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Abstract— The introduction of software-defined networking
(SDN) has emerged as a new network paradigm for network
innovations. By decoupling the control plane from the data plane
in traditional networks, SDN provides high programmability
to control and manage networks. However, the communication
between the two planes can be a bottleneck of the whole network.
SDN-aimed DoS attacks can cause long packet delay and high
packet loss rate by using massive table-miss packets to jam
links between the two planes. To detect and mitigate SDN-aimed
DoS attacks, this paper presents FloodDefender, an efficient and
protocol-independent defense framework for SDN/OpenFlow net-
works. FloodDefender stands between the controller platform and
other controller apps, and conforms to the OpenFlow policy with-
out additional devices. The detection module in FloodDefender
utilizes new frequency features to precisely identify SDN-aimed
DoS attacks. The mitigation module uses three new techniques to
efficiently mitigate attack traffic: table-miss engineering to pre-
vent the communication bandwidth from being exhausted; packet
filter to filter out attack traffic and save computational resources
of the control plane; and flow rule management to eliminate most
of useless flow entries in the switch flow table. Our evaluation
on a prototype implementation of FloodDefender shows that the
defense framework can precisely identify and efficiently mitigate
the SDN-aimed DoS attacks with very little overhead.

Index Terms— SDN, SDN-aimed DoS attacks, attack detection,
table-miss engineering, packet filter, flow rule management.

I. INTRODUCTION

SOFTWARE-defined networking (SDN) has speeded
up network innovations for the ossified network

infrastructure. By separating the traditional network
architecture into control and data planes, SDN introduces
a more flexible way to manage and control network traffic
with high programmability [1]. This logical centralized
control plane dictates the whole network behavior through a
“southbound” protocol. Among all implementations of SDN
(the “southbound” protocol), the OpenFlow [2] framework
is the leading embodiment of SDN concept. The control
plane installs flow rules on the data plane via OpenFlow
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protocol. The data plane then follows these flow rules to
handle network flows. When a packet that does not match
any existing flow rules (table-miss packet) comes, the data
plane encapsulates this packet into a packet_in message
and reports it to the control plane for instructions.

The communication between the control and data planes
causes considerable overhead, and could become a bottleneck
of the whole network [3], [4]. Today’s commercial OpenFlow
switches [5] only support cable connection to the controller.
The practical connection bandwidth was tested to be less
than 10Mbps [6], [7]. This costly communication can be
leveraged by an attacker to launch SDN-aimed DoS attacks
(e.g., data-to-control plane saturation attacks) [6], [8]. Specif-
ically, the attacker randomly forges some or all fields of
a packet, making it hard to match with any existing flow
rules on a victim switch. Then, the attacker sends a large
amount of these table-miss packets to flood the network by
SDN-aimed DoS attacks. These table-miss packets will trigger
massive packet_in messages from the victim switch to
the controller, and consume their communication bandwidth,
CPU computation, and memory in both control and data
planes.

We face the following three challenges to protect OpenFlow
networks against the SDN-aimed DoS attacks:

• How to precisely detect SDN-aimed attacks and timely
notify the defense system when attacks occur?

• How to efficiently handle table-miss packets while main-
taining short delay, low loss rate and forwarding operation
for normal packets?

• How to precisely distinguish attack traffic from benign
traffic without straining computational resources?

These three challenges are not easy to solve. The attack
detection requires a low false-positive rate to respond timely
to attacks. However, detection accuracy and timely response
are two factors that conflict with each other. For the second
challenge to handle table-miss packets, we cannot simply
drop all table-miss packets, since the new flows from benign
hosts will be dropped as well. We should figure out a
way to let the control plane receive packet_in messages
(triggered by table-miss packets) without consuming much
bandwidth. Because some table-miss packets are generated by
benign hosts, we have the third challenge to precisely identify
attack traffic and filter them out accordingly. To deal with
these three challenges, several solutions have been proposed,
such as AvantGuard [6] and FloodGuard [7]. However, both
approaches focus on the mitigation of the SDN-aimed DoS
attacks. The attack detection, which is equally important to
mitigation, is not deeply discussed. Besides, additional devices
are used in both approaches, which are not compatible to the
standard OpenFlow protocol.
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In this paper, we study the SDN-aimed DoS attacks, and
propose FloodDefender, a scalable and protocol-independent
defense system in OpenFlow networks. FloodDefender stands
between the controller platform and other controller apps,
and is protocol-independent against all kinds of attack traffic
(e.g. TCP-based attacks or UDP-based attacks). All designs in
FloodDefender conform to the OpenFlow policy and need no
additional devices.

FloodDefender has two modules: detection module and
mitigation module. The detection module utilizes new fre-
quency features for attack detection. Frequency features can
significantly reduce false-alerts in previous detection solutions.
The mitigation module contains three components: table-miss
engineering, packet filter, and flow rule management. The
table-miss engineering component detours table-miss packets
to neighbor switches with wildcard flow rules to protect the
communication link between the control and data planes from
being jammed; the packet filter component filters out attack
packets from the received packet_in messages to save
computational resources of the controller; and the flow rule
management component constructs a robust flow table in the
data plane by separating the flow table into “flow table region”
and “cache region” to save the Ternary Content Addressable
Memory (TCAM) of OpenFlow switches.

This paper also theoretically analyzes the impact of neigh-
bor switches in the table-miss engineering by using an average
queueing delay model. The analytical result shows that Flood-
Defender can keep the average delay of communication links
within 0.3s by evenly distributing attack traffic to 3 neighbor
switches.

Finally, we implement a prototype of FloodDefender and
evaluate its performance in both software and hardware envi-
ronments. Experimental results show that FloodDefender can
reduce the false-alerts and ensure the accuracy in attack
detection, save more than 70% and 20% bandwidth in the
software and hardware tests respectively, and consume only
0.5% CPU computation to handle attack traffic. Meanwhile,
it precisely filters out more than 96% attack traffic, and incurs
only 18ms delay and 5% packet loss rate for benign traffic
under attacks.

The rest of the paper is organized as follows. Section II
introduces some background knowledge and the security
problem of SDN-aimed DoS attacks in OpenFlow networks.
In Section III, we present the overview of FloodDefender
system. Section IV and Section V show the detailed designs
in both detection module and mitigation module respectively.
In Section VI, we theoretically analyze how many neighbor
switches should be involved in the table-miss engineering. The
implementation and experimental evaluation of FloodDefender
are shown in Section VII. We summarize the related work
in Section VIII. In Section IX, we discuss the limitations of
FloodDefender and future improvements. Finally, we conclude
this paper in Section X.

II. PROBLEM STATEMENT

In this section, we first introduce the workflow of handling
normal traffic in OpenFlow networks. Then we present the
adversary model of SDN-aimed DoS attacks. Finally, we state
the problem and challenges of mitigating the DoS attacks in
OpenFlow networks.

Fig. 1. The workflow of SDN.

A. SDN Workflow

In OpenFlow networks, the controller in the control plane
dictates the behaviors of the whole network by installing flow
rules on the data plane via two approaches: proactive flow
installation and reactive flow installation. In the proactive
approach, the control plane pre-installs flow rules on the
data plane to process network traffic. The data plane then
follows these rules to handle incoming packets. In the reactive
approach, when an OpenFlow switch receives several packets,
it will queue them in an input queue, and follow the following
four steps to process each packet in a FIFO (first input first
output) manner, as depicted in Fig. 1.

1) The OpenFlow switch looks up its flow table to find flow
rules that match with the header of received packet. If a
match is found, the switch processes the packet based on
the action field of the flow rule. Otherwise, the switch
regards the packet as a table-miss packet, buffers the
packet, encapsulates its header in a packet_in mes-
sage,1 and reports to the controller.

2) When the controller receives the packet_in message,
it decides how to process the packet based on the logic
of control apps. The “action” will be sent back to the
switch in a packet_out message.

3) The OpenFlow switch then processes the buffered table-
miss packet based on the “action” from the controller.

4) The controller can further install flow rules (via “modify
state” messages) with “match” and “action” fields to
indicate the switch to directly process packets of the
same flow when received again.

This reactive flow installation approach enables a more
flexible way to manage and control network traffic, and has
been widely used in most OpenFlow applications.

B. Adversary Model

In reactive OpenFlow networks, the communication over-
head between the control plane and data plane could be
leveraged by an adversary. An attacker first randomly gen-
erates forged packets with forged fields, making them hard
to match existing flow rules in a switch. Then, the attacker
sends massive table-miss traffic mixed with normal traffic to
an OpenFlow switch and launches SDN-aimed DoS attacks.
To process each table-miss packet, the victim switch has to
buffer it and send out a packet_in message with its header,
as depicted in Fig. 2. Even worse, the OpenFlow Specification
v1.4 [9] requires that a packet_in message should contain
the whole packet when the memory of a switch is full. This
feature could be further exploited by an attacker to flood the
network with less resource.

1An OpenFlow switch will encapsulate the whole packet when its buffer is
full.
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Fig. 2. SDN-aimed DoS attacks in OpenFlow networks.

Fig. 3. Bandwidth and computational resource consumption under SDN-
aimed DoS attacks. The data are collected from our experiments.

The DoS attacks can jam the bandwidth between the
controller and a switch by generating massive table-miss
packets, overload a switch’s flow table by installing useless
rules, and consume controller’s computational resources when
processing packet_in messages, as depicted in Fig. 3. The
result is much worse when the memory of the switch is full.
For benign traffic, the throughput of both packet forwarding
and packet processing will be significantly degraded. For new
flows (benign table-miss traffic), since the switch-controller
bandwidth is jammed and the controller is overwhelmed,
the switch can hardly receive the packet_out message
to handle the table-miss traffic (these packets can hardly
be processed). Besides, for matched packets (matching with
existing rules in the flow table), since they are queued in the
switch due to the attack traffic, they have to wait for a long
time before the switch process all attacking packets in front
of them.2

SDN-aimed DoS attacks are different from DoS attacks in
legacy networks. Since switches can process each incoming
packet by themselves in legacy networks (i.e. there are no
“table-miss” packets in legacy networks), SDN-aimed DoS
attacks cannot affect legacy networks. Besides, legacy network
switches are designed with high performance in processing
packets. Attackers will use great resource to dysfunction a
switch in legacy networks. OpenFlow switches have to ask
the control plane for instructions to handle table-miss traffic.
Attackers can dysfunction OpenFlow switches via flooding
table-miss packets with little resource. Lastly, switches can
ignore switch-aimed attack traffic (e.g. ignoring TCP and UDP
packets with destination IP = target switch’s IP) to mitigate

2Processing table-miss packets also consumes a longer time than forwarding
matched packets, since processing table-miss packets requires encapsulation
and output (to the controller) operations, while forwarding matched packets
only requires output (to an output port(s)) operation.

switch-aimed DoS attacks in legacy networks. However, this
solution is impractical for OpenFlow switches under SDN-
aimed DoS attacks, since attackers can use host-to-host traffic
to launch the attacks (e.g. table-miss packets with destination
IPs = new hosts’ IPs). Ignoring switch-aimed traffic cannot
avoid the attacks, and dropping all table-miss packets will
affect benign traffic. Therefore, solutions to traditional DoS
attacks are not suitable for SDN-aimed DoS attacks.

C. Problem and Challenge

The problem studied in this paper is how to detect and
mitigate the SDN-aimed DoS attacks in OpenFlow networks.
The attack detection should be fast without causing many
false-alerts. FloodGuard [7] uses several features such as
packet_in rate and utilization of infrastructure to calculate
current usage percentage of the network capacity. However,
when a network starts up, these features have similar patterns
to SDN-aimed DoS attack scenarios, which makes false-alerts.
We should use new features to reduce the false-alerts in Flood-
Guard. To protect the communication bandwidth between
the controller and victim switch, a good solution should be
able to handle table-miss packets efficiently and maintain
the functionality of forwarding benign traffic. Meanwhile,
before the control plane processes received packet_in
messages, the protecting system should filter out attack traf-
fic (from received packet_in messages) both efficiently
and precisely to save computational resources of the control
plane.

In the design of a defense system, we also face two
challenges. First, we should be able to handle all kinds of
attack traffic (e.g. TCP-based attacks and UDP-based attacks).
Solutions such as AvantGuard [6] may not be practical since
attackers can use UDP/ICMP-based attack traffic to bypass
them. Second, the defense system should be scalable and
conform to the OpenFlow policy without employing addi-
tional devices. The hardware modification (TCP proxy) in
AvantGuard [6] and additional devices (data plane cache)
in FloodGuard [7] will increase the cost when deploying in
OpenFlow networks.

III. SYSTEM OVERVIEW

We design a system named FloodDefender, which can pre-
cisely identify SDN-aimed attacks, as well as save resources
like bandwidth, computation and flow table space when SDN-
aimed DoS attacks occur. We describe the design of the
FloodDefender system, including its architecture and workflow
below.

A. FloodDefender Architecture

FloodDefender stands between the controller platform and
other controller apps, as depicted in Fig. 4. It consists of two
functional modules: detection module and mitigation module.
The mitigation module is composed of three components to
protect OpenFlow networks against SDN-aimed attacks: table-
miss engineering, packet filter, and flow rule management.

FloodDefender works in three states: alert, active, and
block, as depicted in Fig. 5. When no attacks are detected,
FloodDefender remains in the alert state to monitor network
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Fig. 4. The architecture of FloodDefender. Apps indicate the OpenFlow
control apps on the control plane for network traffic management (e.g.
l2_forwarding and firewall).

Fig. 5. States of FloodDefender.

status for attack detection, and delivers the packet_in
messages, action messages, and flow rules between the con-
troller platform and controller apps. When attacks are detected,
FloodDefender switches to the active state to mitigate attacks.
It filters packet_in messages and forwards them to control
apps through the packet filter component. It also manages
the flow rule installation through the flow rule management
component. In some extreme cases, the network is under
severe attacks,3 FloodDefender comes to the block state and
blocks all table-miss packets from the victim switch’s input
port which has a high table-miss rate. When attacks are
detected to be terminated, FloodDefender switches back to
the alert state again.

B. FloodDefender Workflow

Initially, the detection module monitors the network status
and the mitigation module remains idle. When the detection
module detects SDN-aimed DoS attacks, the mitigation mod-
ule is activated for attack mitigation in the following six steps:

1) The detection module identifies victim’s neighbor
switches (not under attacks) that directly connect to
the controller. The flow rule management component
logically separates the flow table into flow table region
and cache region;

2) The table-miss engineering component installs protect-
ing rules on the victim switch to detour some table-miss
packets to neighbor switches. When neighbor switches
receive the detoured table-miss packets, they will send
packet_in messages to the controller;

3The attack traffic could exhaust both the victim switch bandwidth and its
neighbor switch bandwidth.

