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Abstract—Ethereum, the largest blockchain for running smart
contracts, has been widely used, especially in financial and
cryptocurrency exchange applications. Among them, Tornado
Cash is a typical financial application that protects the privacy of
users with anonymous transactions. However, users need to pay
prohibitively high gas (transaction fees for smart contract calls)
for anonymous transactions, which hinders Tornado Cash from
wide applications. To address this issue, we introduced a new
approach that shifts the high gas-consuming operations on smart
contracts to local users. Furthermore, we use zero-knowledge
proofs to ensure the operations are properly executed. The smart
contract only needs to verify and update the results, which
significantly reduces the gas fees of Tornado Cash. To validate
our approach, we implemented a prototype and showed that our
proposed method could save more than 61% of gas consumption
of current operations while maintaining the privacy feature of
Tornado Cash. Finally, we discussed further applications and
open problems of our approach.

Index Terms—smart contract, gas, Ethereum, zk-SNARK,
privacy protection

I. INTRODUCTION

The blockchain technology provides an emergent decentral-

ized architecture for many applications. Among all blockchain

networks, Ethereum [1] is the most commonly used platform

to provide high programmability for various applications such

as Tornado Cash [2], Polymarket [3] and Uniswap [4]. For

instance, Tornado Cash is a privacy-preserving finance applica-

tion that protects users’ privacy with anonymous transactions.

In 2022, there are more than 36,000 users and the value of

deposits in Tornado Cash reach more than 3.75 billion USD

[5].

In Ethereum, a deployer deploys a smart contract that

supports different functions on the blockchain. Users can run

these functions with specific inputs with smart contract calls.

To avoid dead loops in smart contracts and prevent Denial

of Service (DoS) attacks, Ethereum charges transaction fees,

i.e., gas, from users who call a smart contract and makes

the fees a part of the rewards to miners for executing smart

contracts [6]. However, as the price of ETH (Ethereum’s

token) has increased significantly in the past few years, gas

consumption has become a heavy burden for Ethereum users.

For instance, a deposit operation will consume 60 USD of

gas in Tornado Cash based on the exchange rate of Eth in

June 2022. Therefore, it is very important to reduce the gas

consumption of smart contracts in Ethereum.

Related Work. Some work has been proposed to address

the high gas consumption issue. Chen et al. proposed adjust-

ing gas costs dynamically to defend against DoS attacks of

Ethereum [7]. Their subsequent work, GasChecker, can auto-

matically detect gas-inefficient code in the bytecode of smart

contracts [8]. In [9], Albert et al. introduce the Gasol tool,

which is able to analyze and optimize the gas cost of Ethereum

smart contracts. Feist et al. present Slither, which can be used

for extensive analysis of smart contracts [10]. Brandstätter

et al. discuss 25 optimization strategies concerning potential

gas savings when being applied to Solidity smart contracts

[11]. Correas et al. present a novel static profiling technique

for Ethereum smart contracts, that can be used to reduce the

number of resources consumed by programs [12]. However,

they cannot be applied directly to reduce gas consumption

of smart contracts in privacy-preserving applications such as

Tornado Cash. Besides, most of these approaches can only

save a small amount of gas, which indicates a very limited

application. A good scheme should support both public and

private applications and could fix the maximum gas fee for all

kinds of operations and various inputs.

In this paper, we address the high gas consumption issues in

Tornado Cash by introducing a new approach to offload high

gas consumption operations on smart contracts to the local

users. The user directly submits the results of these operations

together with zero-knowledge proofs for the correctness of

the results. The smart contract only needs to verify the proof

and make updates, thus reducing the gas consumption of

Tornado Cash. To summarize, this paper makes the following

contributions:

• We carry out a detailed analysis on Tornado Cash and

pinpoint the bottleneck of high gas-consuming operations.

• We propose a new gas-saving method based on zero-

knowledge proofs for Tornado Cash, which can achieve

anonymity and reduce gas consumption at the same time.

• We implement a prototype of our approach in Ganache,

which results in a 61% decrease in gas costs.

• We show further applications of our approach in more

generic scenarios.

The rest of the paper is organized as follows. Section II

briefly introduces relevant concepts of our methodology. A

detailed analysis of Tornado Cash is presented in Section III.

921

2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)

2324-9013/22/$31.00 ©2022 IEEE
DOI 10.1109/TrustCom56396.2022.00127

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 T

ru
st

, S
ec

ur
ity

 a
nd

 P
riv

ac
y 

in
 C

om
pu

tin
g 

an
d 

C
om

m
un

ic
at

io
ns

 (T
ru

st
C

om
) |

 9
78

-1
-6

65
4-

94
25

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
Tr

us
tC

om
56

39
6.

20
22

.0
01

27

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 25,2023 at 11:34:31 UTC from IEEE Xplore.  Restrictions apply. 



Section IV describes a method to reduce the gas consumption

of Tornado Cash. Section V presents the implementation of

our approach on the Ganache test network and the results.

Further applications and open problems of our methodology

are discussed in section VI. Finally, Section VII summarizes

the paper.

II. PRELIMINARIES

A. Notation

If Zp is a finite field, we denote by Zp[X] the set of all

polynomials on Zp with respect to an undefined element X .

We denote by aux some auxiliary information. We denote by

� the number of public inputs in Zp. We use ui(X), vi(X),
and wi(X) to denote three sets of polynomials. We denote by

t(X) ∈ Zp[X] a target polynomial.

We use P (D,M) = gDhM to denote a Pederson hash

function, where D is a personalization input, M is the message

that needs to be hash, g and h are generating points on a

specific elliptic curve.

Definition 2.1 (Deposit Transaction). A deposit transaction

takes commitment cmt as inputs, where cmt is the parameter

used for zero-knowledge proof.

B. Smart Contracts

Smart contracts are automatically executable programs

containing rules and conditions for the execution of any

blockchain transaction [13]. In Ethereum, a developer com-

piles smart contracts into bytecode that can be recognized

by the Ethereum Virtual Machine (EVM), and deploy the

compiled smart contracts on Ethereum. Once the deployment

is completed, users can call the smart contract based on the

generated contract address, as shown in Figure 1. When an

Fig. 1. The flow of smart contract operation

Ethereum node packages or verifies a transaction involving

a smart contract call, it needs to call the EVM to execute

the contract code to get the final result. To avoid the dead

loops in smart contracts and prevent DoS attacks, the gas

mechanism is designed to calculate fees for the execution of

smart contracts on Ethereum. However, the gas mechanism

imposes a significant additional overhead on normal users. For

example, a large number of hash operations are required for

deposit operations in Tornado Cash, resulting in 60 USD of

gas. The detailed analysis of Tornado Cash will be presented

in Section III.

C. Merkle Tree

Merkle tree is a hash binary tree structure, where the value

of one node is the hash of its two leaf nodes. The root of

Merkle tree is called Merkle root. Any change will result in

a change in the value of all the nodes in the path from that

node to the root. For example, the smart contract in Tornado

Cash first constructs the Merkle tree with the default zero
value as the leaf node of a Merkle tree leaf . When a new

commitment cmt is inserted, it replaces the original default

value and becomes the new leaf. Then, the nodes on the path

to the root are updated by computing hash, resulting in a new

Merkle root. The Merkle tree update process is illustrated in

Figure 2. Merkle tree can be used to prove that a transaction

Fig. 2. Update Process in Merkle Tree

occurred but without providing transaction data. Merkle proofs

need to prove whether the currently submitted data is in the

tree by providing the current leaf and giving the data on the

path and calculating the root. If the calculated root is the same

as the given root, the proof is completed.

D. Groth16

Zero-knowledge succinct non-interactive knowledge argu-

ment (zk-SNARK) is a proof protocol that allows one party

to prove a certain statement is true without revealing private

information [14]. The current state-of-the-art zk-SNARK with

the smallest proof size is Groth16 [15]. It allows proving a

quadratic arithmetic program relation without revealing some

secret information. In particular, it is a bilinear pairing-based

approach with the proof size of only 3 group elements and

verification with a total of 3 pairings to check. Groth16 has

widely been used in today’s privacy-preserving applications

such as ZCash [16], Filecoin [17] and Tornado Cash.

More specifically, Groth16 works with quadratic arithmetic

programs with the following relation R:

R = (Zp, aux, �, {ui(X), vi(X), wi(X)}mi=0 , t(X)) (1)

where 1 ≤ � ≤ m and ui(X), vi(X), wi(X) have strictly

lower degree than the degree of t(X) [15].
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On the basis of public statements (a1, . . . , a�) ∈ Z�
p and

private witnesses (a�+1, . . . , am) ∈ Zm−�
p with a0 = 1, a

verifier needs to check the equation on group elements

m∑

i=0

aiui(X) ·
m∑

i=0

aivi(X) =
m∑

i=0

aiwi(X) + h(X)t(X) (2)

for some degree n − 2 quotient polynomial h(X), where ui,

vi, wi are constants in Zp and n is the degree of t(X).
Groth16 argument consists of three parts: Setup, Prove

and Verify. Initially, a trusted third party is required to call

the setup algorithm to generate a common reference string

consisting of an evaluation key ek and a verification key

vk so that the prove and verify algorithms can run. The

setup algorithm needs to be called only once for the same

quadratic arithmetic relation. In the prove algorithm, the

prover computes three elliptic curve points, A, B, and C, to

represent
∑m

i=0 aiui(X),
∑m

i=0 aivi(X), and
∑m

i=0 aiwi(X)
in Equation (2) respectively as the proof. Finally, in the verify

algorithm, the verifier checks whether equation (2) holds based

on the proof, A, B, and C, and the common reference string.

III. OBSERVATION OF TORNADO CASH

In this section, we will first provide an overview of the

Tornado Cash process. Afterward, we will analyze it in detail

and discuss several technical challenges, as well as potential

solutions to address them.

When deployed, Tornado Cash needs to be initialized first.

After that, there are two major functions in Tornado Cash:

deposit and withdrawal. The whole process is described as

follows.

Init. Tornado Cash requires a series of arithmetic circuits,

which is determined by the relation of Tornado Cash, to be

built before deployment. The corresponding common refer-

ence string is generated based on the setup algorithm of

Groth16, including pk and vk, which are used to generate proof

and verify proof in the smart contract.

Deposit. Tornado Cash needs to guarantee user anonymity

when calling the deposit function. To achieve this property,

the Merkle tree data structure and Pedersen hash are used.

Specifically, a user runs the following steps for a deposit

request.

1) The user generates a nullifier k ∈ Zp and a randomness

r ∈ Zp to compute P (k, r) = gkhr as the cmt. The

user initiates a deposit transaction call with the contract

address left by the deployment with cmt as a parameter,

after which the specified amount of Eth is transferred to

the smart contract.

2) The main smart contract first maps a cmt to a Boolean

variable. If the result is true, which means that the cmt
has been submitted, stop the operation and return an

error.

3) If the cmt has not been submitted and the Merkle tree

is not full, the smart contract replaces the zero leaf with

cmt as a new non-zero leaf, and updates the Merkle root

accordingly. Finally, the smart contract inserts the new

root into the root array.

4) After the smart contract has successfully executed the

deposit, the user gets a string of characters as a note from

it. The note can be used as a voucher for withdrawal by

the user.

Fig. 3. The deposit workflow of Tornado Cash

Withdrawal. As for a withdrawal, the user submits a note.

And after the smart contract completes the zero-knowledge

proof based on the note, Eth (the amount left after deducting

the fee) is transferred to the corresponding receiver.

Anonymity. Tornado Cash acts as a mixing service where

all deposits transfer Eth into a smart contract. However, when

withdrawals are made the user is allowed to withdraw funds

from a different address and it is not required to be the funds

originally deposited by the user, only proof that the user has

made a deposit and has the corresponding amount of money.

Once the proof is completed, the smart contract will transfer

the corresponding amount of money directly to the user. With

such a process, the link between the deposit and withdrawal

is broken. This guarantees the anonymity of the user and the

transaction cannot be traced by an external observer.

Gas Analysis. The entire process of deposit consumes

915,352 units of gas, which is about 60 USD. For the deposit,

the Merkle tree needs to be updated in the smart contract. Dur-

ing the update process, 16 hash operations are required, which

will cause a lot of gas consumption due to the complexity of

hash operations and the number of operations (about 850,000

units of gas). As a result, each deposit operation will cost the

user 60 USD. If we can reduce gas consumption, then we can

significantly increase the number of users using Tornado Cash,

thus improving the anonymity of Tornado Cash.

IV. OUR METHODOLOGY

We now describe our methodology for smart contracts that

result in reducing gas consumption. We show the two main

parts that constitute our methodology for gas saving. The first

part is to put the update operation of the Merkle tree on the

local user instead of on the smart contract. The user simply

submits the result (updated root) directly to the smart contract.

