
Griffin: An Ensemble of AutoEncoders for
Anomaly Traffic Detection in SDN

Liyan Yang†∗§, Yubo Song†∗§, Shang Gao‡, Bin Xiao‡, Aiqun Hu†∗§
†School of Cyber Science and Engineering, Southeast University

∗Key Laboratory of Computer Network Techonology of Jiangsu Province
§Purple Mountain Laboratories

‡Department of Computing, The Hong Kong Polytechnic University
yangliyan@stu.xidian.edu.cn, songyubo@seu.edu.cn, goldensaintgao@qq.com, csbxiao@polyu.edu.hk, aqhu@seu.edu.cn

Abstract—The Network Intrusion Detection Systems (NIDS)
with machine learning in SDN become increasingly popular
solutions. NIDS uses abnormal traffic detection to identify
unknown network attacks. Most of today’s abnormal traffic
detection systems are supposed to continuously update the
recognition model in time based on the features from newly
collected packets to accurately identify unknown network attack
behaviors. However, those existing solutions always require a
large number of packets to train the recognition model offline.
That means it is impossible to accurately detect the emergence
of new cyber-attacks immediately. This paper proposes Griffin,
a per-packet anomaly detection system that can dynamically
update the training model based on neural networks. The Griffin
is executed in SDN environment, utilizing a novel ensemble
of autoencoders to collectively filter out abnormal traffic from
normal traffic. Meanwhile, the autoencoders are updated based
on the root mean square error to adjust the training model. The
adjustment is done in an unsupervised manner, which needs no
expert to label the network traffic or update the model from
time to time. Our evaluations, with the open Datasets provided
by Yisroel Mirsky, show that Griffin’s time delay is around 0.1s
and its accuracy is 98%. Moreover, we also compare Griffin with
other four similar NIDSs and find that Griffin performs the best
in terms of Matthews Correlation Coefficient and complexity.

Index Terms—Software-defined Network, network intrusion
detection system, anomaly detection, autoencoder, ensemble
learning

I. INTRODUCTION

Recently, the explosive growth of software-defined network
(SDN) brings new ideas to design the Network Intrusion
Detections Systems (NIDS). Intrusion detection is supposed
to collect information from several key points in the computer
network system and analyze the information to see if there
are any violations of security policies and signs of attacks
on the network. Intrusion detection techniques generally
fall into one of two categories, namely misuse detection
and anomaly detection. One of the drawbacks of misuse
detection is its inability to detect novel, previously unseen
attacks. Conversely, anomaly detection can detect new types
of intrusions. It finds patterns in data that do not conform
to expected behavior [1]. That means it can detect novel,
previously unseen attacks.

In recent years, knowledge in the fields of machine learning
is used for anomaly detection. Many papers detect attacks
with machine learning, such as Naive Bayes (NB) [2], Support

Vector Machine (SVM) [3],and unsupervised fuzzy C-means
clustering [4]. Braga et. al analyze statistical information about
DDoS, putting forward stream-based feature tuples [5]. After
that, he uses Self-Organizing Map (SOM) to make normal
traffic distinguish with anomaly traffic. However the SOM
has slow convergence and needs long training time. Barki
et. al. extract some features of traffic packets: response time,
source address and destination address, using NB, KNN and
K-means to classify the features to detect anomaly respectively
[6]. But this paper analyzes different performances of different
algorithms insufficiently and lacks a simulation environment
for SDN. With the development and high popularity of deep
learning, many researchers [7]–[9] try to use deep learning
to detect attacks for higher accuracy. Granted, Tang et. al
use a five-layer neural network to train the model, but due
to poor feature selection, the accuracy rate is only 75%
[8]. Niyaz et. al use autoencoders to classify the traffic [7].
However high accuracy of 95.65%, their algorithm is limited to
detecting DDoS attack, having the same shortcoming with Z.
Liu et. al [9]. The above-mentioned papers have shortcomings
below: 1) training the model offline and can not detect a
new type of network attack at the moment it appears; 2)
using a supervision model and requiring a large number of
labeled training datasets; 3) low accuracy; 4) high system time
delay that cannot accommodate the requirements of online
monitoring.

To make up for the shortcomings of the methods above,
in this paper, we introduce Griffin: a per-packet anomaly
detection system that can dynamically update the training
model according to each packet in SDN, with online manner,
unsupervised learning, and efficient inspection. Griffin is used
to protect the Internet, just like the ancient Griffin guarding
treasure in Greek mythology.

For the variability of network attack types, it is necessary
to update the model in real-time according to the features of
each packet. Therefore we propose the per-packet anomaly
detection that can dynamically update the training model
according to each packet in SDN. It is established with four
parts: packet capture, feature extractor, feature mapper, and
anomaly detector. To meet the requirement for detecting new
types of attacks in an online manner, we propose a per-packet
feature extraction window with a damping parameter in feature

extractor and real-time anomaly detector. To address the
drawback of the supervision model, we utilize an ensemble
of autoencoders in anomaly detector, without supervision
and labeled training datasets. As for the shortcoming of the
high system time delay of other schemes before, we use the
Hierarchical Clustering Algorithm in feature mapper to reduce
the dimension of the feature set. It reduces the complexity of
Griffin and provides delay guarantees.

In summary, the contributions of this paper are as follows:
• We propose Griffin: a novel per-packet anomaly detection

system in SDN. It can dynamically update the training
model according to each packet.

• We propose online technology and resource detector in
Griffin. Moreover, in Griffin, an ensemble autoencoder
is built automatically in an unsupervised manner. This
method has a slight time delay and implement online
monitoring, without a large number of labeled training
data sets.

• We perform the experience with the open Datasets
provided by Yisroel Mirsky to demonstrate the detection
efficiency of Griffin. From our experiments, we find that
Griffin has a high accuracy of 98% and a slight system
time delay of around 0.1s. Furthermore, Griffin performs
the best in terms of Matthews Correlation Coefficient
and complexity, compared with the other four similar
methods.

The rest of the paper is organized as follows: Section II
presents Griffin’s framework and its entire machine learning
pipeline. Section III presents experimental results in terms of
detection performance and run-time performance. Finally, in
section IV we present our conclusion.

II. GRIFFIN

In this section, the implementation of Griffin is revealed by
steps, and the key problem to be addressed by the system is
also shown in detail.

A. The architecture of Griffin

The Griffin can be divided into 4 parts: packet capture,
feature extractor, feature mapper and anomaly detector, which
is displayed in Fig. 1. The figure illustrates that the switches in
the data plane of SDN take responsibility to capture packets,
meanwhile every switches are deployed feature extractor and
feature mapper. Additionally, switches in data plane execute
concurrently, which contribute to reducing the time required
for feature extradition and the time delay of our NIDS greatly.

The network control technology of the controller in the
control plane mainly includes strategy selection and flow
table issues through the southbound interface protocol. For
the sake of fulfilling the anomaly detection’s potential, we
deploy the anomaly detection on the control plane. As
shown in Fig. 1, this mode utilizes the features after feature
mapper to establish the autoencoders in the ensemble layer
and output layer. To be specific, in the training period, a
backpropagation algorithm is used to train the neural networks.
In the execution period, the positive propagation algorithm

Fig. 1. Diagram of Griffin architecture

is used to execute neural networks and calculate the final
root-mean-square error (RMSE) and score. We consider this
score as a basis for network traffic anomaly detection. When
the anomaly detection detects malicious traffic, the controller
would message switches through the southbound interface to
block this malicious traffic.

B. Packet Capture

According to the OpenFlow protocol, OpenFlow switches’
table flows include three parts: domain information, calculator
and action, among which domain information includes all
information needed in the packet capture. Therefore, the nine
original characteristics of the IP protocol version, source
MAC address, destination MAC address, source IP address,
destination IP address, source port number, destination port
number, packet length, and time stamp can be obtained through
layer-by-layer analysis of the data packets.

C. Feature Extractor

Given lacking memory space and eminent expansibility,
we can’t make statistical analysis to packet windows of
every channel or calculate continuous statistical information
in this packet windows. Therefore, a frame is created with an
attenuation function to be the damping of windows to maintain
increasing statistics. At first, we define a borderless data flow:
S = {x1, x2, x3, . . .}, where xi ∈ R, S can be uninterrupted
feature set like time. When damping weight is 0, we let the
former temporal incremental statistic be deleted, thus defining
the attenuation function as [10]:

dλ(t) = 2−λt (1)

where λ > 0 is the attenuation coefficient and t denotes
the duration time since observing Si last time. Then we
define a damping increment statistical tuple as: TSi,λ :=
(w,FS, SS, SKij , Tlast), where FS is the sum of features
in feature set, SS is the sum of squares of features in feature
set, w is the current weight and Tlast denotes the time stamp
when update the TSi,λ last time. Moving now on to consider
how two temporal incremental statistics impact on result, we

define SKij as the sum of the remaining of flow i and flow
j, which can be used to calculate two-dimensional statistical
analysis, meanwhile, define attenuation coefficient as:

γ ← dλ (tcur − tlast) (2)

In that case, the attenuation process can be updated as follows:

TSi,λ ← (γw, γFS, γSS, γSK, Tcur) (3)

TSi,λ ←
(
w + 1, FS + xcur, SS + x2i , SKij + rirj , Tcur

)
(4)

To extract features, we are supposed to extract
characteristics of the communication host and protocol
when a packet arrived. To be specific, that information
include: 1) Source MAC and IP address (denoted by
Src-MAC-IP-Addr); 2) Source IP (denoted by Src-IP); 3)
The channel between source and destination host (denoted
by Channel-Src-Des); 4) TCP/UDP socket between source
and destination host (denoted by TCP/UDP-Soc). According
to those behavior information and statistical analysis
indicators above, we could select 23 features displayed in
Table. I, where µi = FS/w, σi =

√
|SS/w − (FS/w)2|,

‖Si, Sj‖ =
√
µ2
si + µ2

sj , RSi,Sj
=

√(
σ2
Si

)2
+
(
σ2
Sj

)2
,

CovSi,Sj
=

SKij

wi+wj
and PSi,Sj

=
CovSi,Sj

σSi
σSj

. After that one
can extracts a set of features in tune with features in Table. I
from a total of five time windows: 100ms, 500ms, 1.5s, 10s,
and 1min, thus totaling 115 features.

D. Feature Mapper

In this part, −→x ’s n features are mapped into k
smaller sub-instances to reduce algorithm complexity. Let
V denotes the ordered set of k sub-instances, where V =
{−→v1,−→v2 , . . . ,−→vk}. For the purpose of efficient ensemble
operation, we select a mapping: f(~x) = V with conditions:
guarantee every −→vi has no more than m features.

Given that, we find the mapping f by hierarchically
clustering the features of X into k groups which are no
larger than m. Moreover, correlation is defined as the distance
between two dimensions through the process of clustering. The
correlation distance dcor that is used to calculate the distance
between vector u and v defined as:

dcor(u, v) = 1− (u− ū) · (v − v̄)

‖(u− ū)‖2‖(v − v̄)‖2
(5)

where ū is the mean of elements in vector u, v̄ is the
mean of elements in vector v, (u − ū) · (v − v̄) is
dot product. When it comes to the solution of correlation
between features in hierarchical clustering, one can perform
agglomerative hierarchal clustering on the correlation distance
matrix between each two features of X (denoted by D) to find
f . This algorithm starts from n clustered features and each one
is expressed by D. Then, search for the two nearest points and
connect their associated clusters. This search and join process
is repeated until there is a large cluster containing all n points.

Fig. 2. An illustration of Griffin’s anomaly detection algorithm.

E. Anomaly detector

This part is deployed in the control plane, which is
comprised of two layers: ensemble larger and output larger.
Ensemble larger is an k′ ordered autoencoders, which are
mapped into k′ sub-instances in V . Output larger is an
autoencoder, which learns the RMSE from the ensemble layer.
Two modes of abnormal detector–namely training mode and
monitoring mode will be shown below.

1) Training mode: When the anomaly detector receives the
first set of mapped k′ sub-instances of V from the feature
mapper, it uses them as a blueprint initialization architecture.
To be specific, let θ denotes a complete autoencoder, let L(1)

and L(2) be the ensemble layer and output layer separately,
where L(1) is the ordered set:L(1) = {θ1, θ2, . . . , θk′}.

When it comes to the autoencoders θi ∈ L(1) in ensemble
layer, they have three-layer neural network, namely dim(−→vi)
neural network of input layer and output layer, also the [β ·
dim(−→vi)] neural network of hidden layer (β ∈ (0, 1]). The
Fig. 2 displays the mapping between −→vi ∈ V and

−→
θi ∈ L(1).

We define L(2) as autoencoder θ0, which has k′ input
and output neurons and dk′ · βe internal neutrons. Its input
comes from 0-1 normalized RMSE error signal of every
autoencoder in L(1), reducing the complexity of the network.
Meanwhile, we utilize the evenly distributed random value:
U
(
−1

dim(~vi)
, 1
dim(~vi)

)
to initialize the weight of autoencoder

θi.
For every normal packet, the neural network executes

forward propagation firstly. We use the activation function
called sigmoid: f(~x) = 1

1+e~x
and define the last output as:

−→
y′ = a(L). Let h be the forward propagation from input ~vi to
output

−→
y′ , which is defined as: hθ (xi) =

−→
y′ .

