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Abstract—Smartphone sensors have been applied to record the
movement of users for healthy use. However, the motion sensor
readings recorded by malicious applications can be utilized as a
side-channel to leak user privacy by keystroke inference. Most
existing approaches use time-domain statistical characteristics for
keystroke inference. Their systems are poor to show the subtle
changes in short time period, since the time-domain statistical
features can only reflect the characteristics in a long-time interval.

In this paper, we propose a novel framework to perform
keystroke inference on smartphones. This framework introduces
an improved MFCC algorithm to extract frequency-domain
features for more comprehensive use of raw data. Since the
frequency-domain energy distribution of motion signals is con-
centrated, and the specificity of signals is strong, MFCC can
improve the inference accuracies under complex scenarios. Based
on this framework, we present a prototype called FreqKey,
which is an inference system to leak user privacy such as
PINs and passwords. FreqKey collects motion sensor readings
during keystroke events and constructs classification models with
machine learning algorithms. Experimental results show that
FreqKey improves the performance in a variety of complex
scenarios. Especially, even in web platform whose sampling
rate is lower than 80Hz, FreqKey can achieve relatively high
accuracy of 74.6%. To mitigate the frequency-based side-channel
attack and protect user privacy, we propose a defense solution
which contains sensor-activity monitoring, malicious program
identification and interference signal injection.

I. INTRODUCTION

Mobile sensors are embedded into smart mobile devices to
provide users with more ways of interaction. Motion informa-
tion like location, orientation and movement can be recorded
by sensors like accelerometer, gyroscope and orientation sen-
sor. However, vulnerabilities have been confirmed that data
recorded by motion sensors can be utilized as a side-channel
to steal user privacy by keystroke inference[1].

With the help of machine learning algorithms, researchers
can infer user privacy from motion sensor readings[2]. Sev-
eral native applications have been designed to infer the
passwords[3], text messages[4] or unlocking gestures[5] of the
devices from users’ keystroke.

In addition to native applications, inference systems based
on web applications can also be utilized for keystroke
inference[6][7]. Compared to native applications, web appli-
cations can be executed on almost every mobile platform and
be activated without downloading. With the help of cross-site
scripting (XSS) techniques, malicious code can be injected to
web pages and steal victims’ privacy without their awareness.

However, attacks mentioned above also have great limi-
tations. Since the using scenarios are more complex in real
world, the inference accuracy of the attack systems will de-
crease significantly. This is because the inertial data recorded
by motion sensors contains not only signals caused by users’
keystroke, but also the disturbance caused by other movements
of users.

Since most of the researches only extract time-domain
statistic features from the raw data, they failed to obtain
characteristics in frequency-domain, which can help distin-
guish between the data patterns of keystroke behavior and
other movement in complex scenarios. Thus, systems built
by previous researchers will get poor performance in real life
scenarios.

Thus, we propose a novel framework based on features from
both time-domain and frequency-domain to address the prob-
lem of accuracy decrease in complex scenarios. An algorithm
called Mel Frequency Cepstral Coefficients (MFCC) is utilized
to extract features from frequency-domain. This algorithm is
based on cepstral analysis, which is a technique originally used
in speech recognition and voice processing fields[8]. It has
been proved that MFCC can distinguish the characteristics of
complex signals and extract features from frequency-domain
efficiently[9][10]. Appropriate improvements have been intro-
duced to MFCC to satisfy our application scenarios.

Based on this framework, we present a novel prototype
called FreqKey, which performs keystroke inference attack
by analyzing motion sensor data with machine learning al-
gorithms. By designing applications on different platforms,
FreqKey can collect data of accelerometer, gyroscope and
orientation sensor from different devices in different scenarios.
By applying MFCC for feature extraction, FreqKey is able to
extract features in frequency-domain, which can be utilized
to distinguish between the motion signals of keystroke events
and signals caused by other body and device movement.

The key contribution of our work is summarized as follows:

• We collect sensor data of keystroke events from vol-
unteers and build an original data set. 300 participants
are invited to enter numerical sequences into FreqKey.
We collect more than 290,000 labelled motion sensor
readings from Android and iOS devices, which come
from 3,000 keystrokes in total.

• We propose a novel framework which introduces the cep-
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stral analysis and MFCC algorithm for feature extraction
to improve the inference accuracy of the system. Features
extracted by MFCC algorithm can effectively distinguish
between keystroke signals and the ambient noise.

• We design FreqKey, a novel prototype which is based
on the framework above. FreqKey can steal user privacy
such as PINs and passwords. In FreqKey, time-domain
and frequency-domain features are extracted to construct
feature sets which are then placed into classification
algorithms to construct classifiers finally.

The rest of the paper is organized as follows. Section 2
presents the background and the related work in this field.
Section 3 introduces the structure of the FreqKey system.
Section 4 discusses the theory of cepstral analysis and MFCC
algorithm. Section 5 introduces the evaluation on FreqKey
from several dimensions. Section 6 reveals the countermea-
sures and mitigation strategies against keystroke attacks. Sec-
tion 7 concludes the whole paper finally.

II. RELATED WORK

Side-channel attack have been performed to break
into the security protection of computer systems and
other crypto-systems for a long time. Side-channels like
power consumption[11], timing signals[12], electromagnetic
leakage[13] and acoustic signals [14] can all be used to steal
user privacy efficiently.

However, attacks on smartphones are slightly different. Most
of the side-channel attacks on mobile phones tend to use
mobile sensors for data collection. Early researches utilize
sensors or hardware embedded in devices like camera[15],
geolocation sensors[16] and microphones[17]. However, since
the system architecture is fully developed these days, calls to
these sensitive sensors are strictly limited.

Some of the experiences from smart wearable devices
can be adapted to perform attacks on smartphones. Previous
researches have confirmed that motion sensors can also be
utilized as side-channels. Wang el al. use accelerometers em-
bedded in smart watches to distinguish typing events on laptop
keyboards and extract English words typed by victims[18].
Wang et al. use motion sensors to trace the moving trajectory
of the users, and then infer the users input on ATM keypads
or regular computer keyboards[19].

Given that the security mechanisms in smartphones have
few limitations on motion sensors, they can be used as side-
channels to steal user privacy. Researches have confirmed the
feasibility of keystroke inference systems based on motion
sensors. Cai et al. build an inference system based on data
collected from orientation sensor[1]. They perform attacks on
a number-only keypad and get 70% inference accuracy. Xu
et al. use accelerometer for keystroke event detection and
orientation sensor for position inference. They innovatively
put the analysis progress on mobile phones, which greatly
enhances the integration of their system[3].

In addition to the inference of numerical sequences, some
researchers also design systems to steal text messages. Owusu

et al. design a system called ACCessory, which can infer the
character input and keystroke position under different screen
region granularities[2]. Ping et al. focus on long text input
like tweets or emails. They introduce the techniques of natural
language processing to improve the inference accuracy to
65%[20].

There are also systems based on web applications which can
be executed on multiple platforms. Mehrnezhad et al. design
a system called PINlogger on web platform. This system
can steal victims’ motion sensor data when they active the
malicious pages actively or passively[21].

Given the existing studies, we find that most researches
only extract time-domain statistical features from original
signals. Their work can get quite good results under ideal
conditions but poor performance in complex scenarios[22].
Meanwhile, frequency-domain features can reveal the dynamic
characteristics of signals, which can help to distinguish the
keystroke signals from ambient noise. Thus, we introduce
MFCC for frequency-domain feature extraction, which can
increase the inference accuracy in complex scenarios.

III. IMPLEMENTATION

In this section, the implementation of FreqKey is revealed
by steps, and the key problem to be addressed by the system is
also shown in detail. The FreqKey system can be divided into
3 parts: data collection, feature extraction and model training.

A. Data Collection

To evaluate the performance of FreqKey in multiple scenar-
ios, we design native applications for Android and iOS systems
and a web application for cross-platform experiment. These
applications collect sensor readings from accelerometer, gyro-
scope and orientation sensor when keystrokes are performed.
The sensor readings are then transmitted to the server with
the corresponding numbers as the classification labels in real
time.

The server receives the labelled readings and store them
into the database. Given that this system will face high-
frequency concurrent requirements and complex I/O requests,
we construct the server with Node.js, which is a lightweight
JavaScript runtime environment based on an event loop mech-
anism. This mechanism utilizes the asynchronous features
to prevent I/O blocking and can address high-concurrency
requirements.

B. Feature Extraction

Features of the original data should be extracted before
model training. As mentioned before, features from time-
domain and frequency-domain are extracted respectively.

The raw data which comes from 3 sensors can be divided
into 4 signal sequences: acceleration with gravity, acceleration
without gravity, rotation speed and orientation parameter. Each
of the sequence above have 4 axes including an extra virtual
axis: the Euclidean norm of each sequence. The Euclidean
distances are extracted to reveal the energy or power received
by the devices.
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Fig. 1: Diagram of MFCC extraction.

TABLE I: Features extracted from time-domain.

Feature Description
Max Maximum value
Min Minimum value
RMS Root-mean-square value

RMSE Root-mean-square error
Mean Average value of each tap

PeakNum Number of local peaks
TroughNum Number of local troughs

SMA Signal magnitude area
Skewness Asymmetry of the curve
Kurtosis Peakedness of the curve

ATP Average time to a peak
ATT Average time to a trough

In time-domain, several statistical features listed in TABLE
I are extracted. 192 time-domain features are extracted from
each keystroke event finally. In frequency-domain, the raw data
is first transformed into frequency spectrum by Fast Fourier
Transform. Then the signals are adapted into cepstral analysis
and MFCC algorithm whose progress will be presented in
Section 4 in detail.

C. Model Training

Several classification algorithms are utilized in training part
to construct classifiers based on the features extracted from
time-domain and frequency-domain. The algorithms we used
is listed below.

• Bayesian Network
• Support Vector Machine(SVM)
• Bagging (Bootstrap Aggregating)
• Artificial Neural Network(ANN)
• Logistic Model Tree(LMT)
• Logit Boost
• Random Forest

The classification algorithms come from different fields,
whose basic theories are also different from each other. This
ensures that we can comprehensively evaluate the robustness
of the entire system from multiple perspectives and select the
classification algorithm which is most suitable for this task.

IV. MEL FREQUENCY CEPSTRAL COEFFICIENTS

A. Justification

In FreqKey, MFCC, which is a technique widely used in
voice signal processing and blind signal separation area, is
introduced to extract features in frequency-domain. Since there
are several similarities between voice signals and motion sig-
nals, this algorithm can be adapted for feature extraction from
motion signals[23]. Although the frequency range of voice
signals and motion signals are different, these signals share
similar characteristics in their respective frequency-domains.
And the energy of the signals are both concentrated in low
frequencies. In addition, both voice signals and motion signals
are hard to reproduce, which means the features extracted from
these signals must be robust to resist the uncertainty of the
original data.

After considering several popular techniques in voice signal
processing area, MFCC is selected for feature extraction.
MFCC algorithm is originally used to distinguish between
the formants and the detail of signals, while formants and
envelope of the signals can reflect the primary information
and the detail reflects the ambient noise. By arranging a set of
bandpass filters according to the size of the critical bandwidth
from low frequency to high frequency, MFCC can filter the
input motion signals and keep the signal components caused
by keystroke as much as possible.

B. Cepstral Analysis

Peaks, which are usually called as formants, can be used to
distinguish the characteristics of signals. To get the formants,
spectral envelope is extracted because it contains the positions
of formants and the changing process of the formants.

IFFT is performed on original spectrum to separate the
spectral envelope from the spectrum. IFFT of the original spec-
trum can be considered as a new pseudo-frequency domain,
in which the frequency of envelope is obviously lower than
the frequency of the noise. By passing the signal through a
low-pass filter, the spectral envelope can be extracted from the
original spectrum.