3) When the controller receives packet_in messages,
the packet filter stores them and roughly filters out attack
traffic from these messages. The filtered traffic will then
be delivered to the control apps;

4) The control apps process these packets and then send out
action messages and flow rules. Action messages will be
sent to the switch that reports packet_in messages.
However, flow rules will be intercepted by the flow rule
management component;

5) The flow rule management component decides the moni-
toring rules based on intercepted processing rules. Inter-
cepted processing rules will be installed on the cache
region of the victim switch. Monitoring rules will be
installed on the flow table region instead;

6) The victim switch can move a rule from its cache region
to the flow table region if the rule is regarded as legal
by the packet filter component. Cache region will then
be flushed to save the space of flow table.

IV. DETECTION MODULE

The detection module continues monitoring the network
status for attack detection. When attacks occur, it triggers
the mitigation module to work and FloodDefender enters the
active state. The detection module also provides important
information to dynamically adjust protecting rules for evenly
splitting table-miss traffic to neighbor switches. When attacks
are detected to be over, mitigation module stops working and
FloodDefender goes back to the alert state.

Though FloodGuard [7] utilizes packet_in message rate,
buffer memory, controller memory, and CPU to identify poten-
tial attacks, its detection may cause false alerts. For instance,
when an OpenFlow network adopts an reactive approach, all
switch flow tables are empty initially. Both packet_in mes-
sage rate and utilization of the infrastructure (buffer memory,
controller memory, and CPU) are high and false alerts may
be triggered. This is more serious for large networks. Even
though FloodGuard can automatically switch to the idle state
(similar to the alert state of FloodDefender), false alerts can
downgrade the network performance.

To precisely identify attack traffic, we introduce another fea-
ture: flow entry frequency. The flow entry frequency describes
the number of packets of each flow received by the switch. For
attack traffic, the frequency will be very low since the attack-
ers try to generate as much attack traffic as possible. The
frequency of normal flows will be much higher. Specifically,
we separate flow entries into three parts4: low-frequency flows
(the frequency is lower than 10, first 4 flows in Fig. 6), mid-
frequency flows (the frequency is between 10 and 100, 5th
flow in Fig. 6), high-frequency flows (the frequency is higher
than 100, 6th flow in Fig. 6). For each part, we calculate the
number of flows, and the average frequency of these flows
( Total number of packets of flows in this part

Total number of flow entries in this part ).
The frequency of matched flows can be easily collected

from the packet count field of the flow rules. While for new
flows (table-miss packets), their frequency cannot be obtained
directly. Here we use a heuristic method to calculate the new

4We use the (0, 10), [10, 100], (100, +∞) splitting since it performs best
in our experiments. We also encourage users to adjust the splitting based on
their network environment
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Fig. 6. Frequency of flow entries (the number of flows and the average
frequency of these flows). Count field represents the number of packets per
flow.

flow frequency. Specifically, each table-miss packet of a new
flow will be regarded as a 1-frequency flow and grouped based
on the destination IP and MAC. Once the corresponding flow
rule is installed, all 1-frequency records in this group will
be removed, and use the frequency of this flow to calculate
frequency features. Otherwise, when the rule is not installed,
frequency features are calculated based on the 1-frequency
records. For instance, in a layer 2 forwarding OpenFlow
network with an existing host A and a new host B (B just joins
in). When A sends several packets to B (table-miss packets
since “to-B” rule is not installed), each A-to-B packet will
be regarded as a 1-frequent flow first and grouped in “to-B”
group (“to-B” group just counts the number of 1-frequency
records). Then, after “to-B” rule is installed (the installation
can be triggered by table-miss packets generated by B), records
in “to-B” group will be removed. The frequency of the “to-
B” flow will be collected from the packet count field. When
A sends packets to X or forges packets from Y to X (X and
Y are non-existing hosts), each packet will be regarded as a
1-frequent flow to calculate the frequency features, since the
“to-X” rule will not be installed.5

The values of frequency feature differ a lot under attacks
and in network startups scenarios, especially for low-frequency
flows. When networks first start up, the number of low-
frequency flows increases slowly, and will drop down quickly
due to the increment of frequency (most low-frequency flows
become mid-frequency or high-frequency flows). Meanwhile,
the average frequency of low-frequency flows will quickly
increase to the upper bound (10 in FloodDefender). On the
other hand, when networks suffer from SDN-aimed DoS
attacks, the number of low-frequency flows increases dramati-
cally till the flow table of the victim switch is full. The average
frequency of low-frequency flows will remain in a very low
value (1 in our experiment). By employing the frequency
features, the two scenarios can be easily identified. Based on
frequency features and other mentioned features (packet_in
message rate, buffer memory, controller memory, and CPU),
the attack detection module adopts a certain anomaly threshold
to monitor the network status and trigger state transitions of
FloodDefender.

Besides attack detection, the detection module also pro-
vides important information to the table-miss engineering
component in mitigation module when FloodDefender is in
active state. This information will help the table-miss engi-
neering component dynamically adjust protecting rules to

5A benign host may keep sending packets to a non-existing host (e.g. a client
may try to keep connecting to a server until the server is online). which can
result in low-frequency rate in our mechanism. We regard such traffic legal
as long as the rate is acceptable. To reduce the false-alerts in such scenarios,
we combine frequency features as well as other features for detection.

Fig. 7. Detouring table-miss traffic to neighbor switches when attacks occur.

evenly split table-miss traffic to neighbor switches. When the
detection module finds that some links between the controller
and switches (including both victim switch and neighbor
switches) are jammed, or some links have more available
bandwidth, the detection module sends the information of
these switches to allow the table-miss engineering component
offload more/less table-miss packets to them by adjusting
protecting rules.

V. MITIGATION MODULE

FloodDefender utilizes three components in the mitigation
module to protect OpenFlow networks against SDN-aimed
DoS attacks: table-miss engineering, packet filter, and flow
rule management.

A. Table-Miss Engineering Component

The table-miss engineering component works when the
SDN-aimed DoS attacks are detected. In SDN-aimed DoS
attacks, massive table-miss packets (attack traffic and benign
traffic, which are represented by step 1 and 2 in Fig. 7
respectively) will be sent to the target switch to exhaust the
switch-controller bandwidth. Therefore, the table-miss engi-
neering component will install some flow rules (i.e. protecting
rules, respected by step 3 in Fig. 7) to offload some table-
miss packets to neighbor switches to save the bandwidth
of the victim switch. Specifically, the table-miss engineering
component issues protecting rules to forward some table-
miss traffic to neighbor switches6 (step 4). The corresponding
packet_in messages will be delivered to the controller via
different links (step 5). In this way, the bandwidth between
the target switch and controller can be saved. The controller
can further process these packet_in messages and respond
with actions (step 6) and flow rules (i.e. processing rules, step
7). Since the offloaded packets will only be delivered to the
controller once by neighbor switches, table-miss engineering
component will not amplify the attack traffic between the
controller and switches.

Protecting rules are wildcard flow entries with the lowest
priority to split the table-miss traffic into several parts to

6Though the same “offloading traffic” mechanism is also applied on
neighbor switches, we do not allow neighbor switches to use this mechanism
when they are involved as neighbors (i.e. the mechanism is not allowed when
switches are not victims). This could be done by selecting switches that are
not under attacks as neighbors, and involving more neighbors/switching to
Block state when attack rate increases.
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different neighbor switches. The match fields of protecting
rules are adjusted dynamically by a traffic balancer to ensure
the load balance of each neighbor switch. When neighbor
switches are flooded by attack traffic, table-miss engineering
will use more protecting rules to involve more neighbor
switches. The maximum number of protecting rules depends
on the number of neighbor switches that directly connect to
the controller, which is obtained from the network topology
at the first place. Protecting rules will not use much TCAM
space in an OpenFlow switch. Normally, the bandwidth can be
saved with less than 5 protecting rules (5 neighbor switches).

