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Abstract—The Payment Channel Network (PCN) has emerged
as an extensively adopted solution to address the scalability issues
of Bitcoin by efficient off-chain updates. However, conflicts arise
while existing update protocols are pursuing multiple goals of
security, privacy, and expressiveness. In this work, we propose
a new off-chain update protocol, Secure and Anonymous Multi-
Channel Updates (SAMCU), which is developed on the basis of
Unspent Transaction Output (UTXO). SAMCU aims at achieving
goals of internal anonymity, balance security, and multi-channel
updates simultaneously, which has not been done before. To
achieve these goals, we exploit the technique of updating graph
splitting (UGS) to make participants aware of only the identi-
ties of their neighboring sub-graphs, thereby ensuring internal
anonymity in multi-channel updates. Then, to avoid security
issues arising from equal sub-graphs, we further propose an
Enable Payment Transaction Tree (EPTT) to guarantee balance
security for each honest protocol participant. Moreover, we
optimize the performance of our solution, reducing transaction
fees by splitting transactions and the number of communica-
tion connections by hierarchical communication. To evaluate
the performance of the SAMCU, we implement a prototype
involving up to 100 updating payment channels. Experimental
results demonstrate that SAMCU outperforms the state-of-the-
art, resulting in approximately 70% savings in communication
connections and a 66% reduction in on-chain transaction fees
when the number of updating payment channels is 100.

Index Terms—Anonymity, Multi-channel Updates, Payment
Channel Networks (PCNs), Bitcoin, Blockchain

I. Introduction

THE advent of Bitcoin has revolutionized the concept
of ledger systems by introducing a novel decentralized

approach. With its inherent advantages (e.g., irreversibility,
pseudonymity, and transparency), Bitcoin has achieved sig-
nificant development in the financial landscape. However, a
critical drawback of this groundbreaking cryptocurrency is its
limited throughput compared to traditional financial systems.
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            A multi-channel update
by UTXO-based methods

              A multi-hop payment
by HTLC-based methods
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Fig. 1: Examples of the two update modes (i.e., Multi-hop
payments and multi-channel updates) supported by HTLC-
based and UTXO-based methods, respectively. The values
on the payment channels represent the amounts transferred
over the channels, with intermediaries within the payment
network charging transaction fees (e.g., 0.1 coins) for supporting
payments.

This limitation has spurred the exploration of various avenues
by community members and researchers to enhance Bitcoin’s
scalability.

To address the scalability challenge, numerous efforts have
been directed towards off-chain protocols. Off-chain protocols
reduce the burden on the blockchain by facilitating transac-
tions off-chain between involved parties and resorting to on-
chain interactions only when necessary. For instance, payment
channels (PCs), which are among the most widely adopted off-
chain protocols, require the publication of only two on-chain
transactions on the blockchain. One transaction is dedicated to
establishing the payment channel, while the other facilitates its
closure. Further research has proposed the concept of payment
channel networks (PCNs), which enables two users without a
direct payment channel to engage in off-chain transactions. By
leveraging a multi-hop pathway comprising intermediate par-
ties with existing payment channels, users can route payments
through the network.

A crucial challenge that arises in PCN involving multiple
payment channels is ensuring atomic updates. Atomicity refers
to the property of a transaction being executed entirely or not
at all, guaranteeing the consistency of the involved channels’
states. Currently, there are two main approaches to achieve
atomic updates across multiple payment channels: Hash Time-
Lock Contract (HTLC)-based update protocols and Unspent
Transaction Output (UTXO)-based update protocols. HTLC-
based update protocols [1] can achieve strong anonymity, and
participants only need to generate transactions of constant size.
However, it only supports multi-hop payments (MHPs, i.e., one-
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TABLE I: State of the art in PCNs

Update
Mode Collateral Identity

Privacy
Balance
Security

On-chain
TX size

LN [1] MHP O(𝑛) Yes Yes O(1)
AMCU [2] MCU O(1) No No O(𝑛)

PT [3] MHP O(log𝑛 ) No Yes O(1)
Blitz [4] MHP O(1) Yes Yes O(1)
Thora [5] MCU O(1) Internal leak Yes O(𝑛)

Our solution MCU O(1) Yes Yes O( 𝑛
𝑚
+𝑚)

to-one transfers) and suffers from inefficient capital utilization
caused by linear collateral requirements (i.e., the longer the
MHP, the longer it takes for users’ funds to be unlocked
from HTLCs). In contrast, UTXO-based update protocols
achieve multi-channel updates (MCUs, i.e., atomic updates
across multiple channels with arbitrary topologies) and only
require constant collateral, thereby enabling complex financial
applications (e.g., crowdfunding and mass payment) on the
Blockchain-like platforms. We illustrate examples of both MHPs
and MCUs in Fig. 1.

Despite the advantages of UTXO-based update protocols
[2, 4, 3, 5], they still have the following limitations: (a) Lack
of internal anonymity. To guarantee the balance security of
participants, UTXO-based methods require participants to be
aware of the public addresses of all involved parties to generate
the Enable Payment transactions collaboratively. This process
results in the lack of internal anonymity, where intermediaries
know the identities of payment senders and receivers. Existing
UTXO-based methods [4] achieve internal anonymity only
at the cost of sacrificing MCUs (i.e., only support MHPs),
highlighting the significant challenge of enhancing internal
anonymity in MCUs. (b) Large size of transactions for on-
chain enforcing payment. In MCUs, each payment sender
needs to find several parties as intermediates to transfer the funds
to her corresponding receiver. In some complex applications,
such as multiple payment senders transferring funds to multiple
payment receivers, the number of channels involved in the
protocol can easily reach several dozen. Existing UTXO-based
update protocols become impractical in complex applications
because they require the enable payment transaction to have
the same number of outputs as the number of channels involved.
For instance, Thora [5] requires users to emit an enable payment
transaction of size 3.9Kb (transaction fees of approximately 7.7
USD in Dec. 2023) to the blockchain when their channels are
disputed and the number of updating payment channels reaches
100. (c) Quadratic number of communication connections.
All parties participating in the UTXO-based update protocols
need to communicate with each other, necessitating the creation
of a quadratic number of connections. This communication
overhead becomes substantial as the number of channels
increases. The large number of connections imposes limitations
on the simultaneous participation of users in the MCUs, as the
number of connections that personal computers can establish
simultaneously is limited.

To address these limitations, we introduce a Secure and
Anonymous Multi-Channel Updates (SAMCU) for PCN that
achieves internal anonymity and balance security for MCUs. To

achieve PCN internal anonymity, we firstly introduce Updating
Graph Splitting (UGS), which divides an updating graph (UG)
into several chain-like sub-graphs (SGs), where an updating
graph (UG) represents the topology of multiple channels
needing updates. Based on UGS, our protocol ensures that each
party knows only the identities of the parties within the SG
where she belongs, rather than all the parties in the UG, thereby
preserving anonymity for both senders and receivers. We also
propose a novel enable payment transaction tree with necessary
timelocks and signature locks to ensure balance security for
every honest party while maintaining internal anonymity.

Secondly, our method utilizing UGS reduces the size of
enable payment transactions from O(𝑛) to O( 𝑛

𝑚
+𝑚), where 𝑛

denotes the number of updating channels, 𝑚 denotes the number
of sub-graphs, as illustrated in Table I. Because participants
only need to generate transactions containing the addresses
of parties within their sub-graphs, excluding the need for
addresses of all parties in the updating graph. Thirdly, to
reduce the number of communication connections, we propose a
hierarchical communication strategy based on UGS where each
sub-graph designates a subset of parties as key parties. These
key parties establish complete connections among themselves
to facilitate inter-sub-graph information exchange. Parties in
different SGs can communicate via these key parties without
establishing direct connections, thereby reducing cross-sub-
graph connections.

Our contributions can be summarized as follows:
• SAMCU Protocol. We propose SAMCU, the first UTXO-

based update protocol to achieve multi-channel updates,
anonymity, and constant collateral simultaneously in Sec-
tion III and Section IV. Compared with previous protocols
for MCUs, SAMCU achieves (i) internal anonymity (i.e.,
sender/receiver privacy), (ii) smaller sizes & lower fees of
on-chain enforcing payment transactions, and (iii) fewer
communication connections.

• Security and Privacy Analysis: We conduct a security
and privacy analysis of SAMCU in Section V. We show that
each honest party engaging in the protocol can ensure her
balance security by following the protocol’s procedures.
In addition, we prove that SAMCU achieves internal
anonymity when the protocol runs without disputes.

• Implementation and Evaluation: We implement a pro-
totype of SAMCU protocol1. In addition, we perform
a comprehensive performance evaluation of SAMCU
protocol in Section VI. Experimental results show that
SAMCU effectively reduces transaction size and number
of communication connections compared to the state-of-
the-art, especially in large-scale multi-channel updates
(involving 100 updating PCs).

II. Background
A. Unspent Transaction Output (UTXO) Transactions

The UTXO model serves as the foundational framework for
representing funds in many UTXO-based blockchains (e.g.,
Bitcoin). In contrast to account-based blockchains that employ

1https://github.com/SAMCU-PCN/SAMCU/
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a key-value database in the form of {account : balance} to
store user assets, UTXO-based cryptocurrencies utilize a series
of UTXOs to represent user assets. The total balance of a
user is the sum of the balances of all UTXOs they own. In
the UTXO model, a UTXO can be represented as a tuple:
𝜃 = (TXID, index,value, ls). TXID is the ID of the transaction
that created 𝜃, index is the position of the output within that
transaction, value is the amount of balance locked in 𝜃, and ls
is the conditions necessary for spending the balance in 𝜃.

In this paper, we utilize two widely adopted signature
conditions and two widely adopted timelock conditions in
Bitcoin-like blockchains. The condition that requires a user’s
signature is represented by OneSig(𝑢). Likewise, the condition
that requires the signatures of multiple users is represented by
MultiSig(𝑢1, ..., 𝑢𝑛). We use AbsT(𝑇) to represent the absolute
timelock condition, indicating that the output with this condition
should be executed only before time 𝑇 . We use RelT(Δ) to
represent the relative timelock condition, meaning the output
with this condition can only be unlocked Δ time after it is
posted to the blockchain. Due to the fact that transaction fees
are determined by the size of transactions, directly storing
complex locking scripts like Multisig in UTXOs leads to higher
transaction fees on the blockchain. Moreover, storing locking
scripts in UTXOs on the blockchain compromises privacy,
as external observers can easily access the script’s content in
UTXOs. To mitigate these concerns, BIP 16 [6] introduced the
standardization of Pay-to-Script-Hash (P2SH) transactions. In a
P2SH transaction, a UTXO only stores H(ls), which is a hash
value of the locking script ls. Users then need both the unlocking
script and locking script to redeem funds from the UTXO.

B. Payment Channels (PCs)
Payment channels are a popular solution for enhancing

blockchain scalability, allowing only for off-chain payments
between two parties. The Lightning Network (LN) [1] is a
significant implementation of this technology, with the total
value locked on the network reaching 141 million USD as of June
2023. The key idea behind this technique is to enable two parties
to make multiple payments using a payment channel while only
recording two transactions on the ledger. The operations of a
payment channel include opening, updating, and closing. To
open a channel, both parties lock a certain amount of funds in
a 2-of-2 multi-signature output. This output requires signatures
from both parties to redeem their funds, ensuring their balance
security. During the off-chain payments, they can create new
transactions to update the channel’s state (i.e., the balance of
the two parties in the channel). These updates occur off-chain,
enabling efficient multiple payments within the channel without
sending transactions to the blockchain. When these two parties
decide to close the channel, one of them can submit the final
negotiated transaction to the blockchain containing signatures
from both parties. Once this transaction is included by the
blockchain, the parties can redeem their funds from the 2-of-2
multi-signature output and conclude the use of the channel.

C. Payment Channel Networks (PCNs)
PCNs (e.g., LN [1] and Eclair [7]) are an extension of PCs

that establish a network of interconnected channels that aim at

enhancing the efficiency of PCs. When two users who do not
have an established PC wish to conduct off-chain transactions,
they can leverage an existing network path that connects them to
facilitate their transfer. There are primarily two update modes in
PCN: Multi-hop payments (MHPs) [1, 3, 4, 8, 9] and Multi-
channel updates [2, 5]. One critical issue in PCNs is the
atomicity problem, which refers to the guarantee that the states
of all channels in payment are either all updated together or
none are updated, ensuring that users do not suffer losses due to
partial execution. Currently, there are two kinds of approaches to
achieve atomicity in PCNs: HTLC-based update protocols [1]
and UTXO-based update protocols [2, 3, 4, 5]. We introduce
these methods below and show the comparison of existing
approaches in Table I.

HTLC-based Update Protocols. HTLC-based update pro-
tocols, as proposed by the Lightning Network (LN) [1],
ensure atomicity across a multi-hop payment, which can be
modeled as sender→ 𝑣1, . . . , 𝑣𝑛 → receiver. An HTLC can
be constructed by two parties sharing an open payment channel
(e.g., Alice and Bob) and allows Alice to lock 𝛼 coins that
can be released only if the contract’s conditions (i.e., a hash
lock and a time lock) are fulfilled. The core idea for ensuring
atomicity is that each pair of adjacent parties in the multi-
hop path creates HTLCs bound by the same hash lock. The
preimage of this hash is known only to the receiver. When the
receiver uses the preimage to redeem her funds, parties from
𝑣𝑛 to 𝑣1 sequentially learn the secret and use it to unlock the
HTLCs they created with the previous party. This mechanism
ensures that either all HTLCs are unlocked or none are,
maintaining the atomicity of the MHP. Further studies employ
signature algorithms to replace HTLC to enhance the security
to defense against the wormhole attacks, and interoperability of
MHPs [8, 9]. However, existing HTLC-based update protocols
and signature-based update protocols still have the following
limitations: (a) Low Expressiveness. These protocols for MHPs
impose limitations on the complexity of payment scenarios,
as it does not support complex structures (i.e., crowdfunding)
(b) Liner Collateral. The duration of the locking phase for the
payment sender increases linearly with the increasing number of
intermediaries involved, as each intermediary needs to redeem
their funds sequentially.

UTXO-based Update Protocols. Atomic Multi-Channel
Update (AMCU) protocol [2] is the first attempt to solve
the long-standing collateral challenge [10], aiming to achieve
constant collateral payments. It utilizes the UTXO mechanism,
whereby the amount of a transaction is atomically transferred
from one or more inputs to one or more outputs to achieve
atomicity across multiple channels. This protocol also supports
MCUs, enabling users to perform more complex applications
on UTXO-based blockchains, such as crowdfunding, mass pay-
ments, and PCN rebalancing. However, this protocol sacrifices
the identity privacy of payment senders/receivers. Jourenko et al.
[3] find that AMCU is not secure. It suffers from channel closure
attacks [3], where malicious intermediaries collude to perform
a double-spending attack to the enable payment transaction,
rendering it unaccepted by the blockchain and compromising
the atomicity of the protocol. In response to this issue, they
proposed the payment trees (PT) protocol that utilizes the
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UTXO mechanism to ensure the atomicity of MHPs. However,
it comes with a higher collateral requirement compared to
AMCU, increasing from O(1) to O(log𝑛). Furthermore, this
protocol inherits the privacy limitations of AMCU. Aumayr et
al. [4] introduced Blitz, which enables MHPs in a single round
of communication, contrasting with LN’s two-phase commit
approach. This protocol provides defense against wormhole
attacks while maintaining constant collateral. Additionally, the
Blitz protocol achieves identity privacy for MHPs’ sender and re-
ceiver. Aumayr et al. [5] propose an alternative approach, called
Thora, to mitigate the channel closure attack by having each
channel receiver create her own enable payment transaction.
This UTXO-based transaction requires the receiver’s signature
to become valid, thereby defending against malicious users
attempting a channel closure attack. However, existing UTXO-
based update protocols still fail to simultaneously achieve
balance security, internal anonymity, and multi-channel updates.

III. Solution Overview

A. System Model and Threat Model

System Model. A PCN can be modeled as G := (V,E).
The set of the nodes V represents the users’ addresses in
the blockchain. The set of weighted edges E represents the
opened payment channels in the PCN. Every weighted edge
(𝑋𝑣1 , 𝑋𝑣2 ) ∈ E represents the balances of 𝑣1, 𝑣2 ∈ V stored
in the PC. In this paper, we focus on MCUs in PCN. In an
MCU, one or more payment senders transfer funds to one or
more payment receivers. We refer to parties that only spend
funds as payment senders, and those parties only receive funds
as payment receivers. By utilizing specific routing algorithms
[11, 12, 13, 14], these parties can discover an updating graph
UG := ({(𝛾𝑖 , 𝛼𝑖)}𝑛𝑖=1) to execute the off-chain payments, where
{𝛾𝑖}𝑛𝑖=1 ⊂ G represents the set of PCs linking all payment senders
and receivers and {𝛼𝑖}𝑛𝑖=1 represents the transfer amounts for
these PCs. Apart from payment senders and receivers, parties
involved in the MCUs are referred to as intermediaries whose
fund changes are limited to the payment fees they charge.

In our protocol, we assume the existence of a secure and
authenticated communication channel among protocol partic-
ipants, like TLS channel. We also assume that honest parties
remain online throughout the protocol, like [4].

Threat Model. In this paper, we consider the following two
types of attacks in our model: (1) Collusion Attacks (e.g.,
the channel closure attacks), some malicious parties may
conspire to disrupt the atomicity of updates to compromise
the balance security of honest parties and steal funds from
honest parties; and (2) Identity Privacy Attacks, we consider
a party’s identity privacy compromised when their blockchain
address is revealed. We assume that payment senders and
payment receivers know each other’s identity information, which
is a reasonable assumption as payments cannot occur without
knowing addresses. However, intermediate parties who assist in
the payment are curious about the identities of payment senders
and receivers and may try to infer this information.

B. Security and Privacy Goals
Balance Security [1, 4]: Independent of whether the protocol
runs without disputes, no honest intermediate party within the
update protocol loses her funds. Note that we do not consider the
balance security for malicious parties, as they can compromise
the atomicity of the channels they are involved in at the cost of
their own funds. However, a rational attacker would not do so.
Internal Anonymity (Sender/Receiver Privacy) [4]: When
the protocol runs without disputes (i.e., no party forcibly closes
her payment channel on-chain), if an adversary controlling an
intermediary can not determine whether any of his neighbors
is one of the payment senders or one of the payment receivers,
then we regard that the protocol achieves internal anonymity.
This notion of anonymity is more stringent compared to that of
existing MCUs protocols [5], as these protocols’ preservation of
parties’ identity privacy is limited to external adversaries outside
the protocol, while internal parties still know their identities.

C. Our Solution
We present a novel UTXO-based update protocol that si-

multaneously achieves MCUs, internal anonymity, and balance
security. We describe our protocol in an incremental way. We
first recall the method of employing Trigger and Response
pattern, a strategy widely utilized in previous UTXO-based
update protocols, which solely achieve MCUs and balance
security. Then, we give a naive approach utilizing Updating
Graph Splitting (UGS) to achieve MCUs and internal anonymity
while sacrificing balance security. Finally, we introduce the
Enable Payment Transaction Tree (EPTT) to achieve balance
security for the naive approach.
Trigger and Response Pattern. The current UTXO-based
update protocols mainly employ the Trigger and Response
pattern to address the challenge of atomic updates across
multiple channels. Specifically, atomic updates require that
given a UG := {(𝛾𝑖 , 𝛼𝑖)}𝑛𝑖=1, the expected state of the channels
by the timeout 𝑇 has only the following clauses: (a) either all
channel states are successfully updated off-chain(or enforcing
payment on-chain), allowing all the channel receivers of {𝛾𝑖}𝑛𝑖=1
to concurrently receive the payment value {𝛼𝑖}𝑛𝑖=1, respectively;
or (b) all the receivers in {𝛾𝑖}𝑛𝑖=1 does not receive {𝛼𝑖}𝑛𝑖=1,
respectively. To solve this challenge, protocols employing the
Trigger and Response pattern are divided into two primary
operations: (1) The Trigger operation, where if any channel
receiver forcibly claims her coins from her channel before𝑇 , she
must publish an Enable Payment transaction to the blockchain,
signaling a global event to notify other channel receivers. (2)
The Response operation, where other channel receivers, upon
observing the presence of the Enable Payment transaction on
the blockchain, will react by forcibly claiming their coins from
their channels. These operations can be executed in parallel,
thereby ensuring constant collateral. Ultimately, if no channel
updates occur by the time 𝑇 expires, all channel states will
revert to their status prior to the update. This pattern, in contrast
to the HTLC-based update protocol, has the advantage of being
applicable to updating graphs of any topological structure and
constant collateral. We give an intuitive explanation of the
Trigger operation and Response operation below.
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Fig. 2: Overview of the transactions for Trigger
operation.
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Fig. 3: Overview of the update contract for Response operation.