C. Implementation of MFCC

Fig. 1 shows the whole process of MFCC extraction.
Fast Fourier Transform is performed to get the frequency

spectrum of each frame of the raw data. And then the linear
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Fig. 2: Accuracies with features of time-domain only.
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Fig. 3: Accuracies with frequency-domain
features extracted in different scales.
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Fig. 4: Accuracies when extracting differ-
ent numbers of MFCCs.
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Fig. 5: Accuracies when users are in mo-
tion states.
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Fig. 6: Accuracies under different sam-
pling rates.

scale is converted to Mel scale, which is a non-linear frequency
scale based on the frequency distribution of motion signals.
The signals after scale conversion will be passed through a
set of filters, whose distribution is dense in low frequencies
and sparse in high frequencies. After that, the energy band
logarithm is computed to get the logarithm of the former
spectrum for cepstral analysis.

Next step is to calculate the Discrete Cosine Transform.
DCT is used in MFCC since it can get frequency-domain
features which do not contain imaginary part and can further
compress the results to get efficient features from fewer
coefficients. The standard MFCCs can only represent the static
characteristics of signals. Since the motion sensor data is
continuous in time-domain, dynamic differential parameters
can be calculated to reflect the time-domain continuity char-
acteristics of the original data.

V. EVALUATION

In this section, the performance of FreqKey is evaluated
by a series of experiments from different aspects. 300 partici-
pants were invited to participant in the experiments following
our instructions. All the volunteers are college students and
perennial smartphone users. The participants were instructed
to open the application and enter the number displayed on the
prompt box. The numbers provided by the prompt box were
random sequences to avoid the similar patterns of sensor data
from fixed sequences. The experiments collected 300 groups
of data of numerical sequences, which correspond to 3,000

keystroke events. About 290,000 raw labelled sensor readings
were collected from accelerometer, gyroscope and orientation
sensor during the whole process.

A. Performance in Only Time-domain Features

Machine learning techniques introduced in section 3 are
used to construct classification models. In this phase, clas-
sifiers are trained by the feature sets extracted from time-
domain. The features to be extracted have been introduced
in TABLE I. 10-fold cross-validation is introduced to take full
advantage of limited raw data. Fig. 2 shows the performance of
each algorithm in the case of time-domain feature input only.
The result shows that ANN get the best inference accuracy
in both platforms, and the performance of LMT algorithms
is relatively good, only slightly inferior to ANN. However,
the results of Bayesian Network and Bagging algorithms
indicate that these algorithms are obviously not suitable for
this classification work.

B. Performance after Adding Frequency-domain Features

MFCCs are extracted as the frequency-domain features,
which can help to distinguish between signals caused by
keystroke events and other movement. Fig. 3 shows the infer-
ence accuracy under different scales. It indicates that adding
simple linear-scale frequency-domain features can slightly
improve the performance. And MFCC features which extracted
from Mel-scale can improve the performance more efficiently,
which can be up to 74.60%.
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Fig. 7: Accuracy of keys on iOS devices.
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Fig. 8: Accuracy of keys on Android de-
vices.
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The number of coefficients extracted from each frame
should also be considered, since this is related to the size
of feature sets, which would greatly affect the efficiency
of machine learning algorithms. Fig. 4 shows the inference
accuracy when extract different coefficients from one frame.
The result shows that the best performance comes when there
are 10 coefficients extracted from each frame.

C. Performance in complex scenarios

Several applications are designed to evaluate the perfor-
mance of FreqKey in complex scenarios. Fig. 5 shows the per-
formance when the users perform keystroke events in motion
states. The candidates are instructed to click the buttons while
shaking their bodies, walking or going upstairs to reflect the
actual situations in the daily lives. The results show that if only
taking time-domain features into account, the performance
of FreqKey will decrease drastically when people perform
keystroke events in motion. However, after introducing MFCC
for frequency-domain feature extraction, the performance will
be improved obviously.

The relationship between sampling rate of motion sen-
sors and the inference accuracies has been discussed by
researches[2]. Since MFCC algorithm can extract more ef-
ficient information from the original signals, it is meaningful
to investigate the performance in low sampling rate scenarios.
Fig. 6 indicates the trend of the inference accuracies under
different sampling rate before and after introducing MFCC.
The result shows that MFCC extraction can improve the
performance under the low sampling rate scenarios.