When two victims offload their traffic to one neighbor
switch, additional information should be added to identify
each victim before the neighbor switch sends packet_in
to the controller. Hence, in our design we only consider that
each neighbor switch is only responsible for one victim. The
controller maintains a different set of neighbor switches for
each victim switch and adjusts the sets dynamically based on
the network status.

There are three challenges in the design of protecting
rules: INPORT loss, detoured traffic identification, and packet
bouncing problems.

INPORT Loss Problem: In OpenFlow specification,
INPORT information indicates the controller’s input port,
and is contained in a packet_in message. Therefore,
the packet_in message generated by a neighbor switch
will replace the original INPORT information with its own.
In the design of protecting rules, we should ensure the original
INPORT information not to be lost. To solve this problem,
we utilize some reserved fields in packet header (e.g. ToS
field) to preserve the original INPORT information and denote
detoured traffic. Specifically, we encode the ToS field with
the INPORT information, and set “modify ToS field” in the
protecting rules, as depicted in Fig. 7.

Detoured Traffic Identification Problem: After receiving and
processing the detoured packet_in messages, the controller
will send actions to neighbor switches and flow rules to victim
switch respectively, which is different from the procedures in
processing regular packet_in messages (sending the actions
and flow rules to the same switch). Therefore, the controller
should be able to identify these detoured packet_in mes-
sages. Our solution is to identify these detoured packet_in
messages based on the encoded reserved fields, and associate
detoured messages with the datapath of the victim switch to
install flow rules. For instance, suppose we use 2-bit reserved
ToS field, and the original value is “00”. After encoding,
this value becomes either “01”, “10”, or “11”. Therefore,
the controller regard “00”-messages as regular messages, and
other messages as detoured messages. Clearly, we can identify
at most 2n − 1 different INPORT values with n bits in the
reserved field.

Packet Bouncing Problem: Since the neighbor switch may
have some flow rules to process the detoured table-miss traffic,
some table-miss packet could bounce between the neighbor
and victim switches. For instance, the victim switch in Fig. 8
regards packet A as a table-miss, and forwards it to S1 based
on the protecting rule. S1 accidentally has a flow rule to
process packet A, and the action is “to Victim Switch”.
Therefore, packet A will bounce between the two switches.
To avoid this problem, we only apply the protecting rules on

Fig. 8. Packet bouncing problem.

Fig. 9. Python codes to generate protecting rules.

non-detoured traffic. Therefore, these packets will bounce only
once between the neighbor and victim switches. Specifically,
the table-miss engineering adds “ToS is not encoded” into
the match field of the protecting rule, as depicted in Fig. 7.
When the victim switch receives the bounced-back packets,
it delivers them to the controller since these packets do not
match the protecting rules.

Based on the descriptions above, we present an example
of generating protecting rules. Suppose the victim switch has
two neighbor switches (S1 and S2), the protecting rules split
table-miss packets based on the lowest 2 bits of source MAC
address (MAC lowest 2 bits = 00, to S1; MAC lowest 2 bits =
01, to S2), and we use the reserved 2 bits in IP DSCP (6 bits
in ToS field) to encode INPORT information, the protecting
rules can be created with codes in Fig. 9.

In conclusion, the table-miss engineering component saves
the bandwidth between the victim switch and the con-
troller. It also improves the processing performance of benign
flows by (1) reducing the link delay of packet_in and
packet_out messages (with more available bandwidth) for
benign table-miss traffic; and (2) reducing the queueing delay
of benign matched packets (i.e. more efficiently processing
attacking table-miss traffic).

B. Packet Filter Component

Packet filter component can identify attack traffic and filter
them out to save the computational resources of the control
plane. It works as a low-level app between the controller
and other apps to preprocess the packet_in messages.
It contains two components, packet_in buffer to store
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Fig. 10. B+ trees in packet_in buffer component.

Fig. 11. Two-phase filtering design in the two-phase filter component. Flow
rule management inserts tcp 5 monitoring rule, tcp 5 rule, tcp 6 monitoring
rule, and tcp 6 rule (represented by 1©) to the flow table.

packet_in messages, and two-phase filter to identify attack
traffic.

1) packet_in Buffer: packet_in buffer classifies
detoured packet_in messages based on protocols, and uses
a B+ tree to efficiently store and index the packet_in
messages of each protocol. The key of each node is the flow
entry, and value of a leaf node is the packet_in message and
frequency of this flow. For transport layer protocols (TCP and
UDP), the key is the combination of source and destination
MAC, IP and port; for network layer protocols (e.g. ICMP),
the key is the combination of source and destination MAC and
IP addresses; and for other protocols (e.g. ARP and RARP),
the key is the combination of source and destination MAC
addresses. Though SDN apps could use different fields in
packet header to define a flow, the most significant ones are
those mentioned source and destination fields. All B+ trees
are connected by a root pointer R, as depicted in Fig. 10.
packet_in buffer stores packet_in messages in a time

period, and flushes all B+ trees after the two-phase filtering
to save space. We allow users to set the time of collect-
ing packet_in messages based on their demands. Gener-
ally speaking, a longer period will save more computational
resources, but will cause longer delay for new benign flows,
and will cost more memory of the controller. We also give a
suggested time of 5 seconds.

2) Two-Phase Filter: Two-phase filter applies two filtering
functions to efficiently and precisely identify attack traffic.
It first roughly filters out attack traffic based on the frequency
in packet_in buffer, and then precisely filters them based
on the monitored traffic information, as depicted in Fig. 11.

The frequency of new flows is the most significant feature
of SDN-aimed DoS attacks. Since the packets belonging to

existing flows will not trigger packet_in messages in most
cases, packets of the same flow will downgrade the perfor-
mance of SDN-aimed DoS attacks. Therefore, the attacker tries
to generate massive new flows to flood the network, and the
frequency of attack flows will be very low.

At the first phase, frequency-based filter utilizes the fre-
quency feature to efficiently filter out attack traffic. It will
search the leaf nodes of each protocol’s tree, and get the
flow records whose frequency is higher than a threshold.
This threshold changes dynamically, and is initially set to 1.
A bigger threshold will filter out more messages, but may
sacrifice some normal traffic. The threshold will be updated
based on the result of traffic-based filter. To reduce the false-
positives, we adopt a smaller threshold which only filters
out a portion of attack traffic (the threshold ensures the
recall rate bigger than 60%, and is normally set to 1 or
2 in our experiment), the accuracy will be improved by the
traffic-based filtering. For instance, in Fig. 11, the packet
filter component searches tcp 1 to tcp 8 in packet_in
buffer with threshold = 1, and gets tcp 5 and tcp 6.
These two messages will be forwarded to apps to generate
processing rules. Other TCP flows will be regarded as attack
traffic.

At the second phase, traffic-based filter needs to precisely
identify normal flows from the filtered flows. It monitors
the traffic of each flow with processing rules and extracts
features for classification. To precisely identify attack packets
even considering that attackers are smart enough to resend
these packets to increase the frequency of each flow, we use
traffic rate asymmetry features in the classification. Asym-
metry features can be extracted by monitoring the traffic of
“reverse flows” (response packets of one flow). For example,
in Fig. 11, a layer 2 learning switch has a processing flow entry
“eth_dst = 00:00:00:00:00:01, action = outport:01” for tcp
5, that forwards packets from port 01 when its destination
MAC is 00:00:00:00:00:01. The reverse flow is the packets
with source MAC 00:00:00:00:00:01 and input port 01. If this
flow entry is installed maliciously by an attacker with forged
source MAC address, there will not be much reverse traffic
for tcp 5, since no one can establish a connection with
00:00:00:00:00:01 on port 01. By adopting the asymmetry
features (traff 5m), the traffic-based filter can precisely classify
tcp 5 as attack traffic. We use monitoring flow rules to monitor
reverse traffic. In this case, the match field of the monitoring
rule is “eth_src = 00:00:00:00:00:01 && in_port = 01”.

Though asymmetric features can be applied to most flows,
they can also lead to incorrect results in some cases, and cause
the asymmetric feature problem:

Asymmetric Feature Problem: Asymmetric features can lead
to incorrect classification results for some asymmetric flows,
such as flow entries with the “drop” action or multi-path
routing flows, since the reverse traffic of these flows can be
hardly observed on the victim switch. For instance, a firewall
app blocks all packets with source IP 0.0.0.2 and destination
IP 0.0.0.1 (“ipv4_src = 0.0.0.2 && ipv4_dst = 0.0.0.1,
action = [ ]”). The monitoring flow rule of the blocked packets
is “ipv4_src = 0.0.0.1 && ipv4_dst = 0.0.0.2”. Since the
connection is not established, there will not be reverse traffic
for this flow. Using asymmetric features for these asymmetric
flow rules could lead to incorrect classification. To solve
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this problem, we will not use asymmetric features for the
classification of these asymmetric flows.

Specifically, we use the following features for traffic-based
filtering classification:

1) Packet Count (P ): describe the total number of packets
of one flow entry in an interval;

2) Byte Count (B): describe the total number of bytes of
one flow entry in an interval;

3) Asymmetric Packet Count (AP ): describe the total num-
ber of packets of one reverse flow entry in an interval;

4) Asymmetric Byte Count (AB): describe the total number
of bytes of one reverse flow entry in an interval.

After extracting the features above, we employ Support
Vector Machine (SVM) [10], a supervised learning model
as our classifier. This classification algorithm is robust even
with noisy training data. The detailed implementation can be
referred to [10], and we skip this part due to space constraints.

We summarize frequency-based and traffic-based filtering
algorithms in Algorithm 1 and Algorithm 2:

Algorithm 1 Frequency-Based Filtering (R, freq)
Input: R: set of leaf nodes; freq: frequency threshold
Output: F : set of filtered flows
1: F ← ∅
2: for each p ∈ R do
3: if p.freq > freq then
4: F.add(p)
5: end if
6: end for
7: return F

In conclusion, the packet filtering component saves the
computational resources of the control plane. It also improves
the performance of processing benign table-miss traffic by
dropping illegal packet_in messages.

C. Flow Table Management Component

The flow table management component installs monitoring
rules on the victim switch’s flow table, and manages the
flow rule installing on the victim switch. Monitoring rules are
generated to monitor the traffic of “reverse flows” to extract
asymmetric features. Since monitoring rules and useless rules
(i.e. flow rules triggered by attack traffic) cost space in the
flow table, the flow table management component enables a
dynamic way to manage flow rules.

Monitoring rules are generated based on the logic of
processing rules, as we discussed in Section III-D. They
monitor reverse traffic and help the packet filter component to
generate asymmetric features. Each monitoring rule is assigned
with an expire time in its timeout field to save the space of
flow table (the expire time should be the same with the time of
collecting packet_in messages in the packet_in buffer,
which is set to 5 seconds initially).

The management of flow table stems from the multiple
flow tables in OpenFlow Specification v1.3 [11]. Specifically,
the flow table management uses the first k tables (table 0 to
k − 1) and the last table (table n) as “flow table region”, and
other tables (table k to n− 1) as “cache region”. Notice that

Algorithm 2 Traffic-Based Filtering (s, F )
Input: s: switch; F : set of filtered flows
Output: freq: frequency threshold
1: N ← ∅, t← ∅, freq = 1, rst = NORMAL
2: P = 0, B = 0, AP = 0, AB = 0
3: ASet = {DROP, MULTIPATH, …} // asymmetric flow set
4: Forward_To_Apps(F ) // process messages
5: t = Get_Monitored_Traffic(s)
6: for each p ∈ F do
7: if p �∈ ASet then
8: (P,B,AP,AB)= Extract_Feature(t.f low_traff(p))
9: rst = Classifier(P, B, AP, AB)

10: else
11: (P, B) = Extract_Feature(t.f low_traff(p))
12: rst = Classifier(P, B)
13: end if
14: if rst = NORMAL then
15: N.add(p)
16: end if
17: P = 0, B = 0, AP = 0, AB = 0
18: end for
19: s.f lush_cache_region()
20: s.del_monitor_flow()
21: s.add_flow(N)
22: freq = Calcuate_New_Frequency(N )
23: return freq

Fig. 12. The flow table is logically separated into flow table region and
cache region by the flow table management component.

OpenFlow Specification v1.3 indicates that a flow entry can
only direct a packet to a flow table with a bigger flow table
number. Therefore, we install processing and monitoring flow
rules (flow entries to process normal traffic and monitor reverse
traffic) in the first k tables of the flow table region, intercepted
processing rules in the cache region (newly generated flow
rules to process table-miss traffic), and protecting rules in the
last table of the flow table region, as depicted in Fig. 12. The
larger size of cache region (larger k) can improve the efficiency
of traffic-based filtering, but will use more space of the flow
table. The flow table management component sets the value
of k based on the free space of the flow table and adjusts
it dynamically. Processing flow rules in the cache region and
will be flushed after traffic-based filtering to save the space of
the flow table.
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The flow table management component ensures the timely
responses of old benign flows when attacks occur. Since a
packet can only be directed to a flow table with a bigger flow
table number, old flows will not index cache region, and will
be processed efficiently. To activate protecting rules in the last
flow table, the default table-miss instructions of all but the last
flow table should be set to “Goto Table n”.

Though OpenFlow Specification v1.3 [9] encourages multi-
ple flow tables, an OpenFlow switch with a single flow table
is also allowed. In this scenario, the flow table will not be
separated into two regions, and all rules are mixed together in
one flow table. Though the efficiency of indexing is affected,
flow table management component can still protect the flow
table by removing attack flow entries. Processing flow rules
which are regarded as normal flows will be kept in the flow
table without flushing.

In summary, the flow table management component avoid
the flow table being overloaded, which will improve the
performance of processing benign packets by allowing legal
flow rules installed in the flow table.

VI. NEIGHBOR SWITCH ANALYSIS

The number of neighbor switches will greatly affect the per-
formance of FloodDefender. We first use an average queueing
delay model to analyze how to distribute attack traffic, and
then analyze how many neighbor switches should be involved
in the table-miss engineering.

A. Traffic Distribution

We consider a set of switches S = {s1, s2, . . . , sn} involved
in the table-miss engineering, and a set of attack traffic rates
A = {a1, a2, . . . , an} distributed to each switch (

∑n
i=1 ai =

a). For each si, let asi be its maximum ability to process attack
messages without buffering them. Let Lh be the payload of
a header information, and Lp be the average payload of an
attack packet. For each link between si and the controller,
let Ri be its maximum bandwidth, and R̃i be the allocated
bandwidth to process other packets.

