
Novel Attacks in OSPF Networks to Poison
Routing Table

Yubo SONG∗†, Shang GAO†, Aiqun HU∗, Bin XIAO†
∗School of Information Science and Engineering, Southeast University
†Department of Computing, The Hong Kong Polytechnic University

songyubo@seu.edu.cn, cssgao@comp.polyu.edu.hk, aqhu@seu.edu.cn, csbxiao@comp.polyu.edu.hk

Abstract—Link State Advertisement (LSA) reflects the current
status of all incident links of a router in an Autonomous System
(AS). A fake LSA with false link status information will pollute
the view of the network topology on routers. In this paper,
we present two novel attacks that inject malicious Link State
Advertisements (LSAs) to modify the routing tables: adjacency
spoofing and single path injection. Adjacency spoofing attack
makes attacker access to routing networks by disguising as a
legitimate router. Single path injection attack evades the “fight-
back” mechanism and affects routing advertisements of routers.
Unlike existing LSA injection attacks, which need to be launched
by malicious routers, a common host can launch these attacks and
control the transmission path of data traffic in an AS. Simulation
and real-world experiment results show that these two attacks
can efficiently modify the routing tables of routers, and further
lead to DNS spoofing, phishing Website, eavesdropping, and man-
in-the-middle attacks. Furthermore, we also implement a security
vulnerability detection system to detect the existing vulnerabilities
of routing protocol deployed in real-world routers.

I. INTRODUCTION

Routing protocol specify how routers communicate with

each other, disseminating information that enables them to

select routes between any two nodes on a computer network.

The most widely used class of the routing protocols is link-

state routing protocol. Examples of these protocols include

Open Shortest Path First Protocol (OSPF) [1], Optimized Link

State Routing Protocol (OLSR) [2] and Intermediate System

to Intermediate System (IS-IS) [3]. These routing protocols

are usually deployed on a single Autonomous System (AS).

Each AS is administered by a single authority, such as a large

organization or an Internet Service Provider (ISP). It allows

all routers in the AS to build the same representation of the

AS’s network topology.

In link-state routing, every node keeps a “map” of the

entire network, which is used to compute the shortest paths

to all destinations. Each node contributes to this global view

by distributing link-state information periodically. Each router

composes a list of all links to neighboring routers and their

costs. This list termed as Link State Advertisement (LSA)

reflects the current status of all the incident links of a given

node. Each LSA is flooded throughout the AS, and every

router compiles a database of the LSAs from all other routers

in the AS. Thus, each router can obtain a complete view

of the AS topology, and is able to calculate the least cost

paths to every other router in the AS based on shortest

paths finding algorithm such as Dijkstra’s algorithm adopted

in OSPF networks. As a result, the router’s routing table is

formed.

The integrity protection of the data packet is considered

with modern cryptographic algorithms [4–7]. However, the

key is used directly in these protocols as specified. Related

key attacks, such as those described in [4] are possible.

Furthermore, apparently the key management implementations

have trouble in practice. For few inner-network administrators

prefer to configure the keys on routers manually one by one.

The most common attack against link-state routing protocol

is LSA falsification, in which an attacker advertises a fake LSA

with false link information on the behalf of routers in the AS.

In link-state routing networks, a router periodically advertises

a new instance of each LSA throughout the AS. Every LSA has

a sequence number which increases with every new advertised

instance. Besides, more recent LSA instances always take

precedence over older instances. In LSA falsification attack,

the attacker poisons the routers’ view of the AS topology and

change their routing table by flooding false LSA instances. To

mitigate this attack, the primary security mechanism deployed

in OSPFv2/v3 is the “fight-back” mechanism. Since the victim

router will also receive the false instance of its own LSA,

it immediately verifies the sequence number of this false

instance, and generates a newer instance of the LSA with a

higher sequence number which cancels out the false one. This

mechanism can mitigate the effects of the attack and prevent

most OSPF attacks from persistently falsifying an LSA of

another router.

Beside LSA falsification, some security vulnerabilities in

OSPFv2/v3 protocol have been found in the past few years.

Previous approaches focus on attacks against “fight-back”

mechanism [5–7]. Periodic injection, introduced by Jones et

al. [8], evades the “fight-back” mechanism by advertising the

false LSA within 5 seconds. Nakibly et al. propose Disguised

LSA to evade the “fight-back” mechanism [9, 10]. This

attack is more severe than periodic injection [8] because it

only requires two malicious packets to persistently falsify an

LSA of a router. Furthermore, Nakibly et al. identify another

serious vulnerability in the most popular OSPF-related routers

[11, 12]. An attacker can completely poison of all routers

within the AS by sending a false LSA with the same Link

State ID of the victim but different routing information. The

details of these attacks are given in Section III.

One strong assumption of all mentioned attacks is that the

IEEE ICC 2017 Communication and Information Systems Security Symposium

978-1-4673-8999-0/17/$31.00 ©2017 IEEE

attacker is able to send LSAs to the routers in the routing

domain while the routers regard them as valid LSAs. Nakibly

et al. think this can be done by an insider, namely an attacker

who gains control over a single router in the AS [10, 12]. The

attacker can get the ability to control the router by conspiring

with an authorized person who has physical access to the

router, or by remotely exploiting an implementation vulner-

ability of the router. Limited by this assumption, these attacks

are not practical because the attacker has little chance to

control the router in real-world environment. In this paper, we

present two novel attacks without having the ability to control

the router. These two attacks turn out to be more powerful and

simpler than the existing attacks since these attacks can be

done by a common host in the AS. We implement a security

vulnerability detection system and successfully verify these

attacks in both simulations and real-world experiments. These

attacks are platform independent. So the malicious program

can be implemented on Windows Operating System, which

means more harmful than existing attacks.

The paper is organized as follows. Section II gives a brief

overview of the OSPF specification and its security mecha-

nism. Section III discusses the previous attack that exploits

security vulnerabilities in the design of OSPF specification.

Section IV discusses our security analysis and presents the two

novel attacks. Section V evaluates the power of these attacks

both in simulation environment and real-world environment.

Section VI proposes a security vulnerabilities detection system

for OSPF protocol to detect the existing vulnerabilities in real-

world routers. Finally, Section VII concludes the paper.

II. BACKGROUND

A. Protocol Fundamentals

Today’s Internet uses two classes of dynamic routing pro-

tocols: distance-vector and link-state. Distance-vector routing

protocol manipulates vectors of distances to other nodes in

the networks. Comparing to distance-vector, link-state routing

protocol requires routers to inform all nodes when the network

topology changes. Every node constructs a map of the network

connectivity, in the form of a graph, showing how nodes are

connected each other. Each node then independently calculates

the least cost paths from it to all possible destinations in the

networks. The collection of the least cost paths will then form

the node’s routing table.

OSPF is one of the most widely used routing protocols on

the Internet. It is an interior gateway protocol (IGP) based

on link-state technology. It distributes routing information

between routers belonging to the same AS. The routing table

generation of OSPF is depicted in Fig. 1.

Every OSPF router first sends “hello” packets to discover its

neighboring routers. There are three components in the hello

packet header to keep information about the status of routers:

“hello interval”, “router dead interval”, and a neighbor list.

“hello interval” indicates how frequently the sender should

retransmit its hello packets; “router dead interval” tells how

long it takes to declare an unavailable router, and the neighbor

list describes the neighbors that the sender has already met.

Fig. 1. The routing table generation of OSPF.

Once a neighboring router is found via the hello protocol,

the sender goes through a “database exchange process” to

synchronize its database. Then the information about the

sender’s local neighbors is assembled into a LSA, and is

broadcasted via a reliable intelligent flooding scheme to all

other routers. These LSA packets make up the link state

database for the networks. Once all routers have an up-to-

date link state database, each router can use the Dijkstra’s

algorithm to calculate a shortest-path tree with other routers

and then form a complete picture of routing in the networks.

The OSPF protocol runs directly over IP, using 89 port.

IP reassembling is used when fragmentation is necessary.

There are five types of OSPF packets: “hello” packet is used

by a router to discover its neighbors; “database description”

and “link state request” packets are used to synchronize two

routers’ databases when an adjacency is being initialized; “link

state update” packet is used to update link state database;

and “link state acknowledgment” packet ensures a reliable

transmission by acknowledging flooded LSAs.

B. security mechanisms

The primary security threat to link-state routing networks

is LSA falsification. Several security mechanisms has been

discussed in the design of routing protocols to mitigate this

attack. As a typical, the security mechanisms deployed in

OSPF networks are as follows:

1) Packet authentication: Each OSPF packet should be au-

thenticated in three ways: NULL authentication, simple

password authentication, and cryptographic authentica-

tion [1]. In these three authentication schemes, only

cryptographic authentication can provide integrity pro-

tection based on cryptographic algorithm. All routers

have a shared secret key attached to a common net-

work/subnet in cryptographic authentication. For each

OSPF protocol packet, this key is used to generate/verify

a message digest with MD5 hash function. Due to the

lack of defined secret key management mechanism, a

network operator must manually configure the secrets at

every router [13]. Therefore, for many today’s ASs, the

secret is the same for all their links. Since the security of

the MD5 hash function can be easily compromised by

dictionary attack and collision attack, the attacker can

easily get the secrets of the whole OSPF networks.

IEEE ICC 2017 Communication and Information Systems Security Symposium

2) “Fight-back” mechanism: The OSPF protocol applies a

security mechanism, named as “Fight-back” mechanism

[14], to detect and cancel the false LSAs flooded in

the networks based on its fault-tolerance design. Once

a router receives an instance of its own LSA but newer

than the last instance it originated, the router immediate-

ly advertises a newer instance of the LSA which cancels

out the false one. The OSPF protocol also has a flooding

mechanism which ensures all routers in the networks

maintain the same topological database. Therefore, a

false LSA advertised by the attacker will be send to the

victim router eventually. The “Fight-back” mechanism

and the flooding mechanism ensure that all the LSAs in

other routers are originated from the valid router.

III. ATTACKS ON OSPF PROTOCOL

Previous approaches have pointed out several security vul-

nerabilities in these security mechanisms. However, one strong

assumption of all mentioned attacks is that the attacker is

able to send LSAs to the routers in the routing domain while

the routers regard them as valid LSAs. In this paper, we

identify several novel vulnerabilities that the attacker can still

falsify LSAs to the routers even when he is a common user

inside the OSPF networks, and propose two novel attacks:

adjacency spoofing attack and single path injection attack. In

large service provider and enterprise networks scenarios, the

gateway of a subnet often act as an OSPF node in backbone

networks. We test the gateways in several campus networks

with our security vulnerabilities detection system, and find

that almost all gateways act as OSPF nodes in the campus

networks and nearly half of them broadcast “Hello” packet in

“passive disabled state”. Therefore, the host in these subnets

can capture the “hello” packets from the gateway and get some

useful network parameters of the adjacent routers. With these

network parameters, an attack can construct the false LSAs to

spoof the routing tables of the whole OSPF networks.

A. Adjacency Spoofing Attack

The gateway dynamically discovers its neighbors by pe-

riodically broadcasting “hello” packets on its attached links

when it acts as an OSPF router. This packet includes the

identities of all the routers. Once the attacker connects to

the gateway in the same subnet, he first captures the “hello”

packets broadcasted by the gateway and gets the network

parameters, such as Router ID, Area ID, HelloInterval, Rou-

terDeadInterval, AuType and so on. These parameters can be

used to construct the corresponding “hello” packet related.

Notice that The Router ID chosen by the attacker should

be larger than the gateway’s. Second, since the gateway is

assumed to be a designated router, it starts to set up an

adjacency with the attacker. The attacker sends the forged

”hello” packet as if he is a legal adjacent router to make an

adjacency relationship with gateway. Third, the gateway sends

a Database description (DBD) message when it receives the

“hello” packet from the attacker, and the attacker and gateway

exchange the summaries of LSAs in their database with DBD

Attacker Gateway
Capture Hello Packet multicasted from Gateway

Hello Packet with a forged RouterID

DBD message

Forged DBD message

Forged DBD message

Link State Request

Link State Update

Mutual Discovery

Exchange of DB
descriptions

LSA DB update

Fig. 2. The procedures of the adjacency spoofing attack.

messages. Finally, the gateway requests its peer new instances

after the LSA exchange. In this way, the gateway receives the

false LSAs from the attacker and floods them to the whole

OSPF networks. The procedures of the adjacency spoofing

attack is depicted in Fig. 2.

The victim gateway regards the attacker as a adjacent

router after adjacency spoofing attack. The attack can further

advertise any false LSA and change any traffic path he wants.

All routers will change their routing table after receiving the

flooded LSAs. Comparing with the remote false adjacency

attack proposed by Nakibly et al. [10], adjacency spoofing

attack is more general and powerful, since it is can be used to

realize DNS spoofing, phishing Website, eavesdropping, and

man-in-the-middle attacks.

B. Single Path Injection Attack

Comparing with “Disguised LSA” attack with two false

LSA proposed by Nakibly et al. [10], we find a specific

scenario that the attacker only needs to send one false LSA to

change the routing table of all routers even considering “fight-

back” mechanism.

The original “Disguised LSA” attack exploits a vulnerabil-

ity in the “Fight-back” mechanism which the victim router

does not advertise a correcting LSA if the received LSA is

“identical” to its last valid LSA. The OSPF protocol considers

two instances of an LSA to be identical if they have the

same values in the following three fields: Sequence Number,

Checksum, and Age. The key point is that the protocol

considers these two LSAs to be the same even when the actual

advertised links are different. Disguised LSA attack exploits

this vulnerability by advertising a false LSA which seems to be

identical to a future fight-back LSA. Therefore, other routers

consider the fight-back LSAs as duplicates of the false LSA

and ignore them automatically.

We find a new vulnerability in OSPF protocol. Section

13.7 of the OSPF protocol specification defines the process

procedures of the received link state acknowledgments: the

router ignores this acknowledgment and examines the next

acknowledgment when the LSA acknowledge does not have an

instance on the link state retransmission list for the neighbor.

Otherwise, the router removes the item from the list and

examines the next acknowledgment. We exploit this feature

to advertise a false LSA via a middle “springboard router”

to the specific ”polluted router” without triggering the Fight-

back mechanism. As depicted in Fig. 3, attacker can send a

IEEE ICC 2017 Communication and Information Systems Security Symposium

R1

R2
R3

R4
R5 R6

R7

R8

Attacker

R9

AA

f1/0

Fig. 3. The network topology in single path injection attack.

R8R8 AttackerAttacker

R8 send LSR packet

Attack sending LSA(in LSU)
R8 send LSAck packet

R8R8 AttackerAttacker

Attacker send LSA

R8 send LSAck packet

R8R8 AttackerAttacker

Attacker send LSA

Adjacent Relationship Establishment

LSA Flooding

Malicious LSA Attacking

Attacker retransmit the
Link State Update, to add

the false LSA

R8 Lind State Request,
include the LSA

R8 send LSAck packet

Attacker retransmit the
Link State Update, to add

the false LSA

Attacker retransmit the
Link State Update, without
adding the false LSA

Fig. 4. The interactivities of the link state update process in different steps.

false LSA from the host to the polluted router R8 via the

springboard router R6. The source IP address in this false LSA

is set to the address of f1/0, and the ID value is set to R6’s ID.

In this way, the polluted router R8 believes that this false LSA

is flooded from the router R6. R8 is the first router to store the

false LSA in its link state database and floods the link state

acknowledgment to the all other routers in the OSPF networks.

By exploiting the OSPF feature mentioned above, attacker can

bypass the “Fight-back” mechanism even though the router R6

may receive the link state acknowledgment which includes the

false LSA from router R8.

Fig. 4 depicts three situations of sending link state update

packet with a LSA. The former two situations display the

normal interactive processes in the adjacent relationship es-

tablishment stage and the LSA flooding stage. The last one

is the interactive process between the attacker and polluted

router when sending a false LSA. In the normal stage, a router

inserts the LSA into its local link state retransmission list

after sending the LSA to other routers, and waits for the link

state acknowledgment within a given time interval. If no link

state acknowledgment is sent back before the time running

out, the router retransmits the LSA. Otherwise, the router

confirms the LSA and deletes the LSA from the local link

state retransmission list.

When the attacker sends false LSA with the springboard

router’s ID, the springboard router’s link state retransmission

list won’t contain any information of this false LSA. Therefore,

when the springboard router receives a link state acknowledg-

ment which contains the false LSA from the polluted router, it

just discards this acknowledgment directly and does not trigger

the “Fight-back” mechanism according the feature defined in

Section 13.7 of the OSPF protocol.

In procedures of single path injection attack, we can infer

that this attack only occurs when there is only one transmission

path between the springboard router and polluted router.

Therefore, in the topology depicted in Fig. 3, R7 with R5, R8

with R6, R9 with R4, and R4 with R2 meet this the condition

of this attack. Once an attacker confirms the springboard

router, he constructs a false LSA with the springboard router’s

ID and sends it to the polluted router. As depicted in Fig. 3, the

attacker chooses router R2 as springboard router and router R2

as polluted router, and sends the false LSAs to the router R4.

This attack can be further used by black-hole traffic destined

attack against a specific subnet by changing the routing table

to the specified routers as a black-hole.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULT

In this section we implement a security vulnerability de-

tection system and evaluate the efficiency of the attacks we

proposed. The results show that these two attacks are not

only practical but also highly effective in both simulation

environment and real-world environment.

A. Attack Validation in Simulation Environment

We establish the simulation environment based on GNS3

[15]. GNS3 is a graphic network simulator to design and

configure virtual networks. It allows the combination of virtual

devices and real devices, and can be used to simulate complex

networks. The simulated routers are Cisco routers and their

Cisco IOS versions are c3640 by default.

The topology of the network in our simulation is depicted

in Fig. 5. The whole simulated OSPF network is divided into

three area: the backbone area Area0, inter-area Area1, and
another inter-area Area2. The router R9 is a backbone router
which connects to a real-world campus network in Southeast

University. The IP address of each router is the combination of

the router ID and the IP address range of the corresponding

subnet. For example, the IP addresses of the two interfaces

in router R9 are 30.129.21.9 and 30.129.22.9. C2 and C3

are two internal hosts. We also deploy a real host A2 as an

attacker, whose IP address is 192.168.80.2. R3 is A2’s adjacent

router and its interface f1/0 runs the OSPF protocol. Another

attacker A1 is a common host in the subnet 10.129.23.0/24

at Area1. We deploy a Vmware virtual machine to act as
A1. R10 is A1’s adjacent router and its interface f3/0 runs

the OSPF protocol. Both A1 and A2 implement the security

vulnerabilities detection system with QT for the proposed

attacks. The operating systems of the hosts are all windows

7. We also use Wireshark to capture all packets in attacking

procedures.

Adjacency Spoofing Attack First A2 runs the detection
system to capture the network parameters by sniffing the

“hello” packet broadcasted by the adjacent router. The result

is depicted in Fig. 6. We can first find that the adjacent router

is R3. Then A2 disguise himself as an AS boundary router

(ASBR) to establish an adjacent relationship with router R3.

The procedures of the adjacent relationship establishment are

IEEE ICC 2017 Communication and Information Systems Security Symposium

30.129.21.0/24 30.129.22.0/24

10.129.25.0/24
10.129.24.0/24

10.129.22.0/24

192.168.20.0/24

10.129.21.0/24

20.129.22.0/24
20.129.21.0/24

20.129.23.0/24

f3/0

9R9

6R6

8R8

10R10
4R4

5R5

119922.1668.111000.000///2244192.168.10.0/24

1100.1229.22333.000///224410.129.23.0/24

119922.1668.333000.000///2244192.168.30.0/24

User C2User C2

Attacker A1Attacker A1

User C4User C4

7R7

119922.1668.999000.000///2244192.168.90.0/24

119922.1668.777000.000///2244192.168.70.0/24

119922.1668.888000.000///2244192.168.80.0/24

3R3

2R2

1R1

Attacker A2Attacker A2
User C3User C3

f2/0

f0/0

f1/0

Area0

Area2Area1

Fig. 5. The network topology of the simulation environment.

Version
Type
Packet Length
Originate Route ID
Area ID
Checksum
Authentication Type
Authentication
Information

Netmask
Age
Options
Priority
Dead Time Intervals

Fig. 6. The network parameters of the OSPF networks.

Fig. 7. The procedures of the adjacent relationship establishment.

Fig. 8. The routing table of router R3 after the attack.

depicted in Fig. 7, we can find A2 sends several OSPF pack-

ets, such as “hello” packet, “DB Description” packets, “LS

Update” packets, and “LS Acknowledge” packets. Once A2

becomes the adjacent ASBR of R3, it injects a false LSA with

malicious route information of the subnet 58.192.114.0/24. R3

accepts the false LSA and floods it to all other routers. This

malicious route information in R3’s routing table is depicted

in Fig. 8.

Fig. 9. The routing information of router R6 after the attack.

Single Path Injection Attack In normal condition, the
traffic path from User C1 to User C2 is R3-R6-R9-R7-R4.

The attacker A2 exploits the single path injection attack to

inject a false LSA to route R6. The packets from C1 to C2

are forwarded to the wrong router R2 when passing through

R6. Therefore, a traffic black-hole is created. This attack

chooses R3 as springboard router and R6 as polluted router.

The parameters of the false LSA is depicted in Table I. For

this false LSA, the source IP address is set to the springboard

router’s, and destination IP address is set to the polluted

router’s. Meanwhile, the router ID in router header of this

false LSA is set to 3, as router R3, and the router ID in OSPF

header is set to 3.3.3.3, as the identity of router R3. Moreover,

the sequence number of this false LSA in LSA header is set

to a very large number to ensure that this value is larger than

all current LSA sequence number. Finally, the link ID of this

false LSA in the router LSA fields is set to 192.168.30.0.
TABLE I. The parameter of a false LSA

Location Fields Value and Description

IP header

Source Address
20.129.22.3 (The springboard
router R3’s interface address)

Destination
Address

20.129.22.6 (The polluted router
R6’s interface address)

Protocol Number 89 (OSPF protocol)
TTL 3

OSPF header

Type 1 (Link State Update Packet)

Router ID
3.3.3.3 (Use the false identity to
disguise as R3)

Area ID 0.0.0.2 (Area ID)
LSU header LSA number 1 (the number of link state)

LSA header

Link State Type 1 (Route LSA)
Link State ID 3.3.3.3
Announce Router 3.3.3.3 (This is forged route)

Sequence Number
80000010 (It should be larger than
all current SN)

Route LSA

Link ID 192.168.30.0 (Forged subnet)
Link Data 255.255.255.0 (mask of subnet)
Link Type 3
Distance Vector 1
Link ID 20.129.22.6
Link Data 20.129.22.3
Link Type 2
Distance Vector 1

When the attacker A2 sends the false LSA depicted in Table

I, the information of the LSA stored in the router R6 will be

changed, as depicted in Fig. 9. The fake network topology

showed in router R6 is 192.168.30.0/24, which means all

packets transferred from user C3 to user C2 will be forwarded

to the router R2 through the router R6. This makes a traffic

black-hole to block the traffic between C3 and C2.

IEEE ICC 2017 Communication and Information Systems Security Symposium

The correct routing before the attack The routing after the attack

The forged website
with a test webpage

Fig. 10. The effect of the route spoofing.

B. Attack Validation in Real-world Environment

We evaluate the security of the OSPF networks in several

campus networks of Southeast University and other Univer-

sities in Nanjing with our security vulnerabilities detection

system. The test result shows that nearly all gateways act as

an AS boundary router in OSPF networks and half of them

broadcast the “hello” packet which can be easily captured

by a common host. By exploiting these vulnerabilities, the

attacker can easily launch DNS spoofing, phishing Website,

eavesdropping, and man-in-the-middle attacks.

We also evaluate the performance of the proposed attacks in

real-world environment with two computers. One acts as the

attacker connects to a campus network with wired connection.

Another computer acts as a common user accessing to the

campus network via Wifi. The IP address of the attacker

is 172.21.134.2 in the subnet 172.21.134.0/24, and the IP

address of the gateway of this subnet is 172.21.134.1. The

common user’s IP address is assigned by the Wifi router

via DHCP protocols and changes dynamically according his

place in campus. We establish a test website with the url

infosec.***.edu.cn and it’s real IP address is 202.***.5.32. We
show that the attack can hijack to the common user without

intruding the user’s computer. The two attack examples in real-

world are discussed as follows.

1) Route spoofing: First the attacker establishes a virtual
machine with the same IP address as the victim website,

202.***.5.32, and the gateway of this virtual machine is con-

figured to 172.21.134.2. Second, the attacker uses adjacency

spoofing attack to make the attacker’s computer a boundary

router to join the whole OSPF networks. Third, the attacker

floods a false LSA to OSPF networks. All the router forwards

the url requests of the website infosec.***.edu.cn in a campus
network to the forged boundary router. Finally, the attacker

forwards these url requests to the virtual machine with the

same IP address of the real website. The effect of the route

spoofing is depicted in Fig. 10. The route spoofing is very

dangerous for the forged website since the IP address of forged

website is the same as the real website’s. The only thing

changed in this attack is the route path, which is normally

ignored by users. Further attacks, such as password sniffer,

DNS spoofing, and phishing website, can be applied based on

routing spoof attack.

V. CONCLUSION

We presented tow novel attacks in OSPF networks: adjacen-

cy spoofing attack and single path injection attack. These at-

tacks can be launched by an insider host in the OSPF networks

without having the ability to control the router. Simulation and

real-world experiment results show that these attacks are more

general and powerful than the existing attacks in against OSPF

networks. They can efficiently modify the routing tables of

routers, and further lead to DNS spoofing, phishing Website,

eavesdropping, and man-in-the-middle attacks.

REFERENCES

[1] M. Gupta and N. Melam, “Authentication/Confidentiality

for OSPFv3.” RFC 4552, June 2006.

[2] C. Dearlove, T. H. Clausen and U. Herberg, etc., “The

Optimized Link State Routing Protocol Version 2.” RFC

7181, Oct. 2015.

[3] L. Ginsberg and M. Shand, “Reclassification of RFC

1142 to Historic.” RFC 7142, Oct. 2015.

[4] M. Bhatia, S. Hartman and D. Zhang, etc., “Security

Extension for OSPFv2 When Using Manual Key Man-

agement.” RFC 7474, Apr. 2015.

[5] S. Gao, Z. Peng, B. Xiao, A. Hu, and K. Ren, “Flood-

defender: Protecting data and control plane resources

under sdn-aimed dos attacks,” in Proc. of the IEEE
International Conference on Computer Communications
(INFOCOM), 2017.

[6] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rex-

ford, “Path-quality monitoring in the presence of adver-

saries: The secure sketch protocols,” IEEE/ACM Trans.
on Networking, vol. 23, no. 6, pp. 1729–1741, 2015.

[7] R. B. Somanatha and J. W. Atwood, “Router authen-

tication, key management, and adjacency management

for securing inter-router control messages,” Computer
Networks, vol. 79, pp. 68–90, 2015.

[8] Jones, Emanuele and Moigne, “OSPF security vulnera-

bilities analysis,” Work in Progress, 2006.
[9] K. Alex, G. Dima and N. Gabi, “Owning the Routing

Table–New OSPF Attacks,” BlackHat, 2011.
[10] N. Gabi, K. Alex and G. Dima, etc., “Persistent OSPF

Attacks,” in NDSS, 2012.
[11] S. Adi, G. Orna and N. Gabi, “Finding security vul-

nerabilities in a network protocol using parameterized

systems,” in Computer Aided Verification, 2013.
[12] N. Gabi, S. Adi and M. Eitan, etc., “OSPF vulnerability

to persistent poisoning attacks: a systematic analysis,” in

Proc. of the 30th Annual Computer Security Applications
Conference, 2014.

[13] V. Manral, M. Bhatia, and J. Jaeggli, etc., “Issues with

existing cryptographic protection methods for routing

protocols,” tech. rep., 2010.

[14] Wang, Feiyi and Wu, etc., “On the vulnerabilities and

protection of OSPF routing protocol,” in Computer Com-
munications and Networks, IEEE, 1998.

[15] Welsh and Chris, GNS3 network simulation guide. Packt
Publ., 2013.

IEEE ICC 2017 Communication and Information Systems Security Symposium

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