Transactions for Trigger Operation. Some existing works
(e.g., Blitz) rely on a trusted user to perform the trigger
operation. Contrastingly, some existing works (e.g., Thora)
eliminate the need for a trusted user by allowing any channel
receiver to act as a trigger. In our approach, we adopt the latter
strategy, where every channel receiver, denoted by R𝑖 , needs
to generate transactions for the trigger operation: txin and txep,
as shown in Fig. 2. txin is used to allocate coins for R𝑖 , where
the receiver needs to lock the required funds 𝑛 · 𝜖 in one of
the outputs of txin, with 𝜖 representing the minimum value
supported by the blockchain (e.g., 1 satoshi in Bitcoin). txep

is a crucial transaction that triggers Response operations for all
receivers. Its input is one of the outputs of txin, and it generates
an output for each channel receiver R𝑖 , serving as a prerequisite
for R𝑖 to execute the Response operation. Each output has a value
of 𝜖 and a locking script of OneSig(R𝑖). Once the transaction
txep is generated, it is sent to each channel sender to enable her
to generate the corresponding update contract for the Response
operation based on the received txep.

Update Contract for Response Operation. Upon receiving
a set of transactions {txep} from all channel receivers, each
channel sender collaborates with her respective channel receiver
to generate an update contract. Fig. 3 shows an example of
an update contract for the 𝑖-th channel 𝛾𝑖 , where we assume
txep as the trigger transaction received from another channel
receiver. The balance states of S𝑖 and R𝑖 in the channel are
represented as 𝑋S𝑖

and 𝑋R𝑖
, respectively. S𝑖 first uses txstate

to update the state of 𝛾𝑖 , which can be seen as a transitional
state, rendering her channel ready for the transfer of 𝛼𝑖 . In
txstate, the sender’s balance is split into two outputs: one
output with a value of 𝑋S𝑖

− 𝛼𝑖 and another output with a
value of 𝛼𝑖 . For the second output, its condition is specified
as (MultiSig(R𝑖 ,S𝑖) ∧RelT(Δ)) ∨ (OneSig(S𝑖) ∧AbsT(𝑇)).
The timelock condition AbsT(𝑇) for the input of txrefund ensures
that the channel sender can only refund the payment value 𝛼𝑖

after 𝑇 . Meanwhile, the timelock condition RelT(Δ) for the
input of txp guarantees that the execution priority of txrefund is
higher than txp after 𝑇 , thereby eliminating the possibility that
the channel receiver redeem 𝛼𝑖 by txp after 𝑇 . Then, the state of
𝛾𝑖 has the following clauses: (1) S𝑖 can wait for the expiration
of the timeout 𝑇 and then uses txrefund to redeem 𝛼𝑖 . This can
be viewed as rolling back 𝛾𝑖 to the state before the update; or (2)
When R𝑖 observes one txep (may be posted by her own) being
confirmed on the blockchain, she can publish the corresponding
txp to the blockchain to enforce her payment before 𝑇 . This

can be seen as forcibly updating the channel state to the state
of successfully sending 𝛼𝑖 to R𝑖 in an on-chain way; or (3) S𝑖

and R𝑖 honestly update the state of 𝛾𝑖 using a new off-chain
state transaction txtrans. This transaction contains two outputs,
representing the states of the S𝑖 and R𝑖 after transferring 𝛼𝑖 .

When the update contact for a payment channel is accurately
created, the channel receiver will send a notification message
to all channel senders. Upon receiving all notification messages
from all channel receivers, a channel sender sends her signature
for the corresponding txep to each channel receiver. This process
ensures that once a txep becomes valid (having obtained all
necessary signatures), all transactions and update contracts are
generated, and each channel 𝛾𝑖 becomes ready for the transfer of
𝛼𝑖 . Then, if any channel receiver needs to enforce her payment
on-chain when there is a dispute on her channel, she will post
txin, txep, and txp (response to her own trigger) to the blockchain.
Upon observing txep being confirmed in the blockchain, other
channel receivers will close their channels and publish their
corresponding txp to the blockchain to conduct the Response
operations, ensuring that all channel receivers can enforce their
corresponding payment on-chain simultaneously. The timelock
condition RelT(𝑡𝑐 +Δ) for 𝜃txep/txp ensures sufficient time for
other channel receivers to close their channels and subsequently
publish their txp transactions to the blockchain, where 𝜃tx1/tx2

represents the output connecting tx1 and tx2, and 𝑡𝑐 represents
the maximum time for closing a payment channel.

However, when engaging in protocols that follow the Trigger
and Response pattern, intermediaries acting as channel receivers
need to know the list of addresses of all channel receivers
(denoted by R) to construct txep. In addition, they also need
to know the list of addresses of all channel senders (denoted by
S) to unlock the input of their corresponding txep. Consequently,
this information allows participants to easily determine that S\R
represents the addresses of payment senders andR\S represents
the addresses of payment receivers.

Internal Anonymity: Updating Graph Splitting. We intro-
duce a naive approach to ensure internal anonymity for UTXO-
based update protocols through our novel technique, termed
updating graph splitting. We present an example (in Fig. 4 ) to
illustrate the process of UGS and show how UGS can be utilized
to achieve internal anonymity.

Given a UG UG := ({(𝛾𝑖 , 𝛼𝑖)}𝑛𝑖=1), we split it into multiple
SGs to ensure anonymity for the payment senders and receivers.
We use an example to illustrate the structure of a split graph
shown in Fig. 4(a), where the graph UG is divided into four
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Fig. 4: (a) An example of updating graph splitting. The updating graph depicts a two-to-two payment. The two payment senders
transfer their funds to the two payment receivers through 7 and 6 intermediaries, respectively. This updating graph is divided into
four sub-graphs by UGS, denoted as SG1, · · · ,SG4. Each sub-graph has 3 or 4 channels. (b) The traditional approach employs
the Trigger and Response pattern, where a channel receiver initiates an enable payment transaction with 15 outputs to trigger 15
channel receivers, respectively. (c) The naive approach utilizes UGS to achieve internal anonymity, where each channel receiver
generates a txep1 to trigger other channel receivers. txep1 consists solely of outputs that trigger each receiver within her SG, as well
as a special output containing global information for triggering channel receivers in other SGs. Consequently, a channel receiver
only knows the identities within her own SG, rather than the identities of all channel receivers, to create txep1 .

SGs, denoted by SG1, ...,SG4. Note that the splitting involves
dividing the channels into several subsets, leading to overlapping
parties across the SGs. For example, P3 and P12 belong to
both SG1 and SG2. These overlapping parties, along with the
payment senders/receivers, collectively form the key parties
(KPs), denoted as KP𝑖 . We define parties other than the key
parties as normal parties (NPs). To better introduce our protocol,
we introduce additional notions for these channels and parties.
For each SG SG𝑖 , the individual channels in SG𝑖 are labeled
as {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1, where 𝑐𝑖 represents the number of channels within
SG𝑖 . The 𝑗-th parties in SG𝑖 are represented by P𝑖, 𝑗 , and P𝑖
represents the set {P𝑖, 𝑗 }𝑛𝑖𝑗=1, where 𝑛𝑖 represents the number
of parties within SG𝑖 . Similarly, S𝑖, 𝑗 and R𝑖, 𝑗 represents the
sender and receiver of the 𝑗-th channel in SG𝑖 , respectively. S𝑖
and R𝑖 represent the set {S𝑖, 𝑗 }𝑐𝑖𝑗=1 and {R𝑖, 𝑗 }𝑐𝑖𝑗=1, respectively.

Principle for UGS. To better introduce the principle, we first
define the concept of a chain, which refers to a series of PCs
that link a payment sender to a payment receiver. A UG must
consist of several chains. For example, the UG in Fig. 4(a)
consists of two chains (i.e., P1 to P9 and P10 to P17). The
splitting must adhere to the following principles: (a) Payment
senders&receivers must be key parties. They need to know more
information to ensure their balance security than normal parties;
(b) Each SG must contain at least one PC from each chain. This
ensures that the number of segments in each chain corresponds
to the number of SGs, and (c) The UG must be divided into at
least three SGs. Currently, the average number of hops required
for a one-to-one transfer between any two users in PCN is 9 (as
of Feb. 2024 in LN) [15]. Therefore, it is not difficult to split
an updating graph into three or more SGs. For small updating
graphs that cannot be split into more than three SGs, we discuss
how our protocol ensures their internal anonymity in Appendix
A. We give an example algorithm for UGS in Appendix B.

Upon UGS, we establish a privacy requirement critical for
our protocol to achieve internal anonymity within MCUs.
Specifically, this privacy requirement requires that each party
in UG knows only the public addresses of parties within their
respective SGs, rather than all parties’ public addresses in UG,
thereby ensuring internal anonymity. For example, P4, who
belongs to SG2, knows only the public addresses of the parties
in SG2 (i.e., P3 to P5 and P12 to P14). KP3, who belongs to
both SG2 and SG3, only knows the public addresses of the
parties in both SG2 and SG3 (i.e., P3 to P7 and P12 to P16).
Therefore, an intermediary can not know the public addresses of
payment senders and receivers simultaneously when the number
of SGs exceeds two. Even if a party and one of the payment
senders/receivers are in the same SG (e.g., P7 and P9), the
intermediary P7 cannot determine if the known neighbors (e.g.,
P9) are payment senders/receivers or just other intermediaries.

Naive Approach. We propose a naive approach to fulfill
the privacy requirements for achieving internal anonymity in
MCUs. After splitting the UG, we require parties within each
SG to generate transactions (i.e., txep and txp) solely with her
SG’s parties for their respective SGs. For the generation of
transactions txep and txp, parties are only required to know the
identities of parties in their respective SGs. However, txep in
Fig. 2 can solely trigger parties within the same SG and cannot
trigger parties of other SGs. To overcome this issue, we introduce
a novel enable payment transaction, denoted as txep1 , as depicted
in Fig. 4(c). Unlike txep, this transaction has an extra output that
serves as a notifier, alerting channel receivers in other SGs to
respond. The value of this output is 𝜖 , and the locking script of
the output is set to the notifier of this specific MCU (e.g., the sid
of this update). Consequently, when any txep1 is published on
the blockchain, all channel receivers in other SGs can respond
to this trigger by posting txep1 for their SGs and her own txp
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upon detecting a UTXO labeled with the notifier of this MCU.
However, this naive approach is vulnerable to griefing attacks,

compromising its balance security. With the timelock setting
of 𝜃txep1/txp , a rational trigger should post her txep1 to the
blockchain before 𝑇 − 3Δ− 𝑡𝑐, which ensures that txep1 will
be on the blockchain before 𝑇 −2Δ− 𝑡𝑐. Then, after waiting for
Δ+ 𝑡𝑐, when the output of txep1 is unlocked, the trigger can post
txp to the blockchain before 𝑇 −Δ, and txp will be confirmed
before 𝑇 . If a malicious trigger delays posting her txep1 to the
blockchain until 𝑇 − 3Δ− 𝑡𝑐, although the channel receivers in
the trigger’s SG have enough time to post their txp before 𝑇 −Δ
(accepted before 𝑇), other channel receivers do not have enough
time to post txep1 for enabling payment for their SGs and txp to
the blockchain, thereby breaking atomicity among all SGs.
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Fig. 5: An example of an EPTT that adopts the Trigger-Response
pattern. In this tree, R3,3 acts as the trigger, being the first channel
receiver to publish txin and txep1 for enforcing payment. Upon
observing txep1 on the blockchain, other receivers can respond
to this trigger, i.e., they publish their corresponding transactions
following the tree to enforce their payments. Note that txrelay

includes four outputs (1 output per SG). Since SG3 does
not require additional triggering by txep2 , the output for SG3
remains unspent. For clarity, it is hidden from the illustration.