The algorithm employed to train the neural network is
a backpropagation algorithm based on Stochastic Gradient
Descent (SGD). In this process, the RMSE between the actual
value and the expected value would be retained. And the

RMSE can be computed as: RESE(~x, ~y) =

√∑n
i=1(xi−yi)2

n ,
where n is the dimension of the input vector. In this paper, the
largest iteration number is 1. In that case, we only learn once
from each instance to hold the online algorithm. In summary,
we will train the model by the steps following:

• Use normal instance xi in X to train autocoder.
• Execute: s = RMSE (xi, hθ (xi)).

TABLE I
FEATURES SELECTED

The packet’s... Statistics Characteristic Features
Size µi, σi Src-MAC-IP-Addr, Src-IP, Channel-Src-Des,TCP/UDP-Soc 8

Magnitude ‖Si, Sj‖, RSi,Sj
, CovSi,Sj

, PSi,Sj
Channel-Src-Des, TCP/UDP-Soc 8

Count wi Src-MAC-IP-Addr, Src-IP, Channel-Src-Des,TCP/UDP-Soc 4
Jitter wi, µi, σi Channel-Src-Des 3

• Update: if (s ≥ ∅) then ∅ ← s (let ∅ be threshold,
whose initial value is -1).

• Update the θ through learning the features of xi.
2) Monitoring mode: Generally, the autoencoder trained in

X can recreate an instance with the same data distribution as
X . If instance is inconformity to the features learned from
X , the RMSE would be high between recreated features and
original features. In that case, we can through executing the
steps following:
• Execute: s = RMSE (~x, hθ(~x)).
• Judgment: if (s ≥ ∅β) then alert.

In the monitoring mode, the autoencoder does not update
any internal parameters. Instead, it performs forward
propagation through the entire network and returns the RMSE
reconstruction error of L(2). The output of Griffin is the RMSE
anomaly score s ∈ [0,∞). The larger the score s, the greater
the anomaly.

III. EVALUATION

In this section, we provide an evaluation of Griffin in
terms of its detection and runtime performance. We open
by researching impact of key position to prediction accuracy,
followed by feature selection, and finally, it shows the time
delay, accuracy, CPU usage of our system as well as the
comparison with other similar systems to show the superiority
of our scheme.

A. Experimental Environment

Griffin requires operating in SDN environment, and
this paper adopts Mininet platform to simulate the SDN
environment. As for the hardware condition, we use the core
of Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz 1.99 GHz
and the memory of 8G.

B. Datasets

The datasets used in the evaluation is the open Datasets
provided by Yisroel Mirsky [10]. Details of the datasets are
shown in Table. II.

C. Impact of Key Position to Prediction Accuracy

Based on the autoencoder used in Griffin mentioned in
the previous chapter, it is obvious that the maximum count
of features MaxFE included in every sub-instance in feature
mapper would impact on detection accuracy and time taken by
the Griffin to process all sample traffic packets TimePa. The
Fig. 3 shows the link between TimePa and FalsePa with the
change of MaxFE.

TABLE II
THE DATASET USED TO EVALUATE GRIFFIN

Attack Type Attack Name Vector Packets
Recon Fuzzing 3 2244139

Man in the Middle Active Wiretap 2 4554925

Denial of Service
SSDP Flood 1 4077266
SYN DDoS 1 2771276

SSL Renegotiation 1 6084492
Botnet Malware Mirai X 764137

Fig. 3. The affect Griffin’s MaxFE has on FalsePa and TimePa

Obviously, there is a clear trend of decreasing of TimePa
with the increasing number of MaxFE. Moreover, when
MaxFE ≥ 23 the TimePa reaches the bottom and changes
tinily. Also, it is displayed from this figure that when MaxFE
∈ [4, 19], the FalsePa is a negative value, which indicates
many missing reports. What’s more, when MaxFE ∈ [20, 29],
the absolute value of FalsePa reaches the bottom, therefore
the accuracy reaches the top. Additionally, when MaxFE
∈ [30, 49], the FalsePa is positive value indicating many
false-negative instance.

In summary, for the informants in this study, let MaxFE
∈ [23, 25] to make the FalsePa and the TimePa reach the
bottom at the same time. In this paper, let MaxFE = 25 and
count of sub-instance is 19.

To improve the accuracy of Griffin and reduce the time
delay of the system, we are supposed to make importance
evaluation to divided 19 sub-instances based on Random
Forest and select the sub-instances. Sub-instance selection is
a work, on which we rank all sub-instances according to their
feature’s importance. One can utilize a series of rules to get
the relative relationship of the importance of sub-instances and
we use the random forest. To be precise, when constructing
a decision tree, get node segmentation effect metric by using
the Gini Index and calculating the Gini Importance of feature
to indicate the importance of the feature. And the Gini Index

can be defined as:

Gini(p) =

Q∑
q=1

pq (1− pq) = 1−
Q∑
q=1

p2q (6)

where q denotes q-th class and pq denotes the sample weight
of q-th class. In that case, the importance of feature Xj in
node m, namely the variable quantity of Gini Index before
and after branching the node m, denoted as V IM (Gini)

jm , can
be defined as:

V IM
(Gini)
jm = GIm −GIl −GIr (7)

where GIl and GIr denote Gini Index of new nodes after
branching. If the node of feature Xj in decision tree i is in
set M , then the importance of Xj in i-th tree V IM (Gini)

ij is
defined as:

V IM
(Gini)
ij =

∑
m∈M

V IM
(Gini)
jm (8)

We make a assumption that there are n trees totally, then the
sum of them, denoted as V IM (Gini)

j , is defined as:

V IM
(Gini)
j =

n∑
i=1

V IM
(Gini)
ij (9)

Finally, one can make a normalization process to importance
scores as following:

V IMj =
V IMj∑c
i=1 V IMi

(10)

where the denominator is the sum of all feature gains, and
the numerator is the Gini index of feature j. Utilizing the
measure to evaluate the importance of every sub-instance, we
get the Fig. 4. Obviously, the importance of sub-instance 1
and sub-instance 5 is little. Therefore we can reject them. After
that, 17 autoencoders should be deployed in the ensemble layer
in anomaly detector.

Fig. 4. Feature selection based on random forest

Fig. 5. Time delay of system with multiple test datasets

D. Evaluation Metrics

Move on to the system time-delay, namely the time it takes
for the system to detect an attack from the moment of attack.
Let tdelay be the system time-delay, tfeature denotes the time
it takes for the feature extractor and the feature mapper in
switches of the data plane. What’s more, ttest and tmessage
denote the time taken by the anomaly detector and messaging
to switches respectively. In that condition, the tdelay can be
computed as: tdelay = tfeature + ttest + tmessage . We utilize
several attack datasets provided by Yisroel Mirsky to process
the system time-delay test. Meanwhile we use Fig. 5, which
is a destiny plot to indicate the result. It is apparent from this
figure that the peaks of different datasets appear at the same
point of 0.1s, which means the system’s time-delay for all
attack datasets participating in the test is concentrated at 0.1s.
Further analysis shows that the system time-delay does not
exceed 1.5s. These results indicate that the Griffin is blessed
with high system stability and a short time-delay.

Moving on now to consider the accuracy of the Griffin. We
utilize the cross-verified iterator to calculate the ROC curve
(Receiver Operating Characteristic curve) of Griffin. The result
is presented in the Fig. 6, where the abscissa indicates the
false positive rate, the ordinate indicates the true positive rate.
Additionally, AUC denotes the area enclosed by the curve,
which is used to measure the manifestations of the ROC
curve, namely larger AUC means better system performance.
As shown in the Fig. 6, in each iteration, the AUC is close to
1, which expresses the good performance of the system.

Let us now consider the complexity of Griffin. CPU usage
is introduced as an indicator to evaluate the complexity of
Griffin. To highlight the low complexity of the algorithm
used in Griffin, it is necessary to compare it with two
other algorithms: network intrusion detection system based
on artificial neural network and support vector machine
(ANN-SVM), and network intrusion detection system based
on artificial neural network and random forest (ANN-RF). It is
reasonable to compare Griffin with those two NIDS, because
the architecture of these two NIDS is similar to that of the
Griffin – all using the ensemble learning. After that we get

Fig. 6. The ROC curve of Griffin. Fig. 7. Compare the Griffin’s CPU usage with
ANN-SVM NIDS and ANN-RF NIDS.

Fig. 8. Comparison results of the considered
methods in terms of Mathews correlation coefficient.

the result shown in Fig. 7. Obviously, CPU usage of Griffin
is around 45%, however CPU usage of other two systems is
around 85%. Therefore, one can conclude that the complexity
of Griffin is low.

For the sake of evaluating detection effect of Griffin,
we compare its effect with other four models: ANN-RF,
ANN-SVM, SVM and RF. Research shows that the Matthews
correlation coefficient (MCC) is one of the best performance
indicators for the classification problem of machine learning.
Therefore one can evaluate the accuracy of the test by
MCC between the prediction and practical results. MCC is a
value between -1 and +1. The coefficient +1 means perfect
prediction, 0 means no better than random prediction, and
-1 means completely inconsistency between prediction and
practical results. Obviously, the higher the MCC, the more
accurate the prediction results are, where the MCC is defined
as:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

where TP is the count of true positive instance, TN is
the count of true negative instance, FP is the false positive
instance and FN is the false negative instance. If any of the
four sums in the denominator is zero, the denominator will be
set to 1.

From the Fig. 8 above we can notice that the Griffin gains
the top of MCC reaching 0.982, ANN-SVN and ANN-RF
follow it reaches 0.95 and 0.87 respectively, however SVM and
RF get relatively lower MCC are 0.62 and 0.69 respectively.
Armed with this research, one can conclude that Griffin has
higher accuracy and better detection effect.

IV. CONCLUSION

Griffin is an NIDS based on SDN and neural network, which
has been designed to be efficient. It accomplishes anomaly
detection in a novel per-packet detection way updating
the detection model dynamically, effectively monitoring the
behavior of all network connections, and utilizing ensemble
learning with autocoders. In this paper, an online novel
per-packet anomaly detection is first provided based on the
SDN and its performance is investigated in terms of detection
and runtime. Griffin, an online algorithm, is blessed with
the accuracy of 98% and slight time delay – around 0.1s.

Evaluation show that the proposed scheme outperforms other
algorithms in terms of complexity and MCC.

ACKNOWLEDGMENT

This work is supported in part by
National Key R&D Program of China under Grant Nos.
2018YFB2202200, 2018YFB2100403. Yubo Song is the
corresponding author. This work is partially supported
by Frontiers Science Center for Mobile Information
Communication and Security, Southeast Univeristy, Nanjing,
China.

REFERENCES

[1] A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, “A
comparative study of anomaly detection schemes in network intrusion
detection,” in Proceedings of the 2003 SIAM international conference
on data mining. SIAM, 2003, pp. 25–36.

[2] M. Zekri, S. El Kafhali, N. Aboutabit, and Y. Saadi, “Ddos attack
detection using machine learning techniques in cloud computing
environments,” in 2017 3rd International Conference of Cloud
Computing Technologies and Applications (CloudTech). IEEE, 2017,
pp. 1–7.

[3] J. Liu, Y. Lai, and S. Zhang, “Fl-guard: A detection and defense
system for ddos attack in sdn,” in Proceedings of the 2017 international
conference on cryptography, security and privacy, 2017, pp. 107–111.

[4] W. Shang, J. Cui, C. Song, J. Zhao, and P. Zeng, “Research on industrial
control anomaly detection based on fcm and svm,” in 2018 17th IEEE
International Conference on Trust, Security and Privacy in Computing
And Communications/12th IEEE International Conference on Big Data
Science and Engineering (TrustCom/BigDataSE). IEEE, 2018, pp.
218–222.

[5] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in IEEE Local Computer Network
Conference. IEEE, 2010, pp. 408–415.

[6] L. Barki, A. Shidling, N. Meti, D. Narayan, and M. M. Mulla,
“Detection of distributed denial of service attacks in software defined
networks,” in 2016 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, 2016, pp.
2576–2581.

[7] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in Proceedings of
the 9th EAI International Conference on Bio-inspired Information and
Communications Technologies (formerly BIONETICS), 2017, pp. 21–26.

[8] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for network intrusion detection in software
defined networking,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM). IEEE, 2016, pp.
258–263.

[9] Z. Liu, Y. He, W. Wang, and B. Zhang, “Ddos attack detection
scheme based on entropy and pso-bp neural network in sdn,” China
Communications, vol. 16, no. 7, pp. 144–155, 2019.

[10] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: an
ensemble of autoencoders for online network intrusion detection,” arXiv
preprint arXiv:1802.09089, 2018.

