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Abstract—Non-cryptographic mobile wireless device authenti-
cation based on channel signature has aroused extensive atten-
tion. This technology uses the mobile device’s physical character-
istics to mark and verify its identity, and can be used to detect
impersonation attacks and information forgery attacks. Channel
State Information (CSI) has been used to generate fine-grained
channel signatures. However, there are two sticking points in
using CSI-based signature for authentication in association phase.
The first is that the channel state will change as the device moves,
which means that the local authenticator should be updated
in real time to adapts to the latest channel state. The second
is that the time complexity of authentication should be small
enough to do packet-level authentication in association phase
and detect attackers in time. In this paper, we propose a CSI-
based authentication scheme, which can authenticate mobile
devices at the packet level. Further, we provide an packet-level
authentication framework based on neural networks. It uses
a simple real-time authenticator update method to keep the
authenticator valid. What’s more, an ensemble of small-scale
autoencoders are used to build the authenticator. It has been
shown to significantly reduce the authentication’s time complexity
while maintaining the accuracy, providing the possibility for
packet-level authentication. The evaluation shows that the packet-
level framework can authenticate legitimate mobile devices with
95.19% accuracy and filter out attackers with even greater
accuracy, which has higher time efficiency than traditional large-
scale neural networks.

Index Terms—Packet-level mobile device authentication, chan-
nel state information, physical layer signature, autoencoder,
ensemble learning

I. INTRODUCTION

The number of mobile users around the world has soared
with the rapid development of wireless communication tech-
nology, and the coverage area of wireless correspondence in-
frastructure has increased quickly to satisfy people’s needs[1].
Besides, the popularization of mobile devices such as smart
phones and laptops helps the wireless networks be widely used
in many important businesses such as financial transactions
and business management. However, also more and more
attackers use unauthorized mobile devices to invade wireless
networks and violate the valid users, causing serious losses
[2]. For most attackers, the first step is often to intercept radio

messages and gain the identity information of valid users.
Using the identity information, the attacker can pretend to be
a valid user and launch further attacks (such as information
forgery attacks and DDoS attacks [3]). The cryptographic
mobile device authentication technologies in 802.11i have
always been the main technologies to prevent these attacks,
but the new attack scheme shows that it is not reliable [4, 5].
Also, they will cause large hardware costs and time overhead.

Recently, many non-cryptographic authentication technolo-
gies based on channel signature have been proposed and
received widespread attention [6–11]. These technologies
identify devices with the physical layer features, making it
more difficult to launch attacks with unauthorized devices.
Commonly used channel signatures base on Received Signal
Strength (RSS), Channel Impulse Response (CIR) and CSI.
RSS and CIR provide coarse-grained channel information
on a single frequency point, while CSI presents fine-grained
channel information. CSI is composed of the amplitude and
phase of multiple subcarriers used in orthogonal frequency
division multiplexing (OFDM). Different from cryptographic
authentication, these technologies can authenticate and filter
packets in the underlying hardware, and have higher security
because physical layer signature is difficult to forge.

The basic authentication method for these technologies is
use authenticator to perform pattern recognition between local
signatures and the new signature. It must be noted that the
mobile device is different from the fixed device because
the channel state of the mobile device will change quickly.
But this change is numerically continuous. [6] confirmed the
possibility of CSI-based mobile device authentication. They
measured the CSI of two mobile devices, and calculated the
correlation coefficients between adjacent CSI measurements.
The correlation coefficients of the same device are close to
1, while the correlation coefficients of different devices are
distributed in [-1,0.2]. However, there are still two problems
that cannot be ignored when using channel signatures to
authenticate mobile devices:

• The channel state of the mobile device changes with

78

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W)

978-1-6654-3950-3/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN-W52860.2021.00024

20
21

 5
1s

t A
nn

ua
l I

EE
E/

IF
IP

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 D

ep
en

da
bl

e 
Sy

st
em

s a
nd

 N
et

w
or

ks
 W

or
ks

ho
ps

 (D
SN

-W
) |

 9
78

-1
-6

65
4-

39
50

-3
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
D

SN
-W

52
86

0.
20

21
.0

00
24

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 26,2022 at 13:39:11 UTC from IEEE Xplore.  Restrictions apply. 



the device’s movement, which means that we cannot
expect that the authenticator generated with the original
channel signatures can always be valid in subsequent
authentication.