Balance Security: EPTT. To ensure balance security, we
introduce the enable payment transaction trees that follow the
Trigger and Response pattern. Specifically, we require that each
channel receiver creates a transaction tree where they act as the
trigger. Fig. 5 shows an example of an EPTT, corresponding to
the updating graph depicted in Fig. 4. In this tree, R3,3 is the
trigger, with the other channel receivers acting as responders.
This tree is structured into five layers. The first and second
layers are txin and txep1 , respectively, facilitating the enforcing
payment for the trigger’s SG, SG3. The third layer includes
payment transactions from channel receivers in SG3 and a

special transaction txrelay, which initiates response operations
for channel receivers in other SGs. txrelay outputs for each SG,
enabling txep2 of all other SGs, respectively. Notably, txep2

is similar to txep, with the primary difference being that its
input comes from txrelay instead of txin. The fifth layer consists
of payment transactions from channel receivers in other SGs
responding to the trigger. For simplicity in describing our
protocol, we use txp1 and txp2 instead of txp to represent the
payment transactions following txep1 and txep2 , respectively.

Compared to the naive approach, the structure of EPTT
prescribes a sequential execution order for enable payment
transactions of SGs: initially triggering txep1 for the parties in the
SG where the trigger is in, followed by txep2 for parties in other
SGs. This allows us to employ timelock settings to safeguard
against griefing attacks. We describe the setting of timelocks
of the transaction in EPTT, as shown in Fig. 5. We retain the
timelock condition for 𝜃txep2/txp2 as RelT(Δ + 𝑡𝑐) and do not
set any timelock conditions on 𝜃txep1/txrelay and 𝜃txrelay/txep2 . In
these timelock settings, a rational trigger must post txep2 before
𝑇 −3Δ− 𝑡𝑐 for her txp2 to be confirmed by the blockchain before
𝑇 . Consider the blockchain delay Δ, txrelay and txep1 must be
posted before 𝑇 −4Δ− 𝑡𝑐 and 𝑇 −5Δ− 𝑡𝑐, respectively, to allow
responders to post txep2 to the blockchain before 𝑇 −3Δ− 𝑡𝑐. To
ensure that the trigger will definitely post txep1 before𝑇−5Δ−𝑡𝑐,
we set RelT(3Δ+ 𝑡𝑐) for 𝜃txep1/txp1 . With this setting, a rational
receiver must post txep1 before 𝑇 − 5Δ− 𝑡𝑐 for her txp1 to be
confirmed by the blockchain before 𝑇 .

We require parties from different SGs to collaborate in
creating their transaction trees, with key parties acting as bridges
for information dissemination between the SGs. To preserve key
parties’ anonymity, we require key parties to generate one-time-
use fresh addresses {KPfa

𝑖 }𝑛𝑖=1 and use them as their identifiers
for communication among themselves without revealing their
real identities. We describe the creation of the R3,3’s tree as an
example (cf. Fig. 5). After R3,3 creates a transaction txep1 con-
taining SG party identity information through communication
with her SG’s parties, she sends txep1 to the key parties in SG3.
Then, the key parties generate the corresponding txrelay and send
it to key parties in other SGs. These key parties in other SGs then
collaborate with parties from their SGs to create the final two
layers of the tree (each SG’s txep2 and the corresponding txp2 ),
respectively. Information transfer between SGs consists solely of
details regarding txrelay transactions conducted by key parties.
As txrelay’s input’s unlocking script is MultiSig({KPfa

𝑖 }𝑛𝑖=1),
and its output for each SG is a hash of a locking script, no
identity information is exposed. Furthermore, the generation of
transaction trees for every channel receiver can be executed in
parallel, thereby not increasing the time complexity.

There are two ways in which the atomicity of an EPTT
can be compromised: (1) If the EPTT becomes valid (i.e., all
transactions in the tree are signed) when only a portion of PCs are
ready, then the receivers in payment channels not yet ready will
be unable to enforce payment using txp1/p2 in case of disputes in
their channels. (2) The outputs of transactions are double-spent
maliciously by unexpected transactions.

Ensure Readiness of All PCs. To prevent the transac-
tion tree from becoming valid before all channels update
their channel states by txstate, we add a signature condition
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Functions for Generating Transactions.
GenTxIn(R𝑖, 𝑗 , 𝑏, {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1)

1) ls := MultiSig(R𝑖, 𝑗 ∪S𝑖 ∪ {KPfa
𝑘 }∀ KP𝑘 ∈SG𝑖

)
2) Return txin := (𝑖𝑑, input, 𝜃1, 𝜃2 ) , where input is utilized by R𝑖, 𝑗

to unlock a existing UTXO with 𝑎 balance, 𝜃1 := (𝑏, ls) , and
𝜃2 := (𝑎 − 𝑏, OneSig(R𝑖, 𝑗 ) ) , and 𝑖𝑑 := H(input, 𝜃1, 𝜃2 )

GenTxEP1({𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1, tx
in, 𝑛,HKP)

1) If txin.output[0].cash < 𝑛 · 𝜖 , return ⊥
2) OutputList := (𝑛 · 𝜖 ,HKP )
3) For each R𝑖, 𝑗 in R𝑖 : OutputList := OutputList ∪
(𝜖 , OneSig(R𝑖, 𝑗 ) ∧RelT(3Δ+ 𝑡𝑐 ) )

4) 𝑖𝑑 := H(txin.output[0],OutputList)
5) Return txep1 := (𝑖𝑑, txin.output[0],OutputList)

GenRelay(txep1 , 𝑛, {HSG𝑖
}𝑛SG
𝑖=1 )

1) If txep1 .output[0].cash < 𝑛 · 𝜖 , return ⊥
2) OutputList := ∅; For each SG𝑖 : OutputList := OutputList∪ (𝑐𝑖 ·

𝜖 ,HSG𝑖
)

3) 𝑖𝑑 := H(txep1 .output[0],OutputList)
4) Return txrelay := (𝑖𝑑, txep1 .output[0],OutputList)

GenTxEP2(txrelay
𝑖

, {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1)

1) If txrelay.output[𝑖 ].cash < 𝑐𝑖 · 𝜖 , return ⊥
2) OutputList := ∅; For each R𝑖, 𝑗 in R𝑖 : OutputList := OutputList∪
(𝜖 , OneSig(𝑅𝑖, 𝑗 ) ∧RelT(Δ+ 𝑡𝑐 ) )

3) 𝑖𝑑 := H(txrelay.output[𝑖 ],OutputList)
4) Return txep2 := (𝑖𝑑, txrelay.output[𝑖 ],OutputList)

GenTxState(𝛼,𝑇, 𝛾′ )
1) Let 𝜃

′ be the input of current state of 𝛾
′ . Let 𝜃𝑠 =

(𝑏𝑠 , OneSig(S𝑖, 𝑗 ) and 𝜃𝑟 = (𝑏𝑟 , OneSig(R𝑖, 𝑗 be the outputs of
the current state of 𝛾

′ , respectively. The values of 𝑏𝑠 and 𝑏𝑟 are
the deposited balance of the sender and receiver, respectively.

2) If 𝛼 < 𝑏𝑠 , Return ⊥. Otherwise, return txstate :=
(𝑖𝑑, input, 𝜃1, 𝜃2, 𝜃3 ) , where 𝜃1 := (𝛼, (OneSig(S𝑖, 𝑗 ) ∧
AbsT(𝑇 ) ) ∨ (MultiSig(S𝑖, 𝑗 ,R𝑖, 𝑗 ) ∧ RelT(Δ + 𝑡𝑐 ) ) ) , 𝜃2 :=
(𝑏𝑠 − 𝛼, OneSig(S𝑖, 𝑗 ) ) , 𝜃3 := (𝑏𝑟 , OneSig(R𝑖, 𝑗 ) ) .

GenTxRefund(txstate)
1) OutputList = (txstate.output[0].cash, OneSig(𝑆𝑖, 𝑗 ) )
2) 𝑖𝑑 := H(txstate.output[0],OutputList)
3) Return txrefund := (𝑖𝑑, txstate.output[0],OutputList)

GenTxP1/P2(txstate, 𝜃)
1) OutputList = (txstate.output[0].cash+ 𝜖 , OneSig(𝑅𝑖, 𝑗 ) )
2) 𝑖𝑑 := H((txstate.output[0], 𝜃 ) ,OutputList)
3) Return txrefund := (𝑖𝑑, (txstate.output[0], 𝜃 ) ,OutputList)

GenTxTrans(𝛾)
1) Let input be the input of current state of 𝜃

′ . Let 𝜃1, 𝜃2, 𝜃3
be the outputs of the current state of 𝛾

′ , respectively. Re-
turn txtrans := (𝑖𝑑, input, 𝜃𝑠 , 𝜃𝑟 ) , where 𝜃𝑟 := (𝜃1.cash +
𝜃3.cash, OneSig(R𝑖, 𝑗 ) ) , 𝜃𝑠 := (𝜃2.cash, OneSig(S𝑖, 𝑗 ) ) .

Fig. 6: Functions for Generating Transactions.