We use average queueing delay (Di) to evaluate the perfor-
mance on each link. It is not easy to get the formula of Di,
since the calculation is related to the distribution of incoming
packets, which is determined by the attacker. Therefore, we use
an empirical formula [12] to roughly describe the relationship
between Di and the utilization of this link (ρi):

Di =
1
2μ
× ρi

1− ρi
. (1)

In Equation (1), μ is a coefficient of delay, and ρi describes
link utilization (ρi = Total Payload

Transmission Ability , and 0 � ρi < 1). The
calculation of ρi could be separated into two scenarios: when
the incoming packets rate is within the processing ability of si

(ai � asi ), si only sends the header of each attack packet to
the controller; otherwise, the buffer of si will be overloaded
eventually, and si needs to send the whole packet. Therefore,
ρi can be calculated as follows:

ρi =

⎧⎪⎪⎨
⎪⎪⎩

R̃i + ai × Lh

Ri
, ai � asi

R̃i + asi × Lh + (ai − asi)× Lp

Ri
, else.

(2)

Fig. 13. Average queueing delay of switches.

Fig. 13-a shows that the average queueing delay goes
up quickly when the distributed attack rate increases. The
configuration adopts 20PPS (packet per second) asi , 750bit
Lh, 5Kb Lp, 2Mbps Ri, and 0 R̃ when μ = 1. In this scenario,
we could maintain the average queueing delay within 0.3s with
less than 168.5PPS distributed attack rate.

We further analyze the scenario with multiple switches. The
traffic balancer will distribute attack traffic to each switch. The
optimal distributing strategy can be obtained by minimizing
the average queueing delays of all packets (D) based on
Equation (2):

D =
∑n

i=1(Di × ai)
a

=
1

2μa
×

n∑
i=1

ρi

1− ρi
ai,

s.t.
n∑

i=1

ai = a. (3)

In Equation (3), ρi and ai could be roughly regard as a
linear relationship (ρi = uai + v), since the incoming packets
rate is higher than the processing ability of si (ai > asi)
for most cases under SDN-aimed DoS attacks. The sum of ρi

(normalized attack traffic) could also be regarded as a constant
C when n is given (

∑n
i=1 ρi = ua + vn = C). Suppose each

switch has the same processing ability (asi = as), maximum
bandwidth (Ri = R), and allocated bandwidth (R̃i = R̃),
Equation (3) could be further simplified as follows:

D =
1

2μa
×

n∑
i=1

ρi × ρi−v
u

1− ρi
= k ×

n∑
i=1

ρi(ρi + v)
1− ρi

,

s.t.
n∑

i=1

ρi = C. (4)

In Equation (4), the positive real number k represents the
coefficient of the system (k = 1

2μau ). We introduce the
Lagrange multiplier λ, and the objective function of Equa-
tion (4) can be constructed as a Lagrange function L(ρ, λ)
(ρ = (ρ1, ρ2, . . . , ρn)).

L(ρ, λ) = k ×
n∑

i=1

ρi(ρi + v)
1− ρi

+ λ(
n∑

i=1

ρi − C). (5)

It follows from the saddle point condition that the partial
derivatives of L(ρ, λ) with respect to the primal variables

2When n = 1 (0 neighbor switch), the victim switch is overloaded, and
ρ > 1. The average queueing delay will be infinite.
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(ρ, λ) have to vanish for optimality.

∂ρiL(ρ, λ) = k
−ρ2

i + 2ρi + v

(1 − ρi)2
+ λ = 0 (6)

n∑
i=1

ρi = C. (7)

The minimized L(ρ, λ) will be obtained when:

ρ1 = ρ2 = . . . = ρn = C/n. (8)

Therefore, the best strategy to minimize D for the whole
system is to evenly distribute the attack traffic (ρ1 = ρ2 =
. . . = ρn = C/n = ρ).

B. Number of Neighbor Switches

Suppose the traffic balancer could precisely follow the best
strategy and distribute attack traffic to each switch evenly.
In this scenario, similar to Equation (2), the calculation of
ρ is also separated into two scenarios:

ρ =

⎧⎪⎪⎨
⎪⎪⎩

R̃ + a× Lh

nR
, a � nas

R̃ + nas × Lh + (a− nas)× Lp

nR
, else.

(9)

We could find out how many neighbor switches (n − 1)
should be involved based on Equation (1) and Equation (9).
The result is depicted in Fig. 13-b. The configuration adopts
20PPS as, 750bit Lh, 5Kb Lp, 2Mbps R, 500PPS a, and 0
R̃ when μ = 1. With 2 neighbor switches (n = 3), D can
be less than 0.3s and ρ = 0.38. D nearly decreases to 0.1s
with 4 neighbor switches (ρ = 0.22). Generally speaking,
FloodDefender can preserve the major functionality with 4 or
fewer neighbor switches. When 4 neighbors are involved,
each switch (victim switch or neighbor switch) has 1.65Mbps
available bandwidth. However, without this protecting scheme,
the victim switch has no available bandwidth (the switch
becomes dysfunctional).

VII. EXPERIMENT

We first introduce our implementation of FloodDefender
system, and then describe the experiment setups in both
software and hardware environments. Finally, we discuss the
experimental results.

A. Implementation

We implement FloodDefender system, including the detec-
tion module and mitigation module. All of them are imple-
mented as applications on RYU controller [13] in Python.
Meanwhile, we install RYU controller the on a computer
equipped with i7 CPU and 8GB memory, and run a layer
2 learning switch app (l2_learning) which can discover the
network topology and provide basic forwarding service (a
little modification is made in the last experiment). In the
software environment, we use Mininet [14] to create virtual
OpenFlow switches, and in the hardware environment, we use
commercial OpenFlow switches, Polaris xSwitch X10-24S2Q
[5], to build the test environment, as depicted in Fig. 14. Each
hardware switch can store 2000 flow entries, and has 8MB

Fig. 14. Hardware environment.

Fig. 15. Test network topology.

buffer memory. We employ three hosts (sender, receiver, and
attacker) in our test environment, as depicted in Fig. 15.

To compare FloodDefender with previous work, we launch
the SDN-aimed attacks in three scenarios: (i) an OpenFlow
network without protecting system, (ii) an OpenFlow network
with FloodGuard [7], and (iii) an OpenFlow network with our
FloodDefender.

B. Setup

First, we show the importance of applying flow entry
frequency in attack detection. We design a software Open-
Flow network with 50 hosts and 5 switches, and compare
the differences of six features (CPU, controller memory,
switch memory, packet_in rate, number of flows in low-
frequency flows, and average frequency in low-frequency
flows) in two scenarios: when SDN-aimed attacks occur and
when the network starts up. The attack will use scapy to
keep flooding TCP packets with randomly forged eth_src,
eth_dst, tcp_src, and tcp_dst fields under 500PPS attack
rate. We also adjust our splitting settings in detection mod-
ule and compare the performance with FloodGuard. Specif-
ically, we set (0, 2), [2, 10], (10, +∞) for FloodDefender-
s1, (0, 100), [100, 1000], (1000, +∞) for FloodDefender-s2,
and our original settings (0, 10), [10, 100], (100, +∞) for
FloodDefender. The accuracy of attack detection is eval-
uated by recall rate ( Identified Attacks

Total Attacks ) and false-positive rate
( Startups Regarded as Attacks

Total Startups ) in 10 times of attacks and 10 times
of startups.

Second, we place the sender under the victim switch and
test the available bandwidth rate in both software environment
(with 4 neighbor switches) and hardware environment (with
1 neighbor switch). The attacker will keep flooding UDP
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Fig. 16. Different features in attack detection.

packets (with forged eth_src, eth_dst, udp_src, and udp_dst
fields) under different rates. We use iperf to measure the
available bandwidth between the sender and receiver, and set
the bandwidth threshold to 30% (ρ = 0.7) to ensure less than
1.2s average queueing delay.

