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Abstract—Video synopsis aims at providing condensed representations of video data sets that can be easily captured from digital

cameras nowadays, especially for daily surveillance videos. Previous work in video synopsis usually moves active objects along the

time axis, which inevitably causes collisions among the moving objects if compressed much. In this paper, we propose a novel

approach for compact video synopsis using a unified spatiotemporal optimization. Our approach globally shifts moving objects in both

spatial and temporal domains, which shifting objects temporally to reduce the length of the video and shifting colliding objects spatially

to avoid visible collision artifacts. Furthermore, using a multilevel patch relocation (MPR) method, the moving space of the original

video is expanded into a compact background based on environmental content to fit with the shifted objects. The shifted objects are

finally composited with the expanded moving space to obtain the high-quality video synopsis, which is more condensed while

remaining free of collision artifacts. Our experimental results have shown that the compact video synopsis we produced can be

browsed quickly, preserves relative spatiotemporal relationships, and avoids motion collisions.

Index Terms—Video synopsis, surveillance, optimization, patch relocation

Ç

1 INTRODUCTION

WITH the rapid development of the digital-media
industry, the huge video data sets captured by

various resources such as digital cameras, webcams,
cellular phones, PDAs, and surveillance cameras, are
growing at an explosive speed. It is time consuming to
review entire, lengthy videos, such as those captured by
surveillance cameras, to find interesting objects, since most
surveillance videos contain only a limited number of
important events. Thus, end users often prefer briefer,
condensed representations of long video sequences, fast
forwarding to important content and dynamic objects in
surveillance videos. This is generally referred as video
synopsis or abstraction [1], [2], [3], [4], [5]. In addition, it is
memory intensive to store and transfer the entire captured
videos while retaining less important objects; thus, video
synopsis can effectively reduce memory storage for large
video data sets. Furthermore, video synopsis techniques can
be widely used as practical video editing toolkits, to
abstract videos captured in video games, video crowd
animation, and video conferences. Currently, video synop-
sis is an active research topic in the computer graphics and
computer vision communities.

To date, there is no unified standard for measuring if an
output abstracted video is a good representation of an input
video, since whether a synopsis is good or bad is highly
subjective and depends on the application. In general, we

outline three main objectives for our video synopsis: the
spatiotemporal redundancies of the input video should be
reduced as much as possible; the chronological consistency
of important events should be kept; the visual artifacts, such
as flickering or moving object collisions, should be avoided
in the final synopsis. Efficient browsing of the condensed
video synopsis is also important, especially for huge video
data sets such as surveillance videos.

Many approaches have been proposed for condensing
the volume of videos. Most of them are based on video
frames, where image frames are treated as the basic
building blocks that cannot be decomposed. In video
abstraction methods [1], [3], [6], [7], either key frames were
selected according to some importance criteria or video
clips with lower interest or activity were skipped. One
typical approach [8] used a time-lapse method to generate a
summary of a very slow process, such as the growth of a
flower over an entire day. These methods miss fast
activities occurring in skipped frames. To reduce less
important spaces in the video volume, Kang et al. [2]
extracted informative space-time video portions, and then
montaged these portions together. However, in this way,
visible seams may appear at the boundaries between
different portions. More recently, Pritch et al. [4], [9], [10]
proposed an object-based video synopsis approach for
surveillance videos, in which objects are shifted along the
time axis. Although this approach is capable of eliminating
temporal free space, it produces unpleasant collisions
between moving objects in the condensed video, especially
for videos with narrow motion space.

In most site-seeing surveillance videos, we often observe
large amounts of free space in the scene backgrounds,
where no active objects move at all. Previous work [4]
extracted active objects from the input video and moved
them compactly along the time axis, which can certainly
condense videos in the temporal space. However, when
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there are many objects moving in the same orbit or in
opposite directions, unavoidable collisions among them
occur, which inevitably produces unpleasant artifacts, such
as objects moving across each other. The key observation in
this paper is that the free space in the video background can
be utilized when condensing the video. Based on this
observation, we construct larger virtual motion spaces (i.e.,
multipaths) for moving objects based on the environmental
context, which effectively alleviates the moving-object
collisions produced in previous video synopsis methods.
Thus, the condensed video looks more realistic even in
shorter periods.

Our key idea in this work is to globally shift the active
objects in the spatiotemporal video volume, and then
synthesize a compact background constrained by the
optimized object trajectories to fit the shifted objects. We
propose a global spatiotemporal optimization framework
that shifts active objects in the spatiotemporal space. The
optimization is composed of two cost terms: The data term
is used to preserve activities as much as possible and
prevent objects’ new trajectories from deviating far from
their original ones, and the smoothness term is used to
avoid object collisions and keep the spatiotemporal con-
sistencies and relations of objects as much as possible. We
develop a multilevel patch relocation (MPR) method to
synthesize the compact background, which further expands
the movement space of shifted objects based on the
environmental context, so that visual artifacts such as cars
running on grassland or mutual crossings can be eliminated.
Finally, we seamlessly fuse the shifted objects into the
compact background to produce the final video synopsis.

Our framework presents a compact video synopsis
technique via global spatiotemporal optimization. Using
the synthesized compact background and simple user
interactions, our approach can produce more condensed
video scenes with crowded but noncolliding objects from
input videos containing sparse moving objects, and can be
widely applied in video summarization, video games,
crowd animation design, and interactive media production.
Our work makes the following two main contributions:

. We propose a novel approach for compact video
synopsis in the spatiotemporal domain, which
highly condenses the activity information for sur-
veillance videos, while avoiding visual collision
artifacts between moving objects.

. We introduce a synthesized compact background
which provides a larger virtual motion space for
shifted objects using a MPR method in Markov
Random Field (MRF) networks.

2 RELATED WORK

Here, we review the most related work in video synopsis,
which can be roughly classified as frame-based video
abstraction, object-based video synopsis, and synthesis-
based video summarization. Previous work in patch-based
image editing related to our background-synthesis work is
also outlined.

Frame-based abstraction. There are two basic forms of
video abstracts: Keyframes and video skims. They are both

based on frame selection, where the frames are essential
building blocks that cannot be decomposed. In the key-
frame-based abstraction methods, a set of salient frames are
extracted from the source video. Uniform sampling is the
simplest method for keyframe generation, but it may select
some frames that are not as “key” as desired. Methods for
finding importance criteria to guide the selection process
were proposed in [1], [6], [11], [12]. The fast forward
methods [7], [13] are another kind of keyframe-based
method, which select keyframes uniformly or adaptively,
but they do not preserve time coherence and may result in
unrealistic views. High-level content analysis is also taken
into account in keyframe selection processing [14], [15].
Alternatively, video skims [16], [17] consist of a collection of
video segments extracted from the source video. These
segments are then joined by a cut or a gradual effect.
Although the above two kinds of methods work well in
most situations, they suffer from loss of fast activities
occurring in the skipped frames, and retention of large
empty spaces in natural scenes from the source videos.

Object-based synopsis. Kang et al. [2] explicitly extracted
informative space-time video portions that can be moved
and stitched using first-fit and graph-cut optimizations
which maximizes the amount of visual information. As
optimal boundaries between portions are found, visually
unpleasant seams usually appear between portions that do
not match. Rav-Acha et al. [9] proposed an object-based
approach for video synopsis that is similar to that of Kang et
al. [2]. Both of these methods change the chronological
order of objects, and show several actions at the same time.
The difference is that the latter [9] only moves objects along
the time axis. Pritch et al. [10] extended the latter work [9] to
process always-on videos captured by surveillance cameras
or webcams. The more complete work is presented in [4], