and rescue,” Int. J. Robot. Autom.,
vol. 31, no. 1, 2016.

[5] X. Zang, S. Iqbal, Y. Zhu, X. Liu, and J. Zhao, “Applications of chaotic
dynamics in robotics,” International Journal of Advanced Robotic
Systems, vol. 13, no. 2, p. 60, 2016.

[6] T. Balch and M. Hybinette, “Social potentials for scalable multi-
robot formations,” in Robotics and Automation, 2000. Proceedings.
ICRA’00. IEEE International Conference on, vol. 1. IEEE, 2000, pp.
73–80.

[7] A. Singh, H. Sharma, N. Singh, and P. Katyal, “A survey on cooper-
ative mobile robotics,” International Journal of Applied Engineering
Research, vol. 13, no. 7, pp. 5160–5166, 2018.

[8] C. Belta and V. Kumar, “Trajectory design for formations of robots
by kinetic energy shaping,” in Robotics and Automation, 2002. Pro-
ceedings. ICRA’02. IEEE International Conference on, vol. 3. IEEE,
2002, pp. 2593–2598.

[9] V. Indelman, “Towards cooperative multi-robot belief space planning
in unknown environments,” in Robotics Research. Springer, 2018,
pp. 441–457.

[10] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[11] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,” IEEE
Transactions on Industrial informatics, vol. 9, no. 1, pp. 427–438,
2013.

[12] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the
IEEE, vol. 95, no. 1, pp. 215–233, 2007.

[13] E. Hasan, K. Al-Wahedi, B. Jumah, D. W. Dawoud, and J. Dias,
“Circle formation in multi-robot systems with limited visibility,” in
Iberian Robotics conference. Springer, 2017, pp. 323–336.

[14] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for
leader-following control of multi-agent networks,” Automatica, vol. 44,
no. 3, pp. 846–850, 2008.

[15] S. Carpin and L. E. Parker, “Cooperative leader following in a
distributed multi-robot system,” in Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, vol. 3.
IEEE, 2002, pp. 2994–3001.

[16] J. Bai, G. Wen, A. Rahmani, and Y. Yu, “Distributed formation
control of fractional-order multi-agent systems with absolute damping
and communication delay,” International Journal of Systems Science,
vol. 46, no. 13, pp. 2380–2392, 2015.

[17] J. Wang, Y. Gu, and X. Li, “Multi-robot task allocation based on ant
colony algorithm,” Journal of Computers, vol. 7, no. 9, pp. 2160–2167,
2012.

[18] B. S. Prasad, A. G. Manjunath, and H. Ramasangu, “Multi-agent
polygon formation using reinforcement learning.” 2017.

[19] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proceedings of the 32nd International
Conference on Machine Learning (ICML-15), 2015, pp. 1889–1897.

[20] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[21] A. Ng, “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,
pp. 1–19, 2011.

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[23] M. Egorov, “Deep reinforcement learning with pomdps,” 2015.

[24] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and P. Beard-
sley, “Multi-robot system for artistic pattern formation,” in Robotics
and Automation (ICRA), 2011 IEEE International Conference on.
IEEE, 2011, pp. 4512–4517.

215

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on June 23,2022 at 13:19:43 UTC from IEEE Xplore. Restrictions apply.