D. Impact of Key Position to Inference Accuracy

It is necessary to emphasis the distribution of inference
accuracy of different keys. Fig. 7 shows the accuracies of each
key on iOS devices. The result indicates that keys on the edges
of the keypad always get higher accuracy rates than those of
inner area. The result also indicates that keys on the right side
of the keypad always get lower accuracy rates than those on the
left side. Since most of the volunteers invited by us are right-
handed, they usually use their right hands to hold the devices
and perform keystrokes with the right thumbs. To make it
easier to reach the buttons on the left side, they should swing

TABLE II: Ranked key table, three most confused numbers are listed
for each key.

Key True Value 2nd 3rd 4th
1 90.5 4: 7.5 2: 2.0 -
2 78.5 5: 8.5 1: 3.0 3: 2.0
3 62.3 6: 14.1 9: 6.5 8: 5.5
4 74.0 1: 12.0 2: 7.0 7: 3.0
5 75.0 2: 10.0 8: 5.0 3: 3.0
6 57.8 9: 22.1 3: 13.1 2: 2.5
7 87.0 4: 4.0 0: 2.5 1: 2.0
8 67.0 6: 8.5 9: 6.0 3: 5.5
9 66.3 6: 16.6 8: 8.5 3: 6.5
0 87.0 8: 6.5 9: 2.5 7: 2.0

the devices more violently. The result on Android devices is
similar, as shown in Fig. 8.

The confusion matrix shows that the wrong inference key
positions tend to gather around the correct keys. Most of the
inferences come together on the 3 to 5 adjacent keys around
the correct key. This means that the false inference samples
can also be utilized to provide redundant information. Thus,
a ranked key table can be built to reduce the searching space.
TABLE II shows a ranked key table based on the result of
ANN learning with MFCC features. The table lists the most
probable inferred positions for each key. Fig. 9 indicates the
potential ability when take more digits into consideration.
When improving the potential target digits to 4, the total
accuracy of the system can be improved to about 94.34% on
iOS devices and 91.28% on Android devices.

VI. MITIGATION STRATEGY

Given the danger of keystroke attacks, it is necessary
to consider targeted countermeasures. However, separating
malicious sensor calls from benign application is not easy.
Traditional strategies typically reduce the sampling rate of all
background programs, which would affect the use of benign
applications. However, we find that the pattern of sensor
signals from malicious programs has certain characteristics.
Thus, pattern recognition can be utilized to identify malicious
applications. According to this, we propose a countermeasure
solution against this kind of attack.
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A. Sensor Activity Monitoring

We find that sensor calls from benign applications are
usually short-lived while malicious programs tend to monitor
a fixed combination of sensors over a long period. And the
progress of recording sensor data is usually accompanied by
data transmission through Internet in malicious applications.
Thus, the state of sensors can be recorded by a monitoring
program, which can record sensor activities based on sensor
combination, active duration and network usage.

B. Malicious Program Identification

By extracting features from the data collected by the
monitoring program, pattern recognition can be utilized to
distinguishing the malicious program from massive sensor
calls. Pattern recognition techniques can detect appropriate
features which can contribute to identify the malicious calls.
Then these feature sets can be aggregated for machine learn-
ing. Classification algorithms can be utilized to distinguish
malicious code from massive sensor calls.

C. Interference Signal Injection

Defense system based on noise injection has been proposed
by researchers to mitigate keystroke attacks[24]. However, the
existing countermeasure is mainly focus on systems which
only extract time-domain features. To make this method valid
in systems based on frequency-domain features, noise whose
pattern is similar to signals caused by keystroke events can be
injected and confuse the inference systems.

VII. CONCLUSION

In this paper, we construct a system called FreqKey to infer-
ence numerical input on smartphones by the data from motion
sensors. To collect data from different platforms, we build
applications which can record the motion sensor data when
users perform keystroke events. To adapt our attack system
to more complex scenarios, we introduce MFCC algorithm to
distinguish between signals caused by keystroke events and
other device movements. The evaluation of FreqKey shows
that MFCC algorithm can improve the one-phase accuracy rate
to 74.60% comparing to the former rate of 62.01%. Based on
the result of our research, we propose a solution against this
attack system, which can mitigate this attack and protect the
privacy of users.
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