MultiSig(S𝑖 ∪ {KPfa
𝑘 }∀ KP𝑘 ∈SG𝑖

) to txep1 , add a signature
condition MultiSig({KPfa

𝑖 }) to txrelay, and add a signature
condition MultiSig(S𝑖) to txep2 , as shown in Fig. 5. After a
channel sender successfully updates her channel by txstate, she
will sign {txep1/ep2 } for all channel receivers’ trees in her SG
and then sends these signatures to the parties in her SG. After
receiving these signatures from all channel senders in her SGs,
the key party will inform other key parties that the SGs she
is responsible for are all ready by sending her signatures of
{txrelay}. The key party only sends her signatures of {txep1 } to
the channel receivers in her SGs after confirming that all other
payment channels have been ready. This process ensures that
when a channel receiver receives all the signatures to satisfy the
signature conditions of txep1 , every payment channel in UG has
been ready.

Prevent Double Spending. To prevent double spending, we
carefully design the signature conditions of locking scripts for
transactions. We add a signature condition to the input of txep1 ,
requiring the signature of the owner of txep1 to unlock it. As
a result, for the first receiver 𝑅𝑖, 𝑗 executing the trigger and
response operations, all inputs of txin, txep1 , and txp1 require her
signature to unlock the corresponding outputs. Malicious users
cannot launch a double-spending attack to unlock an output
requiring 𝑅𝑖, 𝑗 ’s signature without 𝑅𝑖, 𝑗 ’s participation. We add a
signature condition to the input of txep2 , requiring the signatures
of all channel receivers in the SG corresponding to txep2 to
unlock it. Consequently, if there is at least one honest key party,
malicious users are unable to launch a double spending attack
on txrelay, txep2 , and txp2 , which are required for other honest
channel receivers to enforce payment on-chain.

The detailed definition of functions for generating trans-
actions is shown in Fig. 6. We provide a comprehensive
security analysis of the EPTT with the aforementioned strategies
in Section V, demonstrating that our solution safeguards

the balance security for honest intermediate parties, even in
scenarios involving malicious key parties. For existing attacks
(i.e., wormhole attacks and channel closure attacks), our proto-
col inherently resists wormhole attacks due to the atomicity
in SAMCU being guaranteed by UTXO mechanism instead
of secret passing. Additionally, our protocol defends against
channel closure attacks as it prevents double spending, which
is the core operation of such attacks. However, malicious key
parties may launch a wormhole-like attack to steal transaction
fees from normal parties rather than their funds. This type of
attack causes relatively minor losses compared to traditional
wormhole attacks. We discuss this attack in Appendix C.

Other Properties. In addition to the aforementioned security
and privacy goals, our solution achieves performance improve-
ments in the following aspects.

Small Size & Low Fee of On-chain Transaction. Compared
with existing protocols, the total size of transactions for
enforcing payment per person is reduced because we split the
large enable payment transaction into several smaller ones. A
channel receiver who incurs a dispute only needs to publish one
small enable payment transaction to enforce her payment. For
example, as shown in Fig. 4(b), in existing approaches, a channel
receiver needs to publish txep with 1 input and 15 outputs. In
contrast, in our approach, the channel receiver in SG4 only needs
to generate a txep1 with 1 input, and 4 outputs for triggering other
parties in UG, as shown in Fig. 5. After observing a txep1 on
the blockchain, parties in other SGs only need to publish txrelay

and txep2 , where the total size of these two transactions is also
smaller than the txep in the existing approaches.

However, there remains a challenge in reducing the on-chain
transaction fees for enforcing payments per person: If we employ
the regular transaction fee payment mechanism (adding the fee
to one of the inputs) in SAMCU, then every channel receiver
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needs to cover the fee for the transactions in her EPTT (except
txp1/p2 ) because the funds in inputs of these transactions all
originate from txin). Therefore, a receiver must pay not only for
transactions for enforcing her payment (i.e., txin, txep1 ) but also
for transactions (i.e., txrelay, txep2 ) for enforcing other receivers’
payment. To solve this problem, we employ Child-Pays-For-
Parent [16] to pay the fees instead of the regular method. We can
modify the transactions in EPTT to support CPFP by increasing
the value of the input by 1𝜖 and adding an output with 1𝜖 and no
locking script in transactions txrelay, txep1/ep2 . Although these
transactions are set with 0 transaction fees, anyone can use the
CPFP strategy to pay the fees without changing the content
of the parent transactions. Details of CPFP are introduced in
Appendix D. With CPFP, parties only need to pay for the
transaction enforcing their payments, thereby reducing the on-
chain transaction fee per person.

Few Communication Connections. In existing approaches,
each intermediary needs to establish network connections with
all parties involved when participating in an MCU. In contrast,
our solution requires intermediaries to establish connections
only with the dealer, other parties within the same SG, and all key
parties at most. This selective connection strategy reduces the
network resources consumed by parties participating in MCUs.

IV. Constructions

A. Building Blocks
1) Digital Signature Scheme: A digital signature scheme Σ

is composed of three algorithms Σ = (Gen,Sign,Verify):
• sk,pk ← Gen(1𝜆) is a PPT algorithm that takes the

security parameter 1𝜆 and outputs a public key pk and
the corresponding secret key sk.

• 𝜎←Sign(sk,𝑚) is a PPT algorithm that takes a secret key
sk and a message 𝑚 as input and outputs a signature 𝜎.

• {0,1} ← Verify(𝜎,𝑚,pk) is a DPT algorithm that takes
signature 𝜎, a message 𝑚, and a public key pk as input. It
determines the validity of the signature by checking if 𝜎
was created by the secret key corresponding to pk for the
given message 𝑚. If the signature is valid, the algorithm
outputs 1; otherwise, it outputs 0.

2) Payment Channel Networks.: A PCN is equipped with
three following operations:
• createChannel( ¯txdeposit) → 𝛾 Any two users can submit

a transaction ¯txdeposit to the blockchain to open a channel.
This transaction has two inputs, each from one of the
users. The output of this transaction is a 2-of-2 multi-
signature address controlled by both parties. Additionally,
the two parties will negotiate ¯txstate, which can be used
to redeem their respective funds from the 2-of-2 multi-
signature address. It is important to note that ¯txstate is
not immediately recorded on the blockchain at this stage.
Finally, this operation generates a payment channel 𝛾 with
an identifier as the 2-of-2 multi-signature address.

• updateChannel(𝛾, txstate, 𝑡𝑢) → {0,1} Either user can
update the state of channel 𝛾 to the state defined by txstate,
where txstate is the unsigned version of ¯txstate. When

both users complete the negotiation and sign txstate, this
operation returns 1. Otherwise, it returns 0. The maximum
execution time for this operation is 𝑡𝑢.

• closeChannel(𝛾, 𝑡𝑐), Either user can close the channel by
publishing the latest ¯txstate stored in 𝛾, which represents the
latest state of the channel, to the blockchain. 𝑡𝑐 represents
the maximum execution time for this operation.

B. Protocol Description
The formal construction of our protocol is described below

and shown in Fig. 7.
1) Initialization: One of the payment senders is chosen

as the dealer. After dealer splitting the updating graph
UG := ({(𝛾𝑖 , 𝛼𝑖)}𝑛𝑖=1), she requires all the key parties to create
the fresh addresses {KPfa

𝑖 }
𝑛KP
𝑖=1 for {KP𝑖}𝑛KP

𝑖=1 exclusively for
this specific update. Based on {KPfa

𝑖 }
𝑛KP
𝑖=1 , dealer generates the

input and output parameters required for txrelay. Subsequently,
the dealer distributes the relevant parameters to all parties.
If all parties agree to participate in this update by sending
confirmation messages to dealer, the process will proceed to
the next phase.

2) Pre-Setup-SG: For each SG, for each receiver, R𝑖, 𝑗 gener-
ate txin. The value of the output is (𝑐𝑖 +𝑛) · 𝜖 . Subsequently, R𝑖, 𝑗

generate txep1 , with the last output being MultiSig({KPfa
𝑖 }

𝑛KP
𝑖=1 )

and a value of 𝑛 · 𝜖 . The remaining outputs of txep1 are allocated
to send 𝜖 to other receivers within the same sub-graph. Finally, a
two-step notification process ensures that each party is aware of
the completion of generation by other parties before proceeding
to the next phase.

3) Pre-Setup-UG: For each key party KP𝑘 ∈ {KP𝑖}𝑛KP
𝑖=1 , she

first generates the corresponding txrelay for all the received txep1

from the parties in her sub-graphs and sends txrelay to all the
other KPs. Then, once a key party receives txrelay from all KPs,
she generates the corresponding txep2 for each received txrelay.
Finally, KP𝑘 sends all the generated txrelay and txep2 to all parties
in her sub-graphs. Upon receiving them, parties will check the
correctness of the received transactions.

4) Setup: The channel senders create txstate and txrefund,
along with txp1/p2 for each received txep1/ep2 . Then, they
send txstate, all txp1/p2 and the signatures for all txp1/p2 to
their channel receivers, respectively. This step ensures that
the receivers can post txp1/p2 on the blockchain to redeem
their balances, regardless of which txep1/ep2 that is eventually
published. Subsequently, a two-step notification process ensures
that each party knows the completion of checking received
transactions by all other channel receivers before proceeding
to the next phase.

5) Confirmation: After completing the two-step notification
process in the last phase, each channel sender proceeds to update
the channel with the channel receiver from its un-updated state
to the transmit state (represented by txstate) because she can
ensure that all receivers possess txp1/p2 with signatures that
allow them to claim the funds from txstate. If the channel is
successfully updated, the channel sender signs each txep1/ep2

and sends it to the corresponding receiver, while the channel
receiver signs each txep2 and sends it to the corresponding
receiver. When a channel receiver gets the signatures from
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SAMCU Protocol Details
• Let dealer be one of the payment senders or receivers;
• Let 𝑇 be the expected end time for this update;
• Let Δ be the maximum delay time of the blockchain;
• Let 𝑡𝑢 and 𝑡𝑐 be the maximum execution time of updating and closing

PC, respectively;
• Let UG := ({ {𝛾𝑖, 𝑗 , 𝛼𝑖, 𝑗 }𝑐𝑖𝑗=1}

𝑚
𝑖=1 ) be the updating graph, where 𝛼𝑖, 𝑗

is the transferred amount of 𝛾𝑖, 𝑗 and Σ𝑚
𝑖=1 𝑐𝑖 = 𝑛;

• Let 𝑛KP, 𝑛SG be the number of key parties, sub-graphs in UG,
respectively;

Initialization (phase 1):
dealer:

1) Send init to all key parties {KP𝑖 }
𝑛KP
𝑖=1 .