• The receiving rate of packets may reach the millisecond
level. For complex authenticators, their generation and
execution time efficiency cannot match with the receiving
rate of packets. Thus, they may not authenticate the
device at the packet level.

These problems bring huge challenges to the use of channel
signatures in mobile wireless device authentication. In this
paper, we try to use a simple authenticator update method to
ensure that the local authenticator always matches the wireless
channel state. The basic idea is updating the authenticator with
the new legal signatures during authenticating. Further, the
packet-level framework uses multiple small-scale autoencoders
rather than a large-scale neural network. The former has
significantly lower time complexity than the latter, making it
possible to perform packet-level authentication.

The main contributions of our work are as follows:

• We propose a packet-level mobile wireless device authen-
tication scheme based on channel signature, and design
an packet-level authentication framework to carry out the
authentication. It generates signature based on CSI and
uses neural networks for authentication.

• We present a simple authenticator real-time update
method to improve the performance of the authentication
framework.

• We design an authenticator consisting of an ensemble of
small-scale autoencoders in the packet-level framework.
The theoretical analysis is used to prove that our design
can lessen the time complexity of the authenticator.

• We conduct the experiments in the laboratory and evalu-
ate the packet-level framework about accuracy and time
efficiency.

The rest of the paper is organized as follows. Section
2 introduces related work, Section 3 presents the whole
authentication framework and the implementation of each
part. In Section 4, we show the experimental results and the
performance evaluation of the packet-level framework. Finally,
we provide the conclusion in Section 5.

II. RELATED WORK

In recent years, researchers have proposed various non-
cryptographic device authentication schemes based on physical
layer signature. [7] found that the packets’ timing information
relates to the hardware and clock skew of devices closely, and
extracted statistical features from the timing information as the
device hardware signature.

[8] used multi-CIR to authenticate wireless devices, and
proposed an enhanced multi-CIR authentication scheme to
further improve the performance. In [9], the authors made a

research on the RSS-based authentication techniques, and sum-
marized several RSS-based authentication frameworks suitable
for large-scale critical infrastructure security system. CSI has
also used to generate physical layer signature [6, 10, 11].
It contains more fine-grained channel information than RSS
and CIR, which can achieve better performance. Besides, CSI
can be easily obtained from 802.11a/g/n devices while the
collection of CIR depends on special equipment [12]. [6]
provided different authentication frameworks for both fixed
devices and mobile devices. In this paper, mobile devices
are authenticated by comparing the correlation coefficient of
adjacent CSI measurements with a given threshold. [10] used
Convolutional Neural Network (CNN) to implement authen-
ticator, and [11] employed a trained Generative Adversarial
Neural Network (GAN) to authenticate wireless devices.

However, most of the authentication technologies ignored
the impact of device mobility and used fixed authenticator
[10, 11]. [6] used the correlation between adjacent CSI mea-
surements for authentication rather than a fixed authenticator,
but this rough judgment dropped the accuracy rate below
90%. Our packet-level framework uses a simple authenticator
update method to ensure that the authenticator matches with
the real-time channel state. Also, the authenticator is composed
of an ensemble of small-scale autoencoders, which has less
complexity than large-scale neural network used in [10, 11].

III. PACKET-LEVEL AUTHENTICATION FRAMEWORK

In this section, we present the packet-level authentication
framework, including packet preprocessor, signature generator
and authenticator. We also detail the implementation of the
signature generator and authenticator. Further, we analyze the
time complexity of the authenticator theoretically.

A. Framework Overview

The packet-level mobile device authentication framework is
an authentication module that works on the underlying hard-
ware. It uses the CSI measurements collected from received
packets to generate channel signatures and perform authenti-
cation and packets filtering. This framework has two working
phases, including the training phase and the authentication
phase.

The framework consists of the following three parts:

• Packet Preprocessor: It deals with receiving new pack-
ets and extracting CSI measurements.

• Signature Generator: It is responsible for the prepro-
cessing of CSI measurements, which mainly includes
noise weaken and partition. After preprocessing, it sends
the sub-signatures to the authenticator.

• Authenticator: It handles the authentication and the
update of internal neural network.

Most popular mobile devices using OFDM (such as 4G de-
vices and 802.11a/g/n devices) supports the measurement and
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Fig. 1. The packet-level authentication framework

extraction of CSI. Thus, the available commercial hardware
can work as the packet preprocessor, which is not our focus.

