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Abstract—Many efforts have been devoted to the develop-
ment of efficient Network Intrusion Detection System (NIDS)
using machine learning approaches in Software-defined Network
(SDN). Unfortunately, existing solutions failed to detect real-
time and zero-day attacks due to their limited throughput and
prior knowledge-based detection. To this end, we propose Griffin,
a NIDS that uses unsupervised machine learning expertise to
detect both known and zero-day intrusion attacks in real-time
with high accuracy. Specifically, Griffin uses an efficient feature
extraction framework to capture the sequential features of the
traffic packets. Then, it utilizes cluster analysis to reduce the
feature scale to achieve low throughput. Moreover, an ensem-
ble autoencoder is built automatically to further extract features
with low complexity and high precision to train the model. We
evaluate the accuracy, robustness, and complexity of the system
using open datasets. The result shows that Griffin’s complexity
is about 40% lower, and its accuracy is at most 19% higher
than existing NIDS.Additionally, even in the situation with eva-
sion, the Griffin has at most 9% decrease of AUC, which is a
good performance compared with other solutions. Furthermore,
this paper also utilizes the differential privacy framework dur-
ing training autoencoders to protect datasets’ privacy which is
inherent in machine learning approaches.

Index Terms—Software-defined network (SDN), network intru-
sion detection system (NIDS), autoencoder, ensemble learning,
differential privacy.

I. INTRODUCTION

OVER the past several years, we have witnessed an
unprecedented growth of Software-defined Network

(SDN) applications alongside a vast deployment of
SDN-enabled devices [1], [2]. SDN technology is an
approach to network management that has characteristics of
decoupled network control (i.e., Users can flexibly change the
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network as needed in SDN.) and network programmability
(i.e., SDN enables users to automatically program the network
to support applications [3]) to improve network performance
and monitoring. Due to these two promising features, SDN
is extremely popular in a variety of scenarios ranging
from smartphone [4] to the platform for virtual remote
office [5], and has dramatically changed the landscape of
networking.

Unfortunately, SDN is still threatened by traditional network
intrusion attacks in all components in its structure: the data
plane, control plane, and application plane. For instance, the
former two planes could be compromised by the Distributed
Denial-of-service (DDoS) attack when a large number of
network traffic packets are first received by the switches in
the data plane, which then transmit received packets to the
controller (in the control plane) where all high bandwidth
could use up [6]. Besides, the application plane of SDN is
vulnerable to recon attack (e.g., Mirai), in which malware can
log and infect the device through scanning the Internet for
devices when the default username-and-password combo is not
changed. On October 21, 2016, a number of essential Internet
sites in North America were rendered inaccessible because of
a DDoS attack caused by the Mirai botnet, which led to a
substantial economic loss.

To mitigate intrusion attacks, a number of network intru-
sion detection systems (NIDS) [7]–[10] have been proposed.
Most of these NIDSs leverage machine learning expertise
to improve their detection accuracy. In addition, compar-
ing to traditional rule based detection methods [11]–[14],
machine learning based methods can also effectively identify
zero-day intrusion attacks [15]–[18]. At a high level, these
machine learning-based methods require the process of feature
extraction, training, and detection based on numerous pack-
ets, which need much time and memory. However, identifying
some network intrusion attacks (e.g., DDoS attack) in high-
performance networks in a short period (nearly the moment the
attack appears) is urgent. Unfortunately, the aforementioned
defense strategies failed to satisfy the requirements of real-time
manner due to the low detection throughput on the process of
machine learning algorithms.

Besides, existing solutions, including the aforementioned
machine learning-based detection and other rule detection,
focus on either the flow-level or packet-level. However, the
existing packet-level solutions [19], [20] can easily be evaded
by injecting noise from attackers. Therefore, those solu-
tions always fail to detect malicious traffic when attackers
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conduct such an evasion method. Meanwhile, those packet-
level solutions also failed to detect zero-day attacks accu-
rately for the weak robustness. Moreover, the state-of-the-art
methods based on traditional rule methods [21]–[24], which
analyzed numerous statistical traffic features, always intro-
duce significant detection latency. Therefore, a robust machine
learning-based NIDS, which can detect zero-day attacks in a
real-time manner, is still missing.

To advance the state-of-the-art, we present Griffin1: a real-
time robust network intrusion detection system that can detect
zero-day attacks with high accuracy and low latency. Griffin
effectively extracts and analyzes the sequential feature of traf-
fic based on traditional flow-level statistic features and appro-
priate extraction intervals. Specifically, we use the damped
function to extract statistical traffic features to precisely illus-
trate sequential information of traffic packets. Therefore, it
is difficult to disturb the detection system by injecting noise
packets. Furthermore, we reduce features’ scale and feature
complexity to achieve high throughput and real-time detection.
To achieve this, we first map the similar features into a sub-
instance by cluster analysis. Secondly, we further extract the
features from these sub-instances by using ensemble autoen-
coders to learn the information contained in sub-instances. Due
to the low feature dimensional and precise feature presentation,
Griffin realizes the high accuracy and real-time detection
manner.

We evaluate Griffin with the open Datasets (e.g., Mirai,
Active Wiretap) to demonstrate its detection effectiveness. The
results show that Griffin’s complexity is about 40% lower,
and its accuracy is at most 19% higher than existing NIDSs.
Additionally, even in the situation with evasion, the Griffin has
at most 9% decrease of AUC, which is a good performance
compared with other solutions. Moreover, this paper also
utilizes the Differential Privacy framework during training
autoencoders to protect datasets’ privacy which is inherent in
machine learning approaches. To this end, we add Gaussian
noise into parameters in the machine learning training process.
After that, attackers cannot deduce the sensitive information
from users’ datasets. Finally, with the privacy protection mech-
anisms based on Gaussian Mechanism, the system detection
accuracy is up to 97%, which is only a lower 1 percentage
than before.

In short, this paper makes the following contributions:
• We propose Griffin: a novel network intrusion detection

system in SDN, which can detect zero-day attacks in a
real-time manner with robustness, high accuracy, and low
latency.

• We develop an efficient feature extraction framework
to capture the sequential features of the traffic packets,
which paves the way for robustness.

• We develop the cluster analysis and ensemble of autoen-
coder to capture the precise feature having low dimen-
sion, which lays the foundation for the low latency,
real-time detection, and high accuracy.

1This paper is an extended version of “Griffin: An Ensemble of
AutoEncoders for Anomaly Traffic Detection in SDN” published in 2020
IEEE Global Communications Conference.

• We perform the Differential Privacy framework during
training autoencoders to protect datasets’ privacy which
is inherent in machine learning approaches. In our model,
we achieve the goal of gaining both the best privacy
efficiency and excellent accuracy simultaneously, which
is a challenging issue in differential privacy framework
establishment.

• We compare the Griffin with some traditional algo-
rithms and state-of-art solutions. Our results show that
Griffin achieves at most 19% improvement of AUC, while
achieving at most 40% improvement of complexity. Even
in the situation with evasion, the Griffin has just at most
9% decrease of AUC, which is a good performance
compared with other solutions.

The remainder of the paper is organized as follows:
We review related work in Section II and introduce the
threat model and design goals in Section III. Section IV
presents Griffin’s framework, its entire machine learning
pipeline. Section V illustrates the design details of the Griffin.
Section VI describes the evaluation and experimental results
in terms of detection accuracy, latency, and the privacy-
preserving mechanism effectiveness. Finally, in Section VII
we present our conclusion.

II. RELATED WORK

A. Network Intrusion Detection System in SDN

Network intrusion detection system in the SDN environment
is in the research and exploration stage. In the past several
years, there have been many efforts on this work. For exam-
ple, Granted, Tang et al. used a five-layer neural network to
train the model, but due to poor feature selection, the accu-
racy rate was only 75% [25]. Liu et al. [26] employed SO-BP
neural network to classify the traffic, though high accuracy
of 95.65%, their algorithm was limited to detecting DDoS
attacks. Hamza et al. attempted to translate MUD policies
into flow rules that could be enforced using SDN and related
the exception behavior to attacks. However, they ignored the
latency [27]. Similarly, Abubakar and Pranggono also ignored
the latency of the system, though their accuracy was high [28].
Besides, the methods mentioned above lacked a privacy pro-
tection mechanism for the training datasets and failed to detect
zero-day cyber-attacks in real time.

B. Machine Learning-Based NIDS

Meanwhile, as an emerging prosperity paradigm,
machine learning-based network intrusion detection has
been developed. Table I concludes and compares various
machine learning-based intrusion into attack detection meth-
ods. As shown in Table I, machine learning-based methods
can detect zero-day attacks with high accuracy. Unfortunately,
those methods have low throughput because of their complex
machine learning algorithms, leading to high latency and
failed to realize real-time detection [23], [29]. Moreover,
those machine learning-based methods are easily affected by
injected noise traffic packets. Therefore they are not satisfied
with the requirement of robustness.
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TABLE I
COMPARING THE EXISTING MACHINE LEARNING-BASED NETWORK INTRUSION DETECTION METHODS

C. Data Privacy Preserving Mechanism in
Machine Learning

Additionally, there also exist users’ data privacy leakage
problems in machine learning-based methods. For these prob-
lems, predecessors have also done much research. Abadi et al.
proposed a new technique to analyze privacy costs using the
differential privacy framework to protect training data privacy.
This research protects data privacy in a deep neural network
and has a modest cost in training efficiency, software com-
plexity, and model quality [34]. Chamikara et al. proposed
the LATENT: an algorithm for local differential private. It
protects the privacy of data in the randomization layer before
achieving an untrusted service [35]. Also, Phan et al. focus
on developing a new mechanism to use differential privacy in
deep neural networks [36]. According to those researchers,
it is practical to utilize differential privacy mechanisms in
deep neural networks to resolve its inherent data privacy
problem. Therefore their method provides new insight into our
scenarios.

Above all, we are supposed to create a robust real-time
NIDS in SDN to detect zero-day attacks with high accuracy,
low latency, and privacy-preserving mechanisms.

III. THREAT MODEL AND DESIGN GOALS

A. Threat Model

The network work intrusion attackers can utilize the con-
figuration in all architecture layers: application layer, control
layer, and data layer. They use network intrusion attacks
to steal network resources, jeopardize network security, and
destroy data privacy. We will illustrate those attacks based on
the attack surface following.

1) Application Plane: In the application plane, attackers
use business productivity software and scripting languages
to conduct intrusion attacks. The attackers can easily bypass
the users’ awareness because those tools are not malware.
Actually, in most cases, some business justification enables
the attackers to blend in with these tools.

2) Control Plane: In the control plane, attackers can use
vulnerabilities of protocols (e.g., ARP, TCP, and UDP) to
conduct intrusion attacks. For example, they can imitate proto-
cols or send protocol messages to conduct man-in-the-middle
attacks and steal the data without the server’s permission.
Additionally, attackers can even crash the server to interrupt
the service.

3) Data Plane: In the data plane, when the network sup-
ports asymmetric routing, attackers will use multiple routes to

achieve the targets. In this case, attackers can evade detection
by bypassing the specific network segments and NIDS. On
the other hand, the attackers can also create a large number of
traffic loads to induce congestion in the network. After that,
they can conduct attacks without being detected.

B. Design Goals

This paper aims to develop a NIDS named Griffin, which
consist of four parts: packet capture, feature extractor, fea-
ture mapper and anomaly detector. This system is suspected
to be a robust real-time NIDS that can detect zero-day attacks
with high accuracy, low latency, and privacy-preserving mech-
anisms. Remarkably, the Griffin should complete the following
three goals, which are not well tackled in the literature.

1) Real-Time Detection and Low Latency: In some cyber-
attacks (e.g., DDoS attacks), the failure of a Web server
is instantaneous. Therefore, it is essential to design a real-
time network intrusion detection system with low latency.
In this paper, we achieve this goal using the technology of
training model according to each packet with Hierarchical
Clustering Algorithm in the feature mapper. More specifically,
the Hierarchical Clustering Algorithm in this part reduces the
dimension of the feature sets. Therefore, this method reduces
this system latency in an exemplary manner.

2) High Accuracy and Zero-Day Detection: To achieve the
goal of high accuracy and zero-day detection, we use the
efficient feature extractor framework to extract precise fea-
tures. After that, we use the ensemble of autoencoder to learn
the feature of traffic packets in an unsupervised manner. The
ensemble of autoencoder captures the precise features of traffic
packets from un-labeled datasets, which makes Griffin realize
to detect the attacks not present before.

3) Privacy Preserving: The training data sets contain user
privacy, and some model parameters can be used to reveal user
privacy. Therefore, the model is supposed to satisfy user data
security. To achieve this goal, we improve the stochastic gra-
dient descent (SGD) using Gaussian Mechanism in anomaly
detector to protect the intrusion data set in the system from
privacy leakage. Specifically, the Gaussian Mechanism adds
noise to the parameters in the model, which makes it difficult
for attackers to deduce the privacy information in user traffic
packet data from the parameters of the model.

IV. OVERVIEW OF GRIFFIN

In this section, we present our network intrusion detection
system Griffin for SDN. Griffin achieves high-performance
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Fig. 1. The process workflow of Griffin.

detection by extracting precise flow-level statistic feature
sequences. Specifically, it reduces the feature scale and feature
complexity via cluster analysis and ensemble of autoencoder
to achieve the real-time detection. Since the ensemble of the
autoencoder is automatically established in an unsupervised
manner, Griffin realizes the zero-day attacks detection. Fig. 1
shows the overview process of Griffin.

A. Packet Capturer Module

This module provides the traffic packet feature sequences
to the feature extractor module for extracting the flow-level
statistic features. This module does not capture particular
attack-related features and only offers traffic packet feature
sequences to facilitate the following processes. More specif-
ically, this module mainly uses the switches and OpenFlow
protocol in SDN to capture the sequence of traffic packet fea-
tures (e.g., source MAC address,source IP address, destination
MAC address, IP protocol version, etc.).

B. Feature Extractor Module

This module is in the data plane in the SDN, it extracts the
flow-level statistic features from the packet feature sequences.
More specifically, this module periodically extracts the required
statistic feature from the packet capture module with some
fixed time intervals. These features with statistic Information
are provided for the feature mapper module. However, it is
difficult to extract the flow-level statistic features of traffic in
high throughput networks in real-time because of the numer-
ous sophisticated and irregular flow patterns [37], [38]. We
will show the details of this module in Section V-A.

C. Feature Mapper Module

To achieve the goal of real-time detection and high through-
put. In the data plane of SDN, we map the packet statistic
features from the feature extractor module to reduce the
scale of features. To this end, this module maps the features
that illustrate traffic packets’ particular property into a sub-
instance. These sub-instances are provided for the anomaly
detector module to facilitate network intrusion detection. We
will illustrate the details of the module in Section V-B.

D. Anomaly Detector Module

In this module, we utilize the features in sub-instances from
feature mapper module to further reduce features complexity
and detect the malicious. This module is in the control plane
of SDN for the good computational capacity of the controller.
In the training mode, the input layer generate s set of Root
Mean Square Error (RMSE) representing those sub-instances’
properties. Additionally, the output layer add a particular noise
to those RMSEs to protect the data privacy. In the monitoring
mode, we detect the malicious traffic packets according to
RMSE (the Score) from the output layer. Griffin can detect
various of network intrusion attacks in a good performance.
We will elaborate on the anomaly detector in Section V-C.

V. DESIGN DETAILS

In this section, we illustrate the design details of Griffin,
i.e., the design of three main parts in Griffin.

A. Feature Extractor

The feature extractor aims to achieve the goal of high
accuracy with precise features. More specifically, since flow-
level-based detection has robustness, we use the flow-level
feature extraction window with a damping parameter to create
a set of feature vector −→x ∈ Rn to describe packet and its
channel. For the complex network environment and functions,
finding a feature that could describe the packet’s connection
and the path of traffic is essential. For example, consider a sig-
nal DNS packet. The packet may be a request from a server,
or it may be with malicious payload or leakage data present-
ing a sustained significant jitter. As another example, consider
the SMTP packet. The packet may be a protocol packet from
a mail server, or it may be one of the millions of packets sent
in an attempt to cause a mail bomb attack. Therefore, it is
essential to select and extract traffic features precisely.

To accurately detect the various attacks, we first select
the six validated factors [39] to compose the initial char-
acteristics of packets: packet’s source MAC (Src-MAC) and
IP address (IP-Addr), packet’s source IP (Src-IP), packet’s
channel between source and destination (Channel-Src-Des),
packet’s source TCP/UDP Socket (TCP/UDP-Soc). Secondly,
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since in many light devices, there exist memory restriction, we
use an frame with attenuation function to maintain increasing
statistics in duration windows (100ms, 500ms, 1.5s, 10s, and
1min) for practicality [33]. To implement this frame, firstly,
we define a attenuation function as [39], [40]:

dλ(t) = 2−λt (1)

where λ > 0 is the attenuation coefficient and t denotes the
duration time since observing Si last time. In boundless data
flow (e.g., time): S = {x1, x2, x3, . . .}, where xi ∈ R. When
damping weight is 0, the former temporal incremental statistic
will be deleted. Secondly, we define a damping increment sta-
tistical tuple as: TSi ,λ := (w ,FS ,SS ,SKij ,Tlast ), where FS
is the sum of features, SS is the sum of squares of features, w
is the current weight, and Tlast denotes the time stamp when
update the TSi ,λ last time. Thirdly, we define SKij as the sum
of the remaining of flow i and flow j, which can be used to
calculate two-dimensional statistical analysis. Therefore, the
attenuation coefficient can be defined as:

γ ← dλ(tcur − tlast ) (2)

Additionally, we update the attenuation process as follows:

TSi ,λ ← (γw , γFS , γSS , γSK ,Tcur ) (3)

TSi ,λ ←
(
w + 1,FS + xcur ,SS + x2i ,SKij + rirj ,Tcur

)

(4)

According to those traffic packet statistic features, we
could select 23 features displayed in Table II, with those
seven statistical analysis indicators: Wi , μi = FS/w ,

σi =
√
|SSw − (FSw )2|, ‖Si ,Sj ‖ =

√
μ2si + μ2sj , RSi ,Sj

=√
(σ2Si

)2 + (σ2Sj
)2, CovSi ,Sj

=
SKij

wi+wj
and PSi ,Sj

=

CovSi ,Sj
σSi

σSj
. More specifically, the μi and σi of Src-MAC-IP-

Addr, Src-IP, Channel-Src-Des, and TCP/UDP-Soc describe
the bandwidth of the outbound traffic. The ‖Si ,Sj ‖, RSi ,Sj

,
CovSi ,Sj

, and PSi ,Sj
of Channel-Src-Des and TCP/UDP-Soc

depict the bandwidth of the outbound and inbound traffic
together. The Wi of Src-MAC-IP-Addr, Src-IP, Channel-
Src-Des, snd TCP/UDP-Soc illustrate the packet rate of the
outbound traffic. Additionally, the Wi ,μi , and σi of Channel-
Src-Des describe inter-packet delays of the outbound traffic.
Finally, we extract final 115 features by using 5 intervals
(100ms, 500ms, 1.5s, 10s, and 1min) extract characteristics
showing in Table II.

B. Feature Mapper

The feature mapper aims to reduce the dimension of the
feature set to achieve a low latency and real-time detec-
tion.Because our dataset is unbunded, we used the incremental
Hierarchical Clustering Algorithm to merge −→x ’s n features
into k smaller sub-instances [41]. More specifically, the cor-
relation distance dcor that is used in this case defined as:

dcor(u, v) = 1− (u − ū) · (v − v̄)

‖(u − ū)‖2‖(v − v̄)‖2
(5)

TABLE II
FEATURES SELECTED

where ū is the mean of elements in vector u, v̄ is the mean
of elements in vector v, (u − ū) · (v − v̄) is dot product.

Next, we will calculate the correlation between features in
hierarchical clustering. To this end, firstly, we compute the
value of sub-instance i in time index t: c(i) =

∑nt
t=0 x

(i)
t ,

where �C is n dimensional vector including the sum of every
feature and nt is the number of features in a sub-instance.
Secondly, we compute every sub-instance’s residual error and
quadratic sum residual error: c(i)r =

∑nt
t=0(x

(i)
t − c(i)

nt
),c(i)rs =∑nt

t=0(x
(i)
t − c(i)

nt
)2. Therefore, the product between sub-

instance’s residual errors can be calculated as follow: [Ci ,j ] =∑nt
t=0((x

(i)
t −

(i)

nt
)(x

(j )
t − c(j)

nt
)), where C is the partial corre-

lation matrix. After that, we calculate the correlation distance
matrix [42]:

D =
[
Di ,j

]
= 1− Ci ,j√

c
(i)
rs

√
c
(j )
rs

(6)

To map the similar features into the same sub-instance,
firstly, we initialize the cluster singleton (Gi ) for each fea-
ture xi . Secondly, we choose Gi and Gj to make D(Gi ,Gj )
is minimized among all pairs. After that, Gi and Gj will be
merged into a group (i.e., Gi ,j = Gi ∪Gj ). And then, we add
the Gi ,j to the list and remove the Gi and Gj from list. We
repute this process until there are two groups in the list.

Executing this algorithm, we get a dendrogram chart shown
in Fig. 2. From the dendrogram, we can extract many different
flat partitions, which are presented by black parts.

This is a symmetric thermodynamic chart about the oblique
symmetry axis, which illustrates the result of mapping n fea-
tures to k sub-instances. The dark parts in the chart are
symmetrical about the diagonal of the square graph, which
indicates various cluster methods. Meanwhile, the dark parts
illustrate that the distinguished degree of sub-instances is high,
beneficial to later detection research on traffic packets. As for
the number of sub-instances used in the anomaly detector mod-
ule, they directly determine the number of autoencoders in the
input layer of the anomaly detector module. Therefore, we
determine the number of sub-instances by trying every possi-
ble value of autoencoders in the input layer of the anomaly
detector module. Finally, we get 19 sub-instances to input into
the autoencoders in the next module.
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Fig. 2. An example dendrogram of the 100 features clustered together, from
1000000 network packets.

C. Anomaly Detector

The anomaly detector is the core part of Griffin, which
takes the responsibility to achieve the privacy preserving and
zero-day attacks detection using the unsupervised module of
ensemble of autoencoder. At the high level, the anomaly detec-
tor part consists of training and monitoring modes. More
specifically, the training mode uses an unsupervised learning
model composed of two layers: ensemble layer and output
layer. The input of the ensemble layer is the result of the
feature mapper, based on which the ensemble layer generates
RMSE as the input of the output layer. Meanwhile, the output
layer is an autoencoder that considers data privacy and finally
generates the anomaly score for detection. Next, we will show
the detailed implementation of the anomaly detector.

1) Training Mode: As aforementioned, the training mode
includes two layer: ensemble layer and output layer.
Specifically, let θ denotes an autocoder, let L(1) and L(2) be
the ensemble layer and output layer respectively. Therefore,
L(1) is the ordered set:

L(1) = {θ1, θ2, . . . , θk ′} (7)

In the ensemble layer, when receiving the first set of mapped
instance V from the feature mapper, it uses V as a blueprint
initialization architecture for autocoders. The autocoders θi ∈
L(1) in ensemble layer have three-layer neural network,
namely input layer and output layer (dim(−→vi )), also the hid-
den layer ([β · dim(−→vi )], β ∈ (0, 1]). The Fig. 3 displays the
mapping between −→vi ∈ V and

−→
θi ∈ L(1).

We define L(2) as autocoder θ0, which has k ′ input and
output neurons and �k ′ · β� internal neutrons. It’s input come
from 0-1 normalized RMSE error signal of every autoen-
coder in L(1), which can reduce the complexity of network.
Meanwhile, we utilize the evenly distributed random value:
U( −1

dim(�vi )
, 1
dim(�vi )

) to initialize the weight of autocoder θi .
And then we use Gaussian Mechanism Stochastic Gradient
Descent (SGDGau ) to updated weight iteratively. SGDGau
is a algorithm develop from SGD for privacy preserving of
users’ traffic packets.

Fig. 3. An illustration of Griffin’s anomaly detection algorithm.

Algorithm 1 Gaussian Mechanism SGD (SGDGau )

Input: Examples: {x1, . . . , xN }, loss function: L(θ) =
1
N

∑
i L(θ, xi ). Parameters: learning rate ηt , noise scale σ.

Initialize: θ0 randomly.
Output: θT
1: for t ∈ [T] do
2: Take a random sample Lt with sampling probability

L
N

3: Compute gradient:
4: for i ∈ Lt do
5: Compute gt (xi )← ∇θtL(θt , xi )
6: Add noise:
7: g̃t ← 1

L

∑
i

(
ḡt (xi ) + N

(
0, σ2

))
8: Decent:
9: θt+1 ← θt − ηt g̃t

10: return θT

In the process of training mode, the training data may be
stolen by attackers to deduce sensitive Information of users,
causing privacy leakage. For this problem, some people try
to add noise to the parameters after training. In this way, the
whole training process is regarded as a black box, and finally,
the data with noise is obtained, which is not vulnerable to
linkage attacks. However, this method of adding noise is gener-
ally based on a conservative noise, which is often the analysis
choice in the worst case, so it is easy to destroy the effective-
ness of the learning model. Therefore, we add Gaussian noise
to the SGD in the output layer’s autoencoder of the training
mode. In this way, it is possible to prevent privacy leakage
while not destroying the model’s utility in this system. The
following will describe this method in detail.

Algorithm 1 summarizes the model’s training process based
on SGDGau optimizer [34]. The core idea of this algorithm
is to train the Griffin system by making the objective function
L(θ) take the minimum value and update the θ in the network.
In each round of training update process of this training algo-
rithm based on SGDGau optimizer, we first calculate a random
subset example ∇θtL(θt , xi ), and then add Gaussian noise to
protect data privacy. After that, we conduct the calculation in
the opposite direction of the noise gradient. Finally, Griffin is
trained through the gradient descent algorithm based on the
Gaussian Mechanism.

More specifically, in Algorithm 1, the gradient L is com-
puted by calculating the gradients of the losses for a set of

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 26,2022 at 13:41:44 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: GRIFFIN: REAL-TIME NETWORK INTRUSION DETECTION SYSTEM VIA ENSEMBLE OF AUTOENCODER 2275

Algorithm 2 The Back-Propagation Training Algorithm With
Gaussian Mechanism SGD Optimizer in Griffin

Procedure: train
(
L(1),L(2), v

)

1: Train ensemble layer
2: �z ← zeros(k) //Initialize the input for L(2)

3: for θi in L(1) do
4: �v ′i = norm0−1(�vi )
5: Ai , �yi ← hθi

(
�v ′i
)

//Forward propagation
6: Errorssi ← bθi

(
�v ′i , �yi

)
//Backward propagation

7: θi ← SGD(Ai , Errorssi ) //Weight update
8: �z [i ]← RMSE

(
�v ′i , �yi

)
//Set error

End
9: Train output layer

10: �z ′ = norm0−1(�z ) A0, �y0 ← hθ0
(
�z ′
)

//Forward
propagation

11: ErrorsS0
← bθ0

(
�Z ′, �y0

)
//Backward propagation

12: θ0 ← SGDGau(A0, ErrorsS0

)
//Weight update and

add noise
13: return L(1),L(2)

instances and taking the average of them. This average offers
an unbiased estimator, whose variance decreases rapidly with
the group size. We named such a group Lot. Therefore, we
randomly arrange the instances and divide them into appropri-
ately sized groups to use Gaussian Mechanism to protect data
privacy. Meanwhile, for analysis, we assume that each batch
is formed by selecting each example with independent prob-
ability (p = Lot

N ), where N is the input data set size. Relevant
research test indicates that this privacy protection for deep
neural networks can be achieved at a modest cost in soft-
ware complexity, model quality, and training efficiency so it
is practicable to use Gaussian Mechanism in this case [34].

The algorithm for training mode with SGDGau optimizer
on a single instance is presented in Algorithm 2. In the training
process of the ensemble layer, the autoencoder neural network
is still trained according to the previous description, that is:
first, perform 0-1 normalization on the fourth line. Specifically,
in this process, each autoencoder must record the maximum
and minimum values of each input feature. It is worth men-
tioning that these maximum and minimum records are only
updated during the training mode. Secondly, we execute the
forward propagation algorithm and the backward propagation
algorithm to update the training parameters in the autoencoder
neural network in the ensemble layer, and finally record the
Rmse value. Additionally, in the training process of the output
layer, a stochastic gradient descent optimizer with Gaussian
Mechanism is used. According to the Algorithm 1 aforemen-
tioned, Gaussian noise is added to the SGD optimizer, so data
privacy is protected. To further explain, as shown in Fig. 4,
we will use the SGDGau in the training process of the output
layer.

In conclusion, We will train the training mode by the steps
following:

1) Use normal instance xi in X to train autocoder.
2) Execute: s = RMSE(xi , hθ(xi )).

Fig. 4. An illustration of Griffin’s output layer with SGDGau .

3) Update: if (s ≥ ∅) then ∅ ← s (let ∅ be threshold, whose
initial value is −1).

4) Update the θ through learning the features of xi .
For every normal packet, the training mode executes forward
propagation. More specifically, for every autoencoder, the sec-
ond layer (l (2)) is activated by the weight (W (1)) of the first
layer (l (1)). After that, the weight (W (2)) of the second layer
activates the third layer (l (3)). To gain the a(i+1) from l (i),
we transfer the a(i) to l (i+1): a(i+1) = f (W (i) ·a(i)+ b(i)).
After that, we use the activation function called sigmoid:
f (�x ) = 1

1+e�x
. We define the last output as:

−→
y ′ = a(L), and

let h be the forward propagation from input �vi to output
−→
y ′ .

Therefore, the hole function can be defined as:

hθ(xi ) =
−→
y ′ (8)

In the back propagation process, we use SGD. For this algo-
rithm, the error between actual value and expected value would
be stored. In this paper, the largest iteration number is 1, so
we only learn once from each instance to maintain the online
process.

2) Monitoring Mode: As mentioned before, the monitoring
mode aim to consider the abnormality of the instances and
generate a anomaly score to make difference between benign
traffic and malicious traffic. Specifically, the autocoder trained
in X can recreate instance with same data distribution as X.
Therefore, if a instance is in-conformity to the features learned
from X, the RMSE would be high between recreated features
and original features. Moreover, it is practical to regard RMSE
as the anomaly score to determine whether the traffic is mali-
cious. In conclusion, the monitoring mode can be executing
below:

Execute: s = RMSE (�x , hθ(�x )).
Judgment: if (s ≥ ∅β) then alert.

In this process, the autoencoder does not update any internal
parameters. Instead, it performs forward propagation through
the entire network and returns the RMSE of L(2), which is
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TABLE III
THE DATASET USED TO EVALUATE GRIFFIN

the anomaly score s ∈ [0,∞). The higher the score, the more
likely the system is to be attacked by network intrusion.

VI. EXPERIMENTAL EVALUATION

In this section, we provide an evaluation to Griffin on
its detection effectiveness. Specifically, we mainly test and
evaluate Griffin’s detection latency, accuracy, and privacy-
preserving mechanism. As the fundamental technique of our
evaluation, we first explain how our system set up, and then
describe the detail of this evaluation.

A. Experimental Setup

1) Experimental Environment: Griffin is an NIDS, which
conduct in SDN. Therefore, we use the Mininet platfrom to
execute the experimental evaluation. As for the hardware con-
dition, we use the core of Intel Core i7-8550U CPU and the
memory of 8G.

2) Datasets: The datasets used in this evaluation are the
open Datasets, whose details are shown in Table III.

3) Baselines: To evaluate the accuracy, robustness, and
latency of Griffin, we used the following methods to establish
baselines.

a) Signature-based method: We used the state-of-art
NIDS, Suricata [30]. It filters malicious packets by building
various rules aiming for different network attacks characteris-
tics. During the evaluation, we installed the Suricata version
6.0.4 and implemented the open-source Suricata based on the
same hardware environment and datasets as Griffin.

b) Flow-level clustering: We used the state-of-art data
stream extraction, named pcStream2 [33]. It is an updated ver-
sion of pcStream, using the Just-In-Time principal component
analysis (PCA) to monitor the situation of processing streams.
For a fair comparison, we used the same hardware condition
and datasets as Griffin.

c) Traditional classification methods with same features
with Griffin: We used some traditional classification methods–
Support Vector Machine and Random Forest to demonstrate
the improvement of our method. Those methods (noted as
F_SVM and F_RF) use the same features as Griffin, so it
is fair to compare F_SVM and F_RF with Griffin.

4) Methics: We measure the detection latency and use the
AUC to evaluate the detection accuracy. Moreover, we also
use the change of AUC to evaluate the robustness. Finally,
we use the loss value and true positive rate to evaluate the
effectiveness of privacy preserving.

B. Sub-Instance Selection

To improve the accuracy and reduce the latency of the
Griffin, we perform an importance evaluation to 19 sub-
instances (obtained from feature mapper) based on Random
Forest. After that, we remove some sub-instance with low
importance. Specifically, we order all sub-instances based on
their features’ importance using Random Forest. When con-
structing a decision tree according to the sub-instances, we
get node segmentation effect metric by using the Gini Index
and calculating the Gini Importance to indicate the feature
importance. Moreover, the Gini Index is defined as [43]:

Gini(p) =

Q∑
q=1

pq
(
1− pq

)
= 1−

Q∑
q=1

p2q (9)

where q denotes q-th class and pq denotes the sample weight
of q-th class. In this case, the importance of feature Xj in node
m, namely the variable quantity of Gini Index in the node m,
can be defined as:

VIM
(Gini)
jm = GIm −GIl −GIr (10)

where GIl and GIr denote Gini Index of new nodes after
branching. If the node of feature Xj in decision tree i is in

set M, then the importance of Xj in i-th tree VIM
(Gini)
ij is

defined as:

VIM
(Gini)
ij =

∑
m∈M

VIM
(Gini)
jm (11)

If there are n trees totally, then the sum of them defined as:

VIM
(Gini)
j =

n∑
i=1

VIM
(Gini)
ij (12)

Finally, a normalization process to importance scores is made
as following:

VIMj =
VIMj∑c
i=1VIMi

(13)

where the denominator is the sum of all feature gains, and
the numerator is the Gini index of feature j. After utilizing
the method above to evaluate the importance of every sub-
instance, we get the Fig. 5. Obviously, the importance of sub-
instance 1 and sub-instance 5 is negligible. Therefore we can
remove them. Therefore, we get 17 autoencoders to deploy in
the ensemble layer in anomaly detector.
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Fig. 5. Feature selection based on random forest.

Fig. 6. Compare the Griffin’s CPU usage with ANN-SVM NIDS and ANN-
RF NIDS.

C. Detection Latency

The main idea in this paper to reduce the system latency
is to create a detection model with low complexity, because
algorithm complexity is always the main factor restricting the
latency. More specifically, we use the feature mapper and
ensemble layer to reduce the dimension of features. Therefore,
we will first measure the CPU usage to evaluate the system
complexity to demonstrate our method’s effectiveness. We
compare it with the other two SDNs (F-SVM and F-RF).
The result showing in Fig. 6 illustrates that the CPU usage of
Griffin is around 45%. However, the CPU usage of the other
two systems is around 85%, which is around twice Griffin’s.
Therefore, we conclude that the complexity of Griffin is low.

After testing the system complexity, we will evaluate the
latency of the Griffin. In this part, Mininet is selected as the
platform to build SDN and we use Ryu as the controller of
SDN. The fat-tree structure is selected as the experimental
network topology. Because, on the one hand, the fat-tree struc-
ture is widely used in the data center network, which is the
most common application scenario of SDN. On the other hand,
data centers are the focus of attackers. After that, we use the
iperf (a tool in Mininet) for function expansion and introduce
the collected network traffic datasets into Mininet to conduct
the experiment [44].

The latency defined here is the time it takes for the system
to detect an attack from the moment of attack. More specif-
ically, let tdelay be the system latency, tfeature denotes the

Fig. 7. Time delay of system with multiple test datasets.

Fig. 8. Detection accuracy with various evasion strategies.

time it takes for the feature extractor and the feature mapper
in switches of the data plane. What is more, ttest and tmessage

denote the time taken by the anomaly detector and messaging
to switches, respectively. Therefore, the tdelay is the summary
of those factors: tdelay = tfeature+ttest+tmessage. We use sev-
eral widespread attack datasets to conduct the system latency
experiment. Finally, we get the result showing in Fig. 7, which
is a destiny figure. The peaks of different datasets appear at
the same point of 0.1s, which means the system’s latency for
all attacks concentrates at 0.1s. Moreover, in some particular
cases, the latency is not 0.1s, but not more than 1.5s. These
results indicate that the Griffin has low latency.

D. Detection Accuracy

In this experiment, we evaluate the detection accuracy of
five different NIDSs by measuring the Area Under Curve
(AUC). The NIDS tested here are declared in Section VI-A,
so we will not depict them redundantly. As for AUC, it is
defined as the area enclosed by the coordinate axis under the
Receiver Operating Characteristic Curve (ROC Curve). The
value of this area will not be greater than 1. Since the ROC
curve is generally above the line y=x, the value of AUC ranges
between 0.5 and 1. The closer the AUC is to 1.0, the higher
the authenticity of the detection method; when it is equal to
0.5, the authenticity is the lowest and the detection is similar
to random guess.
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TABLE IV
DETECTION ACCURACY OF GRIFFIN AND BASELINES ON 9 ATTACKS

Fig. 9. Diagram of epoches and epsilon.

Fig. 10. The loss values under different epoches.

As shown in Table IV, the Griffin outperforms among the
five NIDSs in terms of detection accuracy. Firstly, Griffin’s
average AUC value is 0.9254, which is 16%, 6%, and 19%
higher than pcStream2, F_SVM, and F_RF respectively. As
for Suricata, we found its performance is good in SYN Dos
and SSL Renegotiation detection, but it can not detect other
attacks. Additionally, although the AUC value of Griffin in
ARP MitM cases is 0.8048 which is not an excellent value,
it is higher than other NIDSs’ AUC value in the same case.
What’s more, Griffin has an excellent performance in detecting
Fuzzing, Mirai, and SSDP Flood, whose AUC values are 0.99,
0.98, and 0.99 respectively.

Fig. 11. The detection accuracy under different noise scale.

E. Robustness of Detection

To evaluate the robustness of Griffin, we assume that the
attackers know the existence of NIDS. Therefore, they will
try to evade malicious traffic detection, i.e., injecting benign
traffic into malicious traffic. In the experiment, we simulate
the evasion processes by injecting benign TSL and UDP traffic
into five malicious traffic – Fuzzing, Mirai, OS Scan, SSDP
Flood, SSL Renegotiation, and SYN DoS. The reason why
we use TSL and UDP traffic is that those two kinds of traffic
occupy a large proportion of benign network traffic.

More specifically, in our experiment, we mix the benign
traffic and malicious traffic with the proportion of 1:1, 2:1,
3:1, 4:1, 5:1, 6:1, 7:1, and 8:1 for a large amount of benign
traffic (the proportion bigger than 8:1) will reduce the effec-
tiveness of attacks. And we calculate the average of those
experiments’ results, which are displayed in Figure 8. We com-
pare Griffin with F_SVM, because the F_SVM uses features
generated by Griffin and has good performance in the previous
test. According to Figure 8, Griffin has at most 9% of AUC
value decrease. However, the F_SVM has 36% AUC decrease.
For example, the Fuzzing mixed with benign TLS can lead
to 28.7% decrease in AUC value in F_SVM. Therefore, we
conclude that Griffin’s accuracy has a small influence on the
various evasion strategies.

F. Privacy Preserving

In order to protect the data privacy of traffic packets, we
conduct SGDGau optimizer in anomaly detector’s training
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Fig. 12. The result diagram of privacy preserving NIDS based on Mirai dataset.

mode aforementioned. Therefore, we will experiment with the
effectiveness of this method and its impact on the prediction
of the system based on the Mirai dataset.

1) Privacy Preserving Setup: As described in Algorithm 2,
we add Gaussian Mechanism to the SGD optimizer in the
training mode’s output layer. We will compare the prediction
accuracy of the system before and after using the Gaussian
Mechanism to research whether SGDGau will impact the
performance of Griffin.

In this section, we will set up some concrete parameter
values of this privacy-preserving method. Firstly, the overall
privacy loss (ε, δ) is calculated from the noise level, the sam-
pling ratio of each lot q = L/N (so each epoch consists of 1/q
batches), and the number of epochs E (so the number of steps
is T = E/q). After that, we determine the target δ = 10−5

in our experiments. Additionally, we get Fig. 9 through com-
puting the value of ε as a function of the training epoch E.
When E = 400, the value is 15.635. Therefore, we achieve
(15.635, 10−5)-differential privacy.

Based on the parameters set above, we will explore the
training loss of the output layer of the anomaly detection and
the impact of some essential parameters on detection.

2) Implementation of SGD With Gaussian Mechanism:
Using the parameters mentioned above and a low Gaussian
noise scale to conduct experiments, we obtain the loss curve.
Fig. 10 depicts the loss values under different epoch with six
different datasets: Mirai(loss_mirai), SYN DDoS (loss_syn),
SSL Renegotiation (loss_ssl), SSDP Flood (loss_ssdp),
Fuzzing (loss_fuzzing) and Active Wiretap (loss_active). No
matter which datasets are tested, the loss values are small,
which is close to 0. That is to say, the training with
SGDGau optimizer is successful in gaining a detection model.
Moreover, this system can preserve privacy without losing the
data set’s original training features.

According to the Algorithm 1 aforementioned, we ques-
tion that the increase in the Gaussian noise scale in the SGD
optimizer may affect the effect of Griffin system training,
including system accuracy and privacy protection efficiency.
Therefore it is necessary to conduct an analysis experiment
and gain the balance between the system accuracy and pri-
vacy protection efficiency. To analyze this problem, We use
the noise scale parameter as an independent variable and the
prediction accuracy of the system as a dependent variable to
evaluate the system’s performance. As shown in Fig. 11, no

matter which noise scales are selected to evaluate the system,
the production accuracy is always around 97%—comparing
with the production accuracy of the system without Gaussian
Mechanism before (98%). Therefore, we conclude that the
noise scale of Gaussian Mechanism in this system does not
affect the prediction accuracy of the Griffin. That means we
can ensure the best privacy efficiency and system accuracy.

Finally, we get Fig. 12, which illustrates the final process
– threshold selection (here we take the Mirai intrusion dataset
for example).To find a threshold that results in an acceptable
True Positive Rate (TPR), False Positive Rate (FPR), and False
Negative Rate (FNR), firstly, we get the RMSE values for
the training set (all benign samples). After that, we make a
comparison between the malicious samples and benign sam-
ples distributions. Finally, we select the threshold by using
the RMSE value where the probability of getting a higher
benign value lower than our requirement. For the Mirai intru-
sion dataset, we set the threshold in detection mode as 100.
Therefore, the scattered red dots indicate a network attack.
In addition, from the scattered point distribution in the fig-
ure, we can also make a detailed analysis of the attacker’s
behavior. For example, the gray part at the beginning of the
image illustrates that the attacker is opening the attack channel.
Moreover, the black scattered dots indicate that the attacker
is scanning the intrusion object. At the orange-red part, the
attacker is invading the intrusion object and finally launches a
DDoS attack.

VII. CONCLUSION

In this paper, we develop Griffin, a real-time NIDS in SDN
that utilizes statistic features of traffic packets via an ensemble
of autoencoder neural networks to enable zero-day detection.

Griffin consists of four parts: packet capture, feature extrac-
tor, feature mapper, and anomaly detector. In particular, we
first use the feature extraction window with a damping param-
eter in the feature extractor to extract the flow-level statistic
features, which can precisely illustrate sequential information
of the traffic packet. Therefore, the Griffin can detect zero-
day attacks and achieve robustness. Secondly, in the feature
mapper, we use the Hierarchical Clustering Algorithm to map
the features into sub-instances to reduce the dimension of
features. Furthermore, we create an ensemble of autoencoder
neural networks to reduce the feature complexity. Therefore,
Griffin achieves the goal of real-time detection and low latency.
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Finally, we add noise to parameters in the anomaly detector to
protect the dataset privacy in the training period. Specifically,
we use Gaussian Mechanism to add noise into the parame-
ters in the training period, making it difficult for attackers to
deduce users’ privacy information from the model’s param-
eters.In our model, we achieve the goal of gaining both the
best privacy efficiency and excellent accuracy simultaneously,
which is a challenging issue in differential privacy framework
establishment.

Extensive experimental evaluations and statistical analyses
validated the effectiveness and privacy protection of Griffin.
We compare the Griffin with some traditional algorithms and
state-of-art solutions. Our results show that Griffin achieves
at most 19% improvement of AUC, while achieving at most
40% improvement of complexity. Even in the situation with
evasion, the Griffin has just at most 9% decrease of AUC,
which is a good performance compared with other solutions.
Finally, we use the Gaussian mechanism in the SGD optimizer
in model training. According to the test, the system prediction
accuracy is 97%, which is only a lower 1 percentage than
before. It proves that this data privacy protection mechanism
does not affect the system detection accuracy.
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