KP𝑖 upon receiving init from dealer:

1) Create a fresh address KPfa
𝑖 and sends KPfa

𝑖 to dealer.
dealer upon receiving {KPfa

𝑖 }
𝑛KP
𝑖=1 :

1) Create HKP := H(MultiSig({KPfa
𝑖 }

𝑛KP
𝑖=1 ) )

2) Create HSG𝑖
:= H(MultiSig(R𝑖 ∪S𝑖 ) ) for each SG𝑖 .

3) Create MSG𝑖
:= {KP𝑘 : KPfa

𝑘 }KP𝑘 ∈SG𝑖
for each SG𝑖 (the id

mapping of KPs’ real identities and fresh identities in SG𝑖).
4) Send initMsg := (HKP, 𝑛, {𝛾𝑖, 𝑗 }

𝑐𝑖
𝑗=1,MSG𝑖

) to all nor-
mal parties in SG𝑖 , 1 ≤ 𝑖 ≤ 𝑛SG, and send initMsg :=
(HKP, 𝑛, {HSG 𝑗

}𝑛SG
𝑗=1 , {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1,{𝛾𝑖+1, 𝑗 }

𝑐𝑖+1
𝑗=1 ,MSG𝑖

, MSG𝑖+1 ,
{KP𝑘 }

𝑛KP
𝑘=1 ) to KP𝑘 in SG𝑖 and SG𝑖+1, 1 ≤ 𝑘 ≤ 𝑛KP.

P𝑖, 𝑗 upon receiving initMsg from dealer:
1) Verify the information of the MCU, if the party agrees to participate

in this payment, send init-OK to dealer and go to Pre-Setup-SG
phase, else send abort.

Pre-Setup-SG (phase 2):
𝑅𝑖, 𝑗 :

1) Create txin
𝑖, 𝑗

:= GetTxIn(R𝑖, 𝑗 , 𝑐𝑖 + 𝑛, {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1 ) , create txep1
𝑖, 𝑗

:=
GetTxEP1({𝛾𝑖 , 𝑗 }𝑐𝑖𝑗=1, tx

in
𝑖, 𝑗

, 𝑛,HKP ) and send txep1
𝑖, 𝑗

to all P𝑖, 𝑗 in
P𝑖 .

KP𝑘 in both SG𝑖 and SG𝑖+1 upon receiving {txep1
𝑖, 𝑗
}𝑐𝑖
𝑗=1 ∪ {tx

ep1
𝑖+1, 𝑗 }

𝑐𝑖+1
𝑗=1 :

1) Check {txep1
𝑖, 𝑗
}𝑐𝑖
𝑗=1 ∪ {tx

ep1
𝑖+1, 𝑗 }

𝑐𝑖+1
𝑗=1 , else send abort (If KP𝑘 is only

in one sub-graph SG𝑖 , then she only needs to check {txep1
𝑖, 𝑗
}𝑐𝑖
𝑗=1 ).

2) Send Pre-Setup-SG-OK to all key parites {KP𝑘 }
𝑛KP
𝑘=1 .

KP𝑖 upon receiving Pre-Setup-SG-OK from all key parties:
1) Send Pre-Setup-UG-OK to all parties in their respective sub-graphs

and go to Pre-Setup-UG phase.
P𝑖, 𝑗 upon receiving Pre-Setup-UG-OK from all key parties in SG𝑖 :

1) Go to Pre-Setup-UG phase.
Pre-Setup-UG (phase 3):

KP𝑘 in SG𝑖 :

1) Create txrelay
𝑖, 𝑗

:= GetTxRelay(txep1 , 𝑛, {HSG𝑖
}𝑛SG
𝑖=1 ) , 1 ≤ 𝑗 ≤ 𝑐𝑖 ,

according to the received {txep1
𝑖, 𝑗
}𝑐𝑖
𝑗=1.

2) Send {txrelay
𝑖, 𝑗
}𝑐𝑖
𝑗=1 to all other key parties.

KP𝑘 in SG𝑖 upon receiving {txrelay} from all other key parties:
1) Check {txrelay}, else send abort.
2) Create txep2 := GetTxEP2(tx, {𝛾𝑖, 𝑗 }𝑐𝑖𝑗=1 ) for each tx in {txrelay}.
3) Send {txrelay} and {txep2 } to all parties in P𝑖 .
4) Go to Setup phase.

P𝑖, 𝑗 upon receiving {txrelay}, {txep2 } from all key parties in SG𝑖 :

1) Check {txrelay}, {txep2 } and go to Setup phase, else send abort.
Setup (phase 4):

S𝑖, 𝑗 :

1) Create txstate
𝑖, 𝑗

:= GenState(𝛼𝑖, 𝑗 , 𝑇, 𝛾𝑖, 𝑗 ) , and create txrefund
𝑖, 𝑗

:=
GenTxRefund(txstate

𝑖, 𝑗
) .

2) For all specious output 𝜃 in all txep1
𝑖, 𝑗
∪ txep2

𝑖, 𝑗
, create txp1/p2

𝑖, 𝑗, 𝜃
:=

GenPay(txstate, 𝜃 ) and corresponding signature 𝜎S𝑖, 𝑗
(txp1/p2

𝑖, 𝑗, 𝜃
) .

3) Send (txstate
𝑖, 𝑗

, txrefund
𝑖, 𝑗

, {txp1/p2
𝑖, 𝑗, 𝜃

}, {𝜎S𝑖, 𝑗
(txp1/p2

𝑖, 𝑗, 𝜃
) }) to R𝑖, 𝑗 .

R𝑖, 𝑗 upon receiving transactions and signatures from S𝑖, 𝑗 :
1) Check received transactions and signatures, else send abort.
2) Send message (Setup-SG-OK) to all parties in P𝑖 .

KP𝑘 upon receiving Setup-SG-OK from all R𝑖, 𝑗 in R𝑖 :
1) Send message (Setup-UG-OK) to all other key parties.

KP𝑖 upon receiving Setup-UG-OK from all other key parties:
1) Send message (Setup-UG-OK) to all parties in her one or two sub-

graphs, and go to Confirmation phase.
P𝑖, 𝑗 upon receiving Setup-SG-OK/Setup-UG-OK from all parties in SG𝑖 :

1) Go to Confirmation phase.
Confirmation (phase 5):

S𝑖, 𝑗 and R𝑖, 𝑗 in 𝛾𝑖, 𝑗 :

1) updateChannel(𝛾𝑖, 𝑗 , txstate
𝑖, 𝑗

, 𝑡𝑢).
2) if the channel cannot update until the expired time 𝑡𝑢, send abort.
3) S𝑖, 𝑗 sends {𝜎S𝑖, 𝑗

(txep1/ep2 ) } to all receivers, and sends
Confirmation-OK1 to all key parties in SG𝑖 .

4) R𝑖, 𝑗 sends {𝜎R𝑖, 𝑗
(txep2 ) } to all receivers and key parties in SG𝑖 .

R𝑖, 𝑗 upon receiving {𝜎S𝑖, 𝑗
(txep1/ep2 ) } from all parties in S𝑖 and

{𝜎R𝑖, 𝑗
(txep2 ) } from all parties in R𝑖 :

1) Check all the signatures, else send abort.
2) Send Confirmation-OK1 to all parties in SG𝑖

KP𝑘 in SG𝑖 upon receiving Confirmation-OK1 from R𝑖 ∪S𝑖 :
1) Send Confirmation-OK1 and {𝜎KP𝑘

(txrelay ) } to all key parties.
KP𝑘 in SG𝑖 upon receiving Confirmation-OK1 and {𝜎KP𝑘

(txrelay ) }
from all key parties:

1) Check {𝜎KP 𝑗
(txrelay ) } 𝑗≠𝑘 , else send abort.

2) Send 𝜎KPfa
𝑘

(txep1 ) and valid {txrelay} to all parties in R𝑖 .

R𝑖, 𝑗 upon receiving 𝜎KPfa
𝑘

(txep1 ) and valid {txrelay} from all key parties
in SG𝑖 :

1) Check all the signatures, else send abort.
2) Send Confirmation-OK2 to all parties in SG𝑖

KP𝑘 in SG𝑖 upon receiving Confirmation-OK2 from R𝑖 :
1) Send Confirmation-OK2 to all key parties.

KP𝑘 in SG𝑖 upon receiving Confirmation-OK2 from all key parties:
1) Send Confirmation-OK2 to all parties in R𝑖 .

P𝑖, 𝑗 upon receiving Confirmation-OK2 from R𝑖 and all key parties in SG𝑖 :
1) Go to Finalizing phase.

Finalizing (phase 6):
S𝑖, 𝑗 :

1) updateChannel(𝛾𝑖, 𝑗 , GetTxTrans(𝛾𝑖, 𝑗 ) , 𝑡𝑐).
R𝑖, 𝑗 :

1) If the time has expired and Update-OK has not been returned from
S𝑖, 𝑗 and no txep1/ep2 is on the blockchain before 𝑇 − 𝑡𝑐 − 5Δ, post
txin, txep1 and txp1 with required signature to the blockchain.

Response (runs in every block 𝑏𝑖) (phase 7):
R𝑖, 𝑗 :

1) If a txep1 for SG𝑖 is published in the blockchain before𝑇 − 𝑡𝑐 −4Δ,
run closeChannel(𝛾𝑖, 𝑗 , 𝑡𝑐 ) and wait 3Δ+ 𝑡𝑐 blocks, then, post the
txp1 to the blockchain.

2) or if 𝑏𝑖 < 𝑇 − 𝑡𝑐 − 4Δ, a txep1 for SG𝑘 (𝑘 ≠ 𝑖) is published
in the blockchain and there is no txrelay in the blockchain,
post the corresponding txrelay into the blockchain and run
closeChannel(𝛾𝑖, 𝑗 ,𝑡𝑐 ) . After txrelay being published in the
blockchain, publish the corresponding txep2 for SG𝑖 into the
blockchain. After the txep2 and txstate being published in the
blockchain, wait for the timelock conditions to be satisfied, and
then post the txp2 to the blockchain.

3) or if a txep2 for SG𝑖 is published in the blockchain before
𝑇 − 𝑡𝑐 − 2Δ, run closeChannel(𝛾𝑖, 𝑗 , 𝑡𝑐 ) and wait Δ+ 𝑡𝑐 blocks,
then, post the txp2 to the blockchain.

S𝑖, 𝑗 :

1) If 𝑏𝑖 >= 𝑇 , the channel is closed and txstate is published in the
blockchain, post the txrefund into the blockchain.

Fig. 7: SAMCU protocol.
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all channel senders and receivers, she can meet the signature
condition MultiSig(S𝑖) of her txep1 and meet all the signature
conditions of her txep2 , so she sends Confirmation-OK1 to
all parties within the same sub-graph. When a key party gets
message Confirmation-OK1 from all channel receivers in her
one or two sub-graphs, she will send Confirmation-OK1, the
signatures of {txrelay}, to all other key parties. After that, when
a key party receives Confirmation-OK1 from all key parties, it
means that all channels from other sub-graphs are successfully
updated. Then, the key party signs each txep1 and sends it and
valid {txrelay} with all signatures to the corresponding channel
receiver to all parties in her sub-graphs. When a receiver gets
the signatures from all key parties with the same sub-graph,
she is able to meet the second condition of her txep1 on the
blockchain i.e., MultiSig({KPfa

𝑘 }∀ KP𝑘 ∈SG𝑖
). Subsequently, a

two-step confirmation process ensures that each party knows
that all channel receivers have valid txep1 before proceeding to
the next phase.

6) Finalization: After the last phase, every channel sender
can ensure that all channels in UG are ready to be updated and all
channel receivers have valid txep1 . Then, she can start updating
her channel with the channel receiver off-chain. In case a PC
fails to be updated, the channel receiver can post her own txin,
txep1 , and txp1 to enforce payment.

7) Response: All participants should watch the blockchain’s
status and respond accordingly when new blocks are created on
the blockchain. Each channel receiver needs to watch which
transactions have appeared on the blockchain. In the event that a
Trigger transaction appears in the blockchain, she needs to post
the corresponding response transactions to the blockchain to
forcibly redeem her funds in the payment channel following the
corresponding EPTT if there is a dispute in her channel. Each
channel sender also needs to actively watch the blockchain. If
her receiver has not redeemed her funds by posting txp1/p2 before
𝑇 , the sender needs to post txrefund to redeem her funds after 𝑇 .

V. Security Analysis
A. Balance Security
Theorem 1. No honest intermediate party within SAMCU
loses her funds.

Proof. We first define four states for payment channels: (a) We
define a channel as unchanged when its state remains unaffected
by the current update, typically occurring when a participant
sends a message abort before the confirmation phase. (b) We
define a channel as revoked when the channel sender uses txstate

to update the channel’s state during the confirmation phase and
subsequently redeems her funds from the channel using a txrefund

transaction after time𝑇 . (c) We define a channel as compensated
when the channel sender uses txstate to update the channel’s
state during the confirmation phase and the receiver redeems her
funds from the channel using txp1/p2 before time𝑇 . (d) We define
a channel as successful when the channel sender uses txtrans to
update the channel’s state during the finalization phase. For
an honest intermediary P𝑖, 𝑗 , we consider her upstream channel
(where she acts as the receiver) and downstream channel (where
she acts as the sender) as 𝛾𝑙 and 𝛾𝑟 , respectively. There are three
scenarios that can compromise the balance security of P𝑖, 𝑗 :

• 𝛾𝑙 is unchanged, 𝛾𝑟 is successful or compensated. When
the upstream channel 𝛾𝑙 remains unchanged, the rational
channel receiver of 𝛾𝑙 will not send Confirmation-OK2
to other parties. As the channel sender of 𝛾𝑟 , she will not
sign any txep1/ep2 , thus 𝛾𝑟 cannot be compensated. As the
channel sender of 𝛾𝑟 , she also will not honestly update the
state of 𝛾𝑟 off-chain. This leads to a contradiction.

• 𝛾𝑙 is revoked, 𝛾𝑟 is successful. A rational P𝑖, 𝑗 will not
honestly update 𝛾𝑟 off-chain when she lacks the ability to
enforce payment from 𝛾𝑙 . This leads to a contradiction.

• 𝛾𝑙 is revoked, 𝛾𝑟 is compensated. 𝛾𝑙 being revoked
implies that P𝑖, 𝑗 cannot enforce the payment independently
(i.e., she does not possess a valid transaction txep1 ). 𝛾𝑟
being compensated indicates that the channel receiver of
𝛾𝑟 has already published a valid txep1/ep2 . The legitimacy
of these signatures requires P𝑖, 𝑗 ’s signature, implying
that P𝑖, 𝑗 is aware of these transactions and their children
transactions. If they were not aware, they would send an
abort to others before the confirmation phase.
Then, if P𝑖, 𝑗 is a normal party, she can initiate her own
txp1/p2 corresponding to txep1/ep2 on the blockchain to
redeem funds from 𝛾𝑙 . Otherwise, if P𝑖, 𝑗 is a key party, two
scenarios exist: (a) 𝛾𝑟 was compensated by txep1 and txp1 .
In this situation, P𝑖, 𝑗 can initiate the corresponding txrelay,
txep2 , and txp2 on the blockchain to redeem funds from 𝛾𝑙 .
These transactions must be valid since the key party only
signs txep1 if its child transactions are valid according to the
procedure of the protocol. (b) 𝛾𝑟 was compensated by txep2

and txp2 . In this situation, the parent transaction txrelay of
txep2 must also be on the blockchain. Then, P𝑖, 𝑗 can initiate
txep2 for their left SG and txp2 following the already-on-
chained txrelay on the blockchain to redeem funds from 𝛾𝑙 .
Hence, this creates a contradiction as 𝛾𝑙 cannot be revoked.

All possible scenarios that compromise the balance security
of an honest intermediary are contradictory. Therefore, we infer
that no honest intermediary loses her funds within SAMCU.

■

B. Internal Anonymity

Theorem 2. SAMCU achieves internal anonymity when it runs
in the honest case.

Sketch Proof. When the protocol runs without disputes, each
key party only knows the public addresses of parties located
in her SG(s), as well as the fresh addresses of other KPs.
Similarly, every normal party only knows the public addresses
of other parties within her SG and the fresh addresses of all
KPs. However, as long as the protocol is executed honestly, the
fresh addresses are not included on the blockchain, eliminating
concerns about the possibility of linking fresh addresses to the
public addresses of KPs. In summary, each party is only aware of
the public addresses belonging to the parties in its neighborhood.
Thus, we conclude that the SAMCU protocol achieves internal
anonymity when the protocol runs without disputes. ■



12

TABLE II: Theoretical comparisons between SAMCU and other related protocols.

Scheme
Time Complexity Computational Complexity Communication Complexity

Transaction
Fee&Size

Setup
Time

Compensation
Time

Transactions
Generation

Signatures
Generation

Connections Data Size
Dealer Party Overall Dealer Party Overall

LN O(𝑛) O (𝑛) O (𝑛) O (1) O (1) O (1) O (𝑛) O (𝑛) O (𝑛) O (𝑛2 ) O (1)
AMCU O(1) O (1) O (𝑛) O (𝑛) O (𝑛) O (𝑛) O (𝑛2 ) O (𝑛2 ) O (𝑛) O (𝑛2 ) O (𝑛)

PT O(log𝑛) O (log𝑛) O (𝑛) O (log𝑛) O (𝑛) O (log𝑛) O (𝑛 log𝑛) O (𝑛2 ) O (log𝑛) O (𝑛2 ) O (log𝑛)
Blitz O(𝑛) O (𝑛) O (𝑛) O (𝑛) O (1) O (1) O (𝑛) O (𝑛) O (𝑛) O (𝑛2 ) O (𝑛)
Thora O(1) O (1) O (𝑛2 ) O (𝑛2 ) O (𝑛) O (𝑛) O (𝑛2 ) O (𝑛2 ) O (𝑛2 ) O (𝑛3 ) O (𝑛)

SAMCU O(1) O (1) O (𝑛2 ) O (𝑛2 ) O (𝑛) O ( 𝑛
𝑚
+ 𝑘 ) O ( 𝑛2

𝑚
+ 𝑘2 ) O (𝑛2 ) O (𝑛2 ) O (𝑛3 ) O ( 𝑛

𝑚
+𝑚)

VI. Evaluation

A. Theoretical Analysis

We conduct a theoretical analysis between SAMCU and other
comparisons (as shown in Table II). In this table, 𝑛 represents
the number of participating payment channels in all protocols.
𝑚 and 𝑘 represent the number of sub-graphs and the number of
key parties in SAMCU. We assume that the 𝑛 channels can be
evenly distributed among the 𝑚 sub-graphs in SAMCU.

Compared to solutions for MHPs (i.e., LN, PT, Blitz),
SAMCU achieves higher expressiveness (i.e., MCUs). In ad-
dition, SAMCU achieves constant setup time (i.e., generating
all transactions within a finite number of rounds) and constant
collateral time (i.e., parties can withdraw funds locked in
transactions within constant time). On the other hand, to achieve
constant setup and collateral times, like other solutions for
MCUs (i.e., Thora), SAMCU incurs higher communication and
computational costs compared to MHPs solutions to ensure
secure synchronization within constant running time. Both
communication and computation expenses in SAMCU increase
complexity by one degree compared to solutions for MHPs.
Furthermore, SAMCU employs transactions of size O( 𝑛

𝑚
+𝑚)

instead of O(1) for enforcing payment.
However, compared to the SOTA for MCUs (i.e., Thora),

SAMCU offers the following improvements: (a) Number of
Connections: Thora requires all parties to establish connections
with every other party, resulting O(𝑛2) connections. In our
approach, during the initialization phase, the dealer establishes
𝑛 connections with all parties involved in SAMCU. As the
progresses from the pre-setup to the confirmation phase, all
parties need pairwise connections within each SG, totaling
O( 𝑛2

𝑚
) connections. Communication between groups requires

pairwise connections between key parties, totaling O(𝑘2) con-
nections. Thus, the overall number of connections is O( 𝑛2

𝑚
+ 𝑘2);

(b) On-Chain Transaction Size&Fee: In protocols for MCUs,
parties collaboratively create transactions to ensure their balance
security, with the sizes of these transactions outlined in Table
III. When disputes arise in channels, in Thora, disputing users
must emit txin, txep, and txp to the blockchain, totaling 988 +
36𝑛 bytes, with a complexity of O(𝑛). In SAMCU, the receiver
of the first disputed channel needs to emit txin, txep1 , and txp1 to

TABLE III: Comparing transaction sizes (byte).

Methods txin txep/ep1 txrelay txep2 txp/p1/p2 txstate txrefund

Thora 223 256+36𝑛 null null 500 368 272
SAMCU 223 162+36(𝑛/𝑚+1) 162+36𝑚 162+36(𝑛/𝑚) 500 368 272

* txep/ep1/ep2 and txrelay require an extra 9 bytes to support CPFP.

the blockchain, while parties in other SGs need to emit txrelay,
txep2 , and txp2 to the blockchain. The total size of transactions
for enforcing payment in SAMCU are 939 + 36 𝑛

𝑚
and 842 +

36( 𝑛
𝑚
+𝑚) bytes, respectively, with a complexity of O( 𝑛

𝑚
+𝑚).

Our approach does not optimize computational complexity
or the data size of communication. Although the size of
individual transactions is reduced, the overall size of the EPTTs
remains comparable to Thora, still at O(𝑛2). Since most of
the computational time is spent generating transactions and
most of the communication data consists of these transactions,
both the computational time complexity and the complexity
of communication data size per person are consistent with the
complexity of total transaction size, remaining at O(𝑛2), the
same as Thora.

B. Experimental Results
We first implement a prototype of SAMCU in Python 3. We

conduct a series of experiments aimed at (a) evaluating the
size&fee of on-chain transactions, (b) evaluating the computa-
tion time, and (c) evaluating the communication connections,
using a machine with Quad-Core Intel Core i5 (1.4 GHz).

On-chain Transaction Size and Fee. We vary the number of
PCs from 20 to 100 and illustrate the total transaction size for
a disputing user to enforce payment in the different numbers
of SGs in Fig. 8. The result shows the total transaction size for
a disputing user to enforce payment rises nearly linearly in all
cases as the number of PCs increases. For the same number
of PCs, the total transaction size for a user to enforce payment
decreases as the number of SGs increases. In the current Bitcoin
environment, recording 500 bytes of data requires a transaction
fee of 1 USD. When 𝑛 is 100 and𝑚 is 10, the on-chain transaction
fees significantly decrease from 9.2 USD to 3.1 USD, reducing
the cost of enforcing payments compared to Thora.

Computation Time. We vary the number of PCs from 20 to
100 and illustrate the computational time for a key party with
different numbers of SGs in Fig. 9. The results show that the
computational time for a key party exhibits quadratic growth in
all cases as the number of PCs increases. For the same number
of PCs, the computational time for a key party decreases as the
number of SGs increases. When updating 100 channels, the total
computational time for a key party is less than 1.5s.

Communication Connections. We vary the number of PCs
from 20 to 100 and illustrate the number of communication
connections in the different numbers of SGs in Fig. 10. In
all cases, there are 3 chains in UG. The result shows that the
total number of communication connections exhibits quadratic
growth in all cases as the number of PCs increases. For the same
number of PCs, the total number of communication connections
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Fig. 8: Comparing total transaction sizes
for enforcing payment between SAMCU
and Thora.

Fig. 9: Computation time for varying
numbers of channels.

Fig. 10: Comparing the number of
communication connections between
SAMCU and Thora.

decreases as the number of SGs increases. When 𝑛 is 100, 𝑚
is 10, the connection count decreases from 5.35K (in Thora)
to 1.57K (in SAMCU), signifying a reduction of 70%. This
enhancement renders the protocol more practical for large-scale
MCUs.

VII. Related Work
Anonymization techniques have been widely used to protect

privacy in various domains (e.g., distributed learning [17], data
sharing [18, 19], and person re-identification [20]). Although
anonymity is a key feature of blockchain technology, external
observers can still correlate different transactions made by the
same user through her account addresses, ultimately tracing
user behavior to de-anonymize the user entirely [21]. In recent
years, significant efforts have been devoted to enhancing identity
privacy on blockchains. In addition to off-chain PCNs for achiev-
ing anonymity, anonymous cryptocurrencies (e.g., Monero [22]
and Zcash [23]) use advanced cryptographic techniques, such as
Linkable Ring Signatures [22] and zk-SNARKs [23], to provide
greater transaction anonymity than Bitcoin.

Another technique for achieving anonymity is through third-
party mixing services. In this approach, Senders send their
coins to a mixing pool, and the service redistributes the coins
among receivers to obscure the relationship between senders and
receivers. CoinJoin [24] is one of the first methods to provide a
mixing service for Bitcoin, where multiple users combine their
Bitcoin transactions into a single transaction. To eliminate the
need for trusted users in CoinJoin, CoinShuffle [25] employs
an anonymous group communication protocol to conceal the
participants’ identities from each other.

VIII. Conclusion
In this paper, we propose SAMCU, a secure and anonymous

multi-channel update protocol for PCN. Unlike traditional solu-
tions that sacrifice privacy for multi-channel updates, SAMCU
achieves both multi-channel updates and sender/receiver pri-
vacy. Our SAMCU has lower on-chain transaction fees per
person and fewer communication connections compared to
previous work. For instance, when simultaneously updating
100 channels, our approach yields around 70% savings in
communication connections and reduces on-chain transaction

fees by about 66% relative to the state-of-the-art. Our SAMCU
makes multi-channel updates more practical, particularly in
large-scale multi-channels. In future work, we intend to enhance
the interoperability of SAMCU, enabling secure and privacy-
preserving multi-channel updates across different blockchains.

References
[1] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi, “Con-

currency and privacy with payment-channel networks,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 455–471.

[2] C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, 2019, pp. 801–815.

[3] M. Jourenko, M. Larangeira, and K. Tanaka, “Payment trees: Low collat-
eral payments for payment channel networks,” in Financial Cryptography
and Data Security. Springer, 2021, pp. 189–208.

[4] L. Aumayr, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Blitz: Secure
multi-hop payments without two-phase commits,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 4043–4060.

[5] L. Aumayr, K. Abbaszadeh, and M. Maffei, “Thora: Atomic and privacy-
preserving multi-channel updates,” in Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, 2022,
p. 165–178.

[6] “BIP 0016,” 2012, https://en.bitcoin.it/wiki/BIP 0016.
[7] “Eclair network,” https://github.com/ACINQ/eclair.
[8] G. Malavolta, P. A. Moreno-Sánchez, C. Schneidewind, A. Kate, and

M. Maffei, “Anonymous multi-hop locks for blockchain scalability and
interoperability,” Proceedings 2019 Network and Distributed System
Security Symposium, 2019.

[9] X. Wang, C. Lin, X. Huang, and D. He, “Anonymity-enhancing multi-hop
locks for monero-enabled payment channel networks,” IEEE Transactions
on Information Forensics and Security, pp. 2438–2453, 2023.

[10] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites
and state channels: Payment networks that go faster than lightning,” in
International conference on financial cryptography and data security.
Springer, 2019, pp. 508–526.

[11] P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhispers: Enforcing
security and privacy in decentralized credit networks,” in Proceedings
2017 Network and Distributed System Security Symposium, 2017, pp.
1–15.

[12] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling payments
fast and private: Efficient decentralized routing for path-based transac-
tions,” in Proceedings 2017 Network and Distributed System Security
Symposium, 2017, pp. 1–15.

[13] P. Wang, H. Xu, X. Jin, and T. Wang, “Flash: efficient dynamic routing for
offchain networks,” in Proceedings of the 15th International Conference
on Emerging Networking Experiments And Technologies, 2019, pp. 370–
381.

[14] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal,
G. Fanti, and M. Alizadeh, “High throughput cryptocurrency routing in
payment channel networks,” in 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20), 2020, pp. 777–796.



14

[15] “Bitcoin visuals,” https://bitcoinvisuals.com/ln-eccentricity/.
[16] “Child Pays For Parent,” https://bitcoincore.org/en/releases/0.13.0/#mining-

transaction-selection-child-pays-for-parent.
[17] Y. Jiang, K. Zhang, Y. Qian, and L. Zhou, “Anonymous and efficient

authentication scheme for privacy-preserving distributed learning,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 2227–
2240, 2022.

[18] J. Sun, G. Xu, T. Zhang, X. Yang, M. Alazab, and R. H. Deng, “Privacy-
aware and security-enhanced efficient matchmaking encryption,” IEEE
Transactions on Information Forensics and Security, vol. 18, pp. 4345–
4360, 2023.

[19] ——, “Verifiable, fair and privacy-preserving broadcast authorization
for flexible data sharing in clouds,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 683–698, 2023.

[20] M. Ye, W. Shen, J. Zhang, Y. Yang, and B. Du, “SecureReID: Privacy-
preserving anonymization for person re-identification,” IEEE Transac-
tions on Information Forensics and Security, vol. 19, pp. 2840–2853,
2024.

[21] H. Yousaf, G. Kappos, and S. Meiklejohn, “Tracing transactions across
cryptocurrency ledgers,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 837–850.

[22] N. Van Saberhagen, “Cryptonote v 2.0,” 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2711472

[23] “Zcash,” 2016, https://z.cash/.
[24] G. Maxwell, “Coinjoin: Bitcoin privacy for the real world,” Aug. 2013.

[Online]. Available: https://bitcointalk.org/?topic=279249
[25] T. Ruffing and P. Moreno-Sanchez, “Coinshuffle: Practical decentralized

coin mixing for bitcoin,” in European Symposium on Research in
Computer Security, vol. 8713, 2014, pp. 345–364.

[26] A. Mizrahi and A. Zohar, “Congestion attacks in payment channel
networks,” in International Conference on Financial Cryptography and
Data Security. Springer, 2021, pp. 170–188.

Jianhuan Wang is currently pursuing his Ph.D.
degree in the Department of Computing, the Hong
Kong Polytechnic University under the supervision of
Dr. Bin Xiao. He received his B.Eng. degree from
the Jinan University. He received his M.S. degree
from the Department of Computing, the Hong Kong
Polytechnic University. His research interest lies in
the blockchain security and DID security.

Shang Gao is currently a research assistant professor
in the Department of Computing at the Hong Kong
Polytechnic University. He obtained his B.S. degree
from Hangzhou Dianzi University, China, in 2010,
followed by an M.E. degree from Southeast Univer-
sity, China, in 2014. In 2019, he received his Ph.D.
degree at the Hong Kong Polytechnic University. After
graduation, he worked in Microsoft China for one
year. Dr. Gao’s primary research focus lies within the
field of computer security and information security.
He specifically specializes in applied cryptography

and zero-knowledge proofs, with a keen interest in areas such as RingCT
protocols, zkSNARKs, Layer2 security, and recursive SNARKs. His work has
been published in many top-tier conferences and journals, including IEEE S&P,
ACM CCS, IEEE INFOCOM, IEEE/ACM TON, IEEE TDSC, etc.

Guyue Li received the B.S. degree in information
science and technology and the Ph.D. degree in infor-
mation security from Southeast University, Nanjing,
China, in 2011 and 2017, respectively.,From June
2014 to August 2014, she was a Visiting Student with
the Department of Electrical Engineering, Tampere
University of Technology, Tampere, Finland. She is
currently an Associate Professor with the School of
Cyber Science and Engineering, Southeast University,
and a Visiting Scholar with the Tampere University
of Technology, and Université Gustave Eiffel (ESIEE
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