Third, we place the sender under the each neighbor switch
and measure the available bandwidth rate in software environ-
ment. We test FloodDefender system under a fully connected
network with 5 switches, and FloodDefender will detour attack
traffic to 1 to 4 neighbor switches. The UDP attack rate will
be 500PPS.

Fourth, we measure the CPU utilization of the controller
under UDP-based attacks to the computational resource con-
sumption of the control plane.

Fifth, we compare the flow table utilization of the victim
switch under OpenFlow, FloodGuard [7], and FloodDefender.
The attacker generates TCP packets with randomly forged
sender IP to flood the network and overload the flow table.

Sixth, we evaluate the performance of attack identification.
We use recall rate ( Identified Attack Packets

Total Attack Packets ) and false-positive rate
( Normal Packets Regarded as Attack Packets

Total Normal Packets ) to measure the performance
of two-phase filter under different attack rates.

Seventh, we measure the time delay of normal traffic
under OpenFlow, FloodGuard [7], and FloodDefender. Here
we measure the delay of all kinds of protocols under UDP-
based DoS attacks. Since FloodGuard utilizes rate control to
handle packet_in messages, its performance can be greatly
affected by the attack rate. In this experiment, we use two
different attack rate, 100PPS and 500PPS to evaluate the time
delay. The maximum time delay usually occurs when the first
packet in each flow arrives.

Finally, we compare the packet loss rate of new TCP
flows in OpenFlow, FloodGuard [7], and FloodDefender under
TCP-based DoS attacks. To generate new flows efficiently,
we modify l2_learning app, and use eth_src && tcp_src (if
tcp_src is available) instead of eth_src as the match field
to generate flow rules. The first handshake packet of a new
TCP connection is regarded as a new flow (table-miss), and
triggers packet_in message. The packet loss rate shows the
effectiveness of each system in processing new flows.

C. Experimental Result

Attack Detection: The CPU and controller memory utiliza-
tion rates under attacks and network startups are depicted in
Fig. 16-a; and packet_in rate and switch memory utilization

TABLE I

PERFORMANCE OF ATTACK DETECTION. a/b IN RECALL RATE INDI-
CATES IDENTIFIED ATTACKS/TOTAL ATTACKS, AND IN FALSE-POSITIVE

RATE INDICATES STARTUPS REGARDED AS ATTACKS/TOTAL STARTUPS

in Fig. 16-b. The switch memory utilization rate may be not
very precise due to the communication delay between the
switch and controller. All of them in the two scenarios are very
similar before the 1 seconds. Even though they become much
different afterwards, the attack detection may lead to false-
alerts by only considering these features (they can be more
similar when measured in larger scale networks). The number
of flows and average frequency in low-frequency flows are
depicted in Fig. 16-c. Though the communication delay may
also affect the accuracy of these curves, we can find that there
will be many differences after 0.4s in the two scenarios. The
attack detection can precisely identify SDN-aimed attacks and
reduce false-alerts by adopting these two features to increase
sensitivity of the defense system.

The performance of attack detection is presented in Table I.
Both FloodGuard [7] (4 features detection) and FloodDefender
(6 features detection) can precisely identify SDN-aimed DoS
attacks. However, as we analyzed before, FloodGuard can lead
to some false-alerts in some cases due to the similarity in net-
work startups and under attacks. By properly setting flow entry
frequencies ((0, 10), [10, 100], (100, +∞) splitting), FloodDe-
fender can outperform FloodGuard. Furthermore, since we
have a 100% recall rate under different settings, the flow entry
frequency features mainly contribute to reducing false-alerts.

Victim Switch Bandwidth: The results in software and hard-
ware environments are depicted in Fig. 17 and Fig. 18. In this
test, we do not show the result from FloodGuard [7], because
it takes a designated extra link to a specific device, the data
plane cache. The maximum bandwidth is 1.92Gbps in software
environment, and 9.3Mbps in hardware environment. On one
hand, the bandwidth in OpenFlow network without protect-
ing systems is almost exhausted, only 3% left in software
environment and 24% left in hardware environment. On the
other hand, FloodDefender maintains the major functionality
of the network, and saves 70% software bandwidth and nearly
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Fig. 17. Victim-controller bandwidth in software environment.

Fig. 18. Victim-controller bandwidth in hardware environment.

Fig. 19. Available bandwidth rates of neighbor switches.

20% hardware bandwidth (the performance can be improved
by involving more neighbor switches).

Neighbor Switch Bandwidth: The attack traffic will affect
the bandwidths of neighbor switches in FloodDefender,
as depicted in Fig. 19. The bandwidths of neighbor switches
will fluctuate when the mitigation module is activated first but
remains steady after the traffic balancer component collects
enough information (within 30s in our experiment). When
only one neighbor switch is involved, the available bandwidth
rate is within 30% (FloodDefender will avoid this scenario
by involving more switches, but we block this function in
this experiment). The network becomes functional with more
neighbor switches. Specifically, the SDN-aimed DoS attacks
can hardly affect the network when 4 neighbor switches are
involved. Besides, the result also shows that the traffic balancer
component can efficiently balance the traffic among neighbor
switches.

Fig. 20. CPU utilization under UDP-based attacks.

Fig. 21. Attack detection performance: recall rate and false-positive rate.

Computational Resource Consumption: We can get the com-
putational resource protection performance of FloodDefender
in Fig. 20. When attacks occur, the CPU utilization quickly
reaches a peak (around 14%) in less than 1.5s. Then it
goes down slowly because the table-miss engineering and
packet_in buffer start to detour and store attack traf-
fic. After about 1.5s, the CPU utilization remains steady.
At this stage, the packet_in buffer efficiently stores the
packet_in messages, and only consumes about 0.5% CPU
utilization. In about 8s, there is a little spur: the CPU utilization
reaches about 3%, and quickly goes down in 1s. This is caused
by the two-phase filtering in packet filter. The result shows
that FloodDefender can efficiently save the computational
resources of the control plane, and the overhead of the packet
filter is very little.

Flow Table Utilization: The flow table utilization rate in
depicted in Table II. We can find that both FloodGuard [7]
and FloodDefender will not incur overload into the network
when there is no attack. Though FloodGuard uses rate control
to protect the victim switch when attacks occur, the attack
traffic still consumes about 30% flow table space. The flow
table utilization rate fluctuates in FloodDefender, since mon-
itoring rules will be expired and the flow table management
component will flush cache region periodically. FloodDefender
consumes less than 15% flow table space. Its performance is
much better than FloodGuard.

Attack Identification: The attack detection performance of
the two-phase filter is depicted in Fig. 21. We can find that
the false-positive rate goes up with attack rate. It is because in
a time interval, the frequency of the same flow will be higher
with a higher attack rate. Therefore, the frequency-based
filtering will use a bigger threshold to filter out attack traffic,
and sacrifice some benign traffic. Though more attack packets
are classified as normal flow when attack rate increases,
the percentage of these packets remains the same, and the
recall rate is more stable. Generally speaking, the two-phase
filtering can precisely identify more than 96% attack traffic
with less than 5% false-positive rate.