The rest of this section focuses on the design of the signature
generator and authenticator. Please note that, by default we
have collected enough valid signatures belonging to a mobile
device before authenticating this device. This can be done.
[6] provided a user profile generator, which actively collects
CSI measurements from users and uses K-means algorithm to
determine whether the measurements are collected from the
attackers. Therefore, we can build a valid signature set for
authenticator training before authentication. The signature set
can be obtained by performing outlier elimination and low-
pass filtering of the CSI measurements in the time domain,
instead of using the signature generator we gave in the next
sub-section. [6] details the method.

Here is a workflow to show the framework clearly:

• Training Phase: After building a valid signature set for
the target mobile device:
1) The signature generator uses the statistics of local

signature set to initialize itself. Then, it evenly di-
vides each signature into sub-signatures and sends
them to the authenticator.

2) The authenticator receives the sub-signatures and
uses them to train the neural network.

• Authentication Phase: When the packet preprocessor
receives a new packet:
1) The packet preprocessor sends the CSI measurement

to the signature generator.
2) The signature generator first preprocesses the CSI

measurement and generates a signature, then divides

it into equal length sub-signatures.
3) After receiving the sub-signatures, the authenticator

send them to the trained neural net and outputs
the execution result. The authenticator then judges
whether the authentication is successful according to
the result. If successful, it updates the neural net.

B. Signature Generator

CSI measurement reflects the channel response of the
wireless channel. The packet-level framework only uses the
amplitude of the CSI measurements to generate signatures.

The environment noise will reduce the accuracy of the
framework, and the preprocessing of the CSI measurements is
a significant part in the framework. According to surveys, the
conventional preprocessing methods include time/frequency
domain filtering and de-mean. The above methods are imprac-
tical in terms of memory, which are not suitable for packet-
level authentication.

We propose a novel preprocessing scheme, which doesn’t
need to store current CSI measurements and perform simple
calculations. Inspired by the damped increment statistics [13],
we define a time decay factor to adjust the effect of the
historical CSI measurements on the new measurement. The
larger the time interval, the smaller the effect, so the signature
always represents the latest channel state. We also proposed a
standard deviation decay factor, which is positively associated
with the standard deviation. Therefore, the CSI measurements
will have a large effect on the new measurement in the
subcarriers with large deviation, which helps to smooth the
amplitude of these subcarriers.

Let C = {C1, C2, ..., CN} be the CSI measurement of a
packet, where N is the number of subcarriers. The generator
stores N tuples Mi = (K,LSi, QSi, σi, tlst)(i = 1, 2, ..., N),
where K is the number of packets received, LSi is the linear
sum of Ci, QSi is the quadratic sum of Ci, tlst is the latest

packet’s received time and σi =

√
| QSiK −

(
LSi
K

)2 | is the
standard deviation of Ci. The decay factors are defined as:

dλ1
(∆t) = 2−λ1∆t (1)

dλ2
(σi) = 2

−λ2σi (2)

where λ1 is the time decay coefficient, ∆t is the arrival time
interval between the previous packet and the latest packet, λ2

is the standard deviation decay coefficient.

In the training phase, we initialize Mi(i = 1, 2, ..., N) with
the statistics of the local signature set. The details is shown as
follows. The initial value of K is 1, LSi is the mean of Ci,
QSi is the mean of C2

i , σi is the standard deviation of Ci and
tlst is the receiving time of the last packet.

In the authentication phase, when there is a new CSI
measurement, the signature generator completes the following
tasks:

80

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 26,2022 at 13:39:11 UTC from IEEE Xplore.  Restrictions apply. 



1) Calculate dλ1
and dλ2

, let ε = dλ1
dλ2

2) Calculate new tuples: M ′i = (K ′, LS′i, QS
′
i, σ
′
i, t
′
lst) (i =

1, 2, . . . , N), where K ′ = εK+ 1, LS′i = εLSi+Ci and
QS′i = εQSi + C2

i

3) Calculate the signature: S = {LS
′
1

K′ ,
LS′

2

K′ , ...,
LS′

N

K′ }
4) Return M ′i and the sub-signatures {S1, S2, . . . , SI} ob-

tained by evenly dividing the signatures into I pieces

It is important to note that the old tuple stored in the genera-
tor cannot be directly overwritten by the new one, because the
new CSI measurement may belong to the attackers. However,
the generator should only reflect the statistics of the true
device, so we will only overwrite it after the new one has
been proved to be valid.

C. Authenticator

The authenticator is the core of the packet-level framework.
The basic structure of the internal neural network is an
ensemble of small-scale autoencoders. An autoencoder is a
neural network that extracts low-dimensional feature from
input and then reconstructs it. It is composed of three layers
of neurons that are fully connected. The neurons’ number in
the middle layer represents the dimension of the compressed
feature. When the data set used for training has similar
distribution, the autoencoder will improve its reconstruction
ability as the number of training increases, and finally the
reconstruction ability will be maintained at a stable level. In
the authenticator, we use the root mean square error (RMSE)
of the input and output to quantify this reconstruction ability. If
the authenticator receives a new signature from the true device,
it has a good ability to reconstruct the signature, and the RMSE
is close to 0; on the contrary, if it receives a signature from an
attacker, it cannot be reconstructed, and the RMSE is going
to be large.

In practical design, we build the authenticator with a two-
layer autoencoder network, as shown in Fig. 1. The first layer
named split layer, which is composed of I autoencoders. The
i-th auto-encoder in split layer is mapped to Si. This layer
is responsible for checking the reconstruction ability of each
sub-signature, and its reconstruction error RMSEs will be sent
to the next layer. The second layer named merged layer, which
is composed of only one autoencoder. The RMSE of the input
and output in this layer will be used as the final decision for
authentication.

Before training the authenticator, we initialize each au-
toencoder with random numbers from the distribution
U
(
−1

dim(x) ,
1

dim(x)

)
, where x is the input. We detail the

authenticator’s implementation in both the training phase and
the authentication phase.

• Training Phase: L1 and L2 are used to represent the
split layer and the merged layer. θi represents the i-th
autoencoder in L1 and θ0 represents the autoencoder in
L2. The authenticator’s workflow is as follows:

1) Initialize vector I-dimensional vector v as the input
of θ0

2) Normalize Si(i = 1, .., N)
3) For the θi in L1:

(a) Forward propagation: input Si into θi and obtain
the reconstruction result S′i

(b) Backward propagation: use stochastic gradient de-
scent (SGD) algorithm to update θi

(c) Calculate RMSE (Si, S
′
i) and save it in the i-th

value of v
4) Normalize v
5) Forward propagation: input v into θ0 and obtain the

reconstruction result v′

6) Backward propagation: use SGD to update θ0

• Authentication Phase: The authenticator’s workflow in
this phase is as follows:
1) Initialize vector I-dimensional vector v as the input

of θ0

2) Normalize Si(i = 1, .., N)
3) For θi in L1:

(a) Forward propagation: input Si into θi and obtain
the reconstruction result S′i

(b) Calculate RMSE (Si, S
′
i) and save it in the i-th

value of v
4) Normalize v
5) Forward propagation: input v into θ0, obtain the

reconstruction result v′ and calculate RMSE (v, v′)
6) Judging:

(a) RMSE(v, v′) < threshold: update L1, L2 (us-
ing SGD) and the tuple of the signature generator

(b) RMSE(v, v′) ≥ threshold: packet authentica-
tion fails

D. Complexity

In this part, we show the time complexity of the packet-level
framework in both the training phase and the authentication
phase. Then we compare the time complexity of integrated
authenticator (an ensemble of small-scale autoencoders) and
non-integrated authenticator (single large-scale autoencoder).

Before calculating the complexity, let’s review the variables
that will be used. N is the number of subcarriers, I is the
number of sub-signatures (also the number of autoencoders in
the split layer). Thus, N/I and I respectively represent the
input dimension of the autoencoder in L1 and L2. In addition,
we use α to represent the dimensionality reduction ratio of the
middle layer in an autoencoder, thus the neurons’ number in
the middle layer of the autoencoder in L1 and L2 are αN/I
and αI .

We first calculate the time complexity of the signature
generator. The single operation’s complexity in work steps (1)
and (2) is O (1) and the iterations is N , so the complexity
is O (N). Work step (3) performs N division operations, so
the complexity is O (N). The complexity of work step (4)

81

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on October 26,2022 at 13:39:11 UTC from IEEE Xplore.  Restrictions apply. 



10 30 50 70 90 110 130 150

Time Decay Coefficient

0.86

0.88

0.9

0.92

0.94

0.96

T
P

R

(a) λ1(low-resolution)

76 78 80 82 84 86 88 90

 Time Decay Coefficient

0.95

0.9505

0.951

0.9515

0.952

T
P

R

(b) λ1(high-resolution)

0.05 0.07 0.09 0.11 0.13 0.15

Standard Deviation Decay Coefficient

0.942

0.944

0.946

0.948

0.95

0.952

T
P

R

(c) λ2(low-resolution)

0.09 0.095 0.1 0.105 0.11 0.115 0.12

Standard Deviation Decay Coefficient

0.945

0.946

0.947

0.948

0.949

0.95

0.951

0.952

T
P

R

(d) λ2(high-resolution)

Fig. 2. The TPR under different decay coefficients

is O (1). Therefore, the overall complexity of the signature
generator is O (N +N + 1) = O (N).

For a single autoencoder, we assume that its input dimension
is u and the dimensionality reduction ratio of the middle
layer is α. In the forward propagation, the activation of the
middle layer the output layer both requires u · αu = αu2

calculations. Therefore, the complexity of a forward prop-
agation is O

(
αu2

)
= O

(
u2
)
. The backward propagation

has the same complexity. Before calculating the complexity
of the authenticator, we make the worst plan for that the
autoencoders in the split layer operate serially. Therefore,
in the training phase, the complexity of the authenticator is
O
(
N2
/
I + I2

)
. Let N = βI , where β is the length of

the sub-signature. If we limit the size of the autoencoder in
the split layer to 6 and below, then β can be regarded as a
constant. Thus the complexity is O

(
β2I + I2

)
= O

(
I2
)
. In

the authentication phase, we consider the worst case that all
packets are authenticated successfully and the authenticator
needs to be updated every time. Then the complexity of the
authenticator is the same as the training phase.

Therefore, the time complexity of the framework is
O
(
N + I2

)
= O

(
I2
)
. If we use a large-scale autoen-

coder instead of the ensemble, the complexity becomes
O
(
N +N2

)
= O

(
N2
)
. It can be seen that the integrated

design reduces the complexity from O
(
N2
)

to O
(
I2
)
.

IV. EXPERIMENT AND EVALUATION

In this section, we evaluate the performance of the packet-
level authentication framework in terms of its accuracy and
time efficiency. We first describe the experiments and datasets,
followed by selecting the parameters. Then, we show the
authentication accuracy and time efficiency of this framework
under different size of autoencoder. Then, we present the
validity of the authenticator update method. Finally, we make
a comparison between different machine learning algorithms.

1 2 3 4 5
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Fig. 3. The TPR and FPR (shown as 1-FPR for the convenience of
observation) under different specifications of authenticator when λ1 = 79
and λ2 = 0.105

TABLE I
AUTHENTICATION PERFORMANCE IN 5 SPECIFICATIONS

Metric The Number of Specification

1 2 3 4 5

TPR 97.05% 96.11% 95.34% 95.19% 90.04%
FPR 0 0 0 0 0

A. Experiment Setup and Metrics

The test environment is a complex space with 16 tables,
2 cabinets and 16 desktop computers. It is nosier than isola-
tion environment and the movement of people and objects
can cause disturbance on the datasets. We use an ETTUS
USRP B210 (single receiving antenna, 20MHz) as the packet
preprocessor. It captures the packets sent by the mobile device
under authenticating, then extracts source MAC and CSI
measurements. Several USRPs (single transmitting antenna)
work as the mobile devices to be authenticated are located in
the external and internal corridors of the laboratory. They move
back and forth at the normal pace of human and send packets
at a speed of 100 pkts/sec. The packet preprocessor extracts
the CSI measurements containing 48 subcarriers’ amplitude
from each packet and forms a mapping pair with its MAC.
We obtain more than 121,000 CSI measurements from three
different mobile devices. They are collected in different time
periods during a day, and the duration of measurement in each
time period exceeded 3 minutes.

We select three metrics for the evaluation: true positive
rate (TPR), false positive rate (FPR) and accuracy. TPR is
calculated as TP/(TP + FN) , where TP is the number
of true positive samples and FN is the number of false
negative samples; FPR is calculated as FP/(FP + TN) ,
where FP is the number of false positive samples and TN
is the number of true negative samples; accuracy is calculated
as (TP + TN)/(TP + FP + TN + FN) .

B. Select the Decay Coefficient

Fig. 2a shows the TPR when λ1 changes from 10 to 150
(λ2 = 0.1), with a resolution of 10. We can see that the TPR
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reaches the top when λ1 = 80, so we increased the resolution
to 1 and re-measured in [76, 90] (Fig. 2b). It can be seen from
Fig. 2b that the TPR reaches peak when λ1 = 79, so we set it
to 79 in the following test. We use the same analysis method
to select λ2. The TPR curve in Fig. 2d reaches top in [0.10,
0.11], and we choose the median value 0.105.

C. Authentication Performance

In this part, we evaluate the authentication performance
(including the accuracy and time efficiency) of the packet-level
framework under different autoencoder specifications. We set
the threshold of the authenticator to 0.10, which is an empirical
value obtained in experiments.

We select 5 different specifications for evaluation. The I of
these 5 specifications are 1, 2, 4, 6, and 12. Fig. 3 compares
the TPR and FPR with different specifications (for clearer
observation, we use 1-FPR to draw the figure). Table 1 give the
results. It is worth noting that FPR is close to 0 in experiments,
so we focus our attention on TPR. We can see that the au-
thentication capacity of the system increases as autoencoder’s
scale increases. The recognition ability is the best when the
authenticator uses a single large-scale autoencoder, but the
TPR is only 1.86% higher than small-scale autoencoder with
I = 6. so we let I = 6 for implementation.

We prove the effectiveness of the authenticator update
method used in the authentication framework. We conduct
two tests using the same data set, one with the authenticator
update method and the other without. For each test, we divide
the CSI data set into 7 sample sets according to the time of
collection, which has 3000 CSI samples collected successively.
Then, we get the TPR of each sample set and plot them in Fig.
4. It shows that the authenticator update method can greatly
improve the performance of the authentication framework.
The authenticator update method ensures that the authenticator
matches with the current channel state.

To evaluate the time efficiency, we code the packet-level
framework in C and perform it on a single-core Ubuntu virtual
machine. We test the authenticating time of each packet with
I = 1 and I = 6. The result is shown in Fig. 5. The per-
packet authenticating time with I = 1 is about 240 usec, while
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Fig. 5. Density plot of the authenticating time for one packet with I = 1
and I = 6

other is about 90 usec. The time efficiency is increased by
2.67 times when small-scale autoencoder is used. Considering
that the USRP only uses 48 subcarriers, the scale of neural
network is relatively small when I = 1. Thus, the time
efficiency improvement is not obvious in our experiments. The
improvement will be more significant when 108 subcarriers are
used.

D. Performance comparison with Different Algorithms

To conduct a more comprehensive evaluation of the packet-
level framework, we implement authentication algorithms
based on SVM, KNN and CNN, and evaluate them with the
data set obtained in our experiments. Fig. 6 and Fig. 7 shows
the accuracy and the time efficiency of different authentication
algorithms, where EAE is the algorithm used in the framework.

It can be seen that only CNN has higher accuracy than
EAE, which reaches 97.13%. However, its authentication time
is 1.8 times longer than EAE, and this gap will be even greater
when using higher-dimensional signature. SVM has a higher
authentication efficiency then CNN, but its authentication
acuracy is only 87.5%.

The result of comparison with different algorithms shows
that the packet-level framework improves the time efficiency
with high accuracy, which has a good application prospect.

There is a significant concern that the authentication lever-
aging CSI is strictly location signature instead of device
signature. When the mobile devices reconnect to the network
after a long period of offline, the authenticator may not tell
who they are. Therefore, we are looking at the device signature
based on CSI and packet time interval, which can authenticate
mobile device and update the authenticator in our framework
at the access phase.

V. CONCLUSION

In this paper, we propose a packet-level authentication
scheme for mobile wireless device based on channel signature,
and provide an authentication framework for implementation.
This framework can be used to authenticate and filter each
packet at the bottom of the device hardware, thereby enhancing
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the security of the wireless network. It uses CSI extracted
from per packet to generate signatures. We present a simple
authenticator update method, which can improve the authenti-
cating performance. For packet-level authentication, we design
an authenticator with low time complexity. To evaluate the
performance of the packet-level framework, we programmed
it and completed the mobile device authentication experiments
in the laboratory. The results show that the framework can
authenticate mobile device with high accuracy, and has a
significant improvement in time efficiency compared with
large-scale neural network.
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