Then, the second part is for the local user to use Groth16 proof

to prove the correctness of the root. The smart contract only

needs to verify the correctness of the proof and update the

root. In the rest of the section, we describe the steps of our

methodology in more detail and analyze the performance in

comparison with previous work.
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A. Shifting
To avoid the costly update operations of the Merkle tree on

the smart contract, we transfer these update operations to the

user and send the result to the smart contract. Accordingly, the

smart contract only needs to update the root value and store

it in the root array. In this way, we successfully avoid large

amounts of gas consumption when updating the Merkle tree.
Before proceeding with all steps, it is necessary to initialize

the process like the original process and generate the neces-

sary parameter files to ensure that the subsequent steps are

performed properly. The process works as follows.
Step1: As in the original process, the user generates cmt

and passes it to the smart contract for checksumming to

prevent cmt from being committed.
Step2: The user obtains the cmts and the corresponding

index by listening to the deposit event.
Step3: The user first constructs the Merkle tree with the

obtained cmts. Then the user inserts the cmt and updates the

Merkle tree to get the new root.
Using our method, it is possible to move the update of

the Merkle tree to be performed by the local user, where the

operation that generates a large amount of gas consumption

in the smart contract is eliminated. Thus, we can perform gas

optimization in this step of our methodology.
However, the user cannot be trusted by the smart contract

as it can send an incorrect result. Specifically, the user can

insert multiple deposits, d1, and d2 to the Merkle tree without

making the corresponding transfer of d2. If the smart contract

accepts the updated root directly, the users can get d2 with

withdrawal requests. Therefore, we need the user to ensure

that the updated result is correct.

B. Verification
After putting the update of the Merkle tree to the local user,

then we need to prove that the update result is correct. Our

solution is to adopt a Groth16 proof to verify the update result.

Submitting an updated proof not only verifies the updated

result and ensures the security of it. The zk-SNARK not

only guarantees correct results and efficient verification, but

also protects the privacy of the user. Specifically, we use the

following steps to prove the root is correctly updated.
Step4: We determine the inputs and variables before gen-

erating the proof. We use the following parameters in our

approach.

• rootu: The latest root from the local update.

• rootc: The root from the checksum calculation.

• path e: The elements of the path from the current node

to the root node obtained by the user.

• path e′: The elements of the path calculated by the

circuit.

Furthermore, given that the three polynomials with coeffi-

cients obtained by computing the curve points pia, pib, and

pic can be publicly accessed, it generates a proof:

Π = (pia, pib, pic)
R← Prove(pk, (rootu, k, r, pathe),

(rootc, leaf, path
′
e))

(3)

to prove the following relation:

rootu = rootc ∧ P (k, r) = leaf ∧ pathe = path′e (4)

is satisfied.

Step5: The user sends the tuple (Π, rootu) to the smart

contract.

Step6: After receiving the tuple (Π, rootu) from the user,

the smart contract takes vk, and verifies whether Π is valid

by computing V erify(vk, rootu,Π). If the verification is true,

the smart contract updates the value of the root and stores it in

the root array, which completes the deposit operation request.

Step7: The user gets a string of characters as a note, which

can be used as a voucher for withdrawal.

With the verification step, we will be able to guarantee the

behavioral integrity of the accomplished optimizations in the

previous steps.

Fig. 4. Improved deposit of Tornado Cash

For the improvement of the deposit in Tornado Cash with

less gas, we propose a step-by-step gas-reduction scheme, as

shown in Figure 4. We move the operation that generates

significant gas consumption in the smart contract to the user.

The user only submits the updated result and the proof to the

smart contract. After that, the smart contract verifies the proof

and receives the updated result. Since our proposed method

uses Groth16, the verification cost is constant regardless of

the input size, therefore, the gas consumption is also constant.

Compared with the scheme proposed by Brandstatter [11],

in which the saved gas cost differs significantly between

different rules, our scheme can fix the maximum gas fee for all

kinds of operations, which has obvious superiority in reducing

gas consumption. Meanwhile, our scheme uses Groth16 to

verify the update result, which also ensures the privacy of

users as well as the speed of verification.

V. EXPERIMENT

In this section, we present the implementation of our

methodology and the experimental evaluation results. The

workstation we use for our experiments is equipped with an
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Intel Core i7-12700H 2.3GHz CPU, 8GB of DDR5 RAM and

20GB SSD running Linux Ubuntu 18.04 operating system. We

use the Truffle development testing framework and deploy the

smart contracts to Ganache-CLI for testing.

We show that our solution can significantly reduce gas

consumption and keep the time of the whole transaction

process within an acceptable period. Specifically, we test the

improved gas consumption, request initiation time, and request

processing time. The detailed gas analysis and time analysis

are presented below.

A. Gas Analysis

To clarify the relationship between gas consumption and

level, we modified the height of the Merkle tree in the env

file and compiled and deployed it again. Then we launch

the deposit request again and analyze the transaction log in

Ganache-CLI. After the improvement, we compile and deploy

again after modifying the same parameter in the env file

and performing the same test. The comparison of the gas

consumption of the improved process and the gas consumption

of the original process is shown in Figure 5.

Fig. 5. Comparison of improved and original gas cost

The original process of deposit consumes up to 925,264

units of gas due to the level of hash operation in the Merkle

tree update. Every time the level is reduced by 1, the gas

consumption decreases by 53,102 units. There is a linear

relationship between gas consumption and input size.

However, the gas cost remains around 310,000 units in the

improved process regardless of changing the height of the

Merkle tree. Our solution reduces 614,753 units, which are

composed of three parts: the verification of the user’s incoming

proof (23,500 units), the update of the root array of the smart

contract, and other consumption. All three components of

gas consumption are fixed. We can conclude that even if we

continue to increase the height of the Merkle tree or replace

the hash operation with a more complex operation, the gas

consumption will be fixed. Thus, our scheme successfully

achieves an O(1) improvement in gas cost.

B. Time Analysis

Request Initiation Time. A large part of the request

initiation time is made up of the time it takes to generate

the proof. The original process simply creates a deposited

object and passes the commitment to the smart contract. This

completed the request initiation between 350ms and 450ms.

The improved process involves creating the deposit, con-

structing the tree, and completing the proof. The proof gen-

eration time rises with the height of the tree, which in turn

causes the improved request initiation time to rise with height.

Figure 6 shows the time to generate the proof and initiate a

request in the improved process.

Fig. 6. The Improved Request Initiation Time and Proof Generation Time

Request Processing Time. There is a significant difference

between the time it takes for a smart contract to process a

request in the original process and in the improved process,

as shown in Figure 7.

Fig. 7. Comparison of the Original and Improved Request Processing Time

The original process, after passing in the smart contract and

inserting the cmt, gets the root. As the height increases, more

hash is required, resulting in an increase in time. The improved

process is to verify proof and store it directly into an array.

The time to verify is independent of the height of the tree,

and the total time is also independent of the height.

VI. DISCUSSION

A. Extension

Our approach does not only target improvements in gas

consumption in Tornado Cash but can also be extended to

more generic applications. Figure 8 shows the extension of our

scheme. Smart contracts that can be applied need to adhere to

the following criteria.
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1) The smart contract executes complex functions that

cause large amounts of gas consumption. And the func-

tions executed on the smart contract can be implemented

by the user by other means.

2) After user implementation, reasonable constraints can be

added. Then the operation is guaranteed to be correct by

zero-knowledge proof.

Fig. 8. Extension of our scheme

B. Open problems

Although our approach can effectively reduce gas consump-

tion while ensuring anonymity, there are still some problems

with it.

1) It is necessary for Groth16 to initialize each circuit once

by a trusted setup, which means that different smart

contracts need to be initialized once. Therefore, for

smart contracts other than our specific one, the trusted

setup needs to be re-executed.

2) Once the information in the trusted setup is compro-

mised, the security of the entire proof system is no

longer guaranteed.

3) Groth16 cannot support batched polynomial commit-

ment. However, we can use Plonk, which needs only

one trusted setup to verify multiple polynomials.

4) Our approach is targeted at smart contracts with high

gas consumption. Smart contracts with gas consumption

of less than 24w (gas consumption needed for the

verification) do not apply to our scheme.

VII. CONCLUSION

In this work, we have presented a novel method for ef-

fectively reducing gas consumption by calling smart contracts

on Ethereum. By moving high gas consumption operations

on smart contracts to the local users, we optimize the calling

of smart contracts. Furthermore, we employ zk-SNARK to

solve the privacy issue of on-chain transactions. This method

can save the gas cost of smart contracts while ensuring

the anonymity of the calling process. We use the Truffle

development testing framework to implement our approach

and deploy smart contracts to Ganache-CLI for testing. After

the actual deployment test, the experimental results show that

the proposed method can produce significant gas cost savings

for smart contracts on Ethereum. Compared to previously

proposed schemes for reducing gas consumption, our scheme

can fix the maximum gas fee for all kinds of operations,

i.e., O(1) cost, which has obvious superiority in reducing

gas consumption. Meanwhile, our scheme uses zk-SNARK for

verification, which takes into account the privacy of users.
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