Time Delay: The time delays of normal flows are depicted
in Table III and Table IV. Since FloodGuard [7] utilizes
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TABLE II

FLOW TABLE UTILIZATION UNDER TCP-BASED ATTACKS

TABLE III

TIME DELAY OF NORMAL FLOWS UNDER 100PPS UDP-BASED ATTACKS

TABLE IV

TIME DELAY OF NORMAL FLOWS UNDER 500PPS UDP-BASED ATTACKS

rate control to save the computational resources, the delay of
normal flows increases with the attack rate. When the attack
rate is low (100PPS), the average time delay of FloodGuard
is better than that of FloodDefender; but when the attack rate
increases to 500PPS, FloodDefender has shorter delay than
FloodGuard. The maximum time delays in both FloodGuard
and OpenFlow become infinite (timeout), which is different
from the results presented in [7]. Besides the attack rate,
another reason is that [7] only measures the delay of TCP
packets under UDP-based DoS attacks. In our experiment,
we also measure the delay of UDP packets, and find out many
of them are lost in FloodGuard. Though these UDP packets in
FloodDefender suffer from long time delay, they are processed
and received eventually. Both FloodGuard and FloodDefender
are superior to OpenFlow in average and minimum time
delays, and the performance of FloodDefender is better than
that of FloodGuard when attack rate is high.

Packet Loss Rate: Finally, we compare the packet loss rate
of new TCP flows under TCP-based DoS attacks. The result
is depicted in Fig. 22. In this scenario, both FloodGuard
and OpenFlow do not filter out attack traffic, and inevitably
sacrifice benign TCP packets. We can find that FloodGuard
is even worse than OpenFlow. It is because the round-robin
scheduling in the data plane cache treats each protocol evenly,
and only picks the header packet of each protocol. Therefore,
it has a very low probability to pick the benign TCP packet
(even lower than that of OpenFlow, which treats each packet
evenly). The performance of FloodDefender is much better,
the packet filter component can filter out attack traffic both
efficiently and precisely, and the packet loss rate of new TCP
flows remains within 5%.

VIII. RELATED WORK

The security of SDN has become a hot research area ever
since it was proposed. On one hand, the attributes of central-
ized control and programmability in SDN can be exploited
to enhance network security with a highly reactive security
system [17]–[25]. On the other hand, the same centralized
structure is considered vulnerable, which can cause severe
network security problems [6]–[8], [15], [16], [26]–[35].

Fig. 22. Packet loss rate of new TCP flows under TCP-based DoS attacks.

SDN-Supported Security: SDN-supported security uses new
techniques in SDN to solve traditional network security chal-
lenges. FlowGuard [23] introduces a comprehensive frame-
work to facilitate not only accurate detection but also effective
resolution of firewall policy violations in dynamic OpenFlow-
based networks. Hu et al. combine SDN with inference
techniques to derive a hybrid network monitoring scheme,
which can strike a balance between measurement overhead
and accuracy [17]. Xu et al. introduce new DDoS detection
methods based on the flow monitoring capability [18]. These
methods can balance the coverage and granularity, and quickly
locate potential victims and attackers. Taylor et al. introduce a
contextual and flow-based access control to improve enterprise
security with flow-based monitoring [19]. It provides both
detailed host-based context and fine-grained control of network
flows by shifting the SDN agent functionality from the network
infrastructures into the end-hosts.

SDN-Self Security: SDN-self security aims to identify new
attacks against SDN and enhance the security of SDN-enabled
devices. The SDN-aimed DoS attacks utilize the reactions
of table-miss packets in SDN to exhaust control-data plane
bandwidth [6], [8]. To mitigate the DoS attacks, AvantGuard
uses an SYN proxy based module to verify the legality of each
flow based on TCP handshake of each new packet [6]. Another
approach, FloodGuard, mitigates the DoS attacks by installing
proactive flow rules and sending table-miss packets to a
specific data plane cache module [7]. FloodGuard breaks the
protocol limitation in AvantGuard, but may suffer from long
delay and high packet loss rate for some flows. FlowKeeper
[4] adopts two components, traffic agent and global view
agent, to filter table-miss traffic on both data plane and control
plane. However, there will be a high delay for benign flows
under severe attacks. Besides, all approaches use additional
devices, and ignore the importance of attack detection. Another
attack is poisoning the network visibility of the control plane
by unauthorized LLDP packets [15]. TopoGuard uses the
incoming port information to verify LLDP packets against
network topology poisoning attacks [15]. To avoid malicious
apps on the control plane, SDNShield expresses and enforces
the minimum required privileges to individual apps [16].

IX. DISCUSSION

We have shown that FloodDefender can protect OpenFlow
networks against SDN-aimed DoS attacks. However, there
still remain hurdles in our current prototype implementation.
In this section, we discuss these limitations as well as possible
improvements for FloodDefender.
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TABLE V

NEW ATTACKS AND COUNTERMEASURES IN SDN

False-Positive Rate: In Fig. 21, we show that the false-
positive rate increases with attack rate since the frequency of
each attack flow will be higher with a higher attack rate. Flood-
Defender may drop benign packets when attack rate is high.
However, for most benign traffic, retransmission schemes (e.g.
Go-Back-N and selectively repeat for TCP connections) are
used to provide reliable communications. When adopting these
retransmission schemes, the frequency of the dropped benign
flows will increase, which makes a higher probability of these
flows regarded as benign ones. Furthermore, we use SVM to
show the feasibility of FloodDefender. The classifier can be
improved with more training data, or a more advanced classifi-
cation algorithm (e.g. deep learning) to reduce false-positives.

Switch Buffer: In our packet filtering design, we simply
filter out (ignore) illegal packet_in messages. However,
the corresponding table-miss packets may be stored in the
switch’s buffer. Even though OpenFlow switches can still
operate even when their buffer is full and buffered packets
can automatically be expired after some time, the throughput
can be downgraded due to encapsulating whole packets when
the buffer in full. To save the switch’s buffer, an improvement
could allow the packet filtering to send packet_out mes-
sages to drop buffered packets when packet_in messages
(only containing the headers) are classified as illegal. However,
such operations can increase the bandwidth and computa-
tional resources consumption. Considering buffered packets
can automatically be expired after some time, the packet
filtering can only send a part of packet_out messages to
balance the cost and improvement.

Low-Rate Attacks: Attackers can send packets at a low
rate to avoid being detected. In this scenario, even though
the attacker cannot dysfunctional switches and control plane,
the low-rate attacks can still consume much network resource.
Here we discuss a possible countermeasure to detect low-rate
attacks with host behaviors.

One observation is that a benign host normally sends DHCP
packets (to a DHCP server) and ARP packets first when it
connects to SDN, and sends PORT_DOWN signals when it is
offline. Besides, a forged source is mostly used in SDN-aimed
DoS attacks to hide the identity of an attacker. Therefore,
the detection module can first monitor DHCP and ARP packets
as well as PORT_DOWN signals. When abnormal packets
with non-existing sources (no DHCP/ARP packet is received
from the source before), or abnormal packets with existing
sources (in_port is different from the previous one and no
PORT_DOWN signal is received from the previous port),
detection module can alert the mitigation module even when
the attack rate is low (we also suggest to set a threshold of
abnormal packet rate to avoid false-alerts).

X. CONCLUSION

SDN-aimed DoS attacks can paralyze OpenFlow networks
by exhausting the bandwidth, computational resources, and

flow table space. We propose FloodDefender, a scalable and
protocol-independent system to protect OpenFlow networks
against SDN-aimed DoS attacks based on new features in
attack detection, and three novel techniques in attack mit-
igation: table-miss engineering, packet filter, and flow table
management. FloodDefender can precisely detect SDN-aimed
attacks, efficiently process table-miss packets, as well as
precisely identify attack traffic. We use a queueing delay
model to analyze how many neighbor switches should be used
in the table-miss engineering, and implement a prototype to
evaluate the performance of FloodDefender in both software
and hardware environments. Compared with previous work,
FloodDefender reduces the false-alerts in attack detection,
significantly improves the flow table utilization, time delay,
and packet loss rate, and is more scalable and easier to deploy
without employing additional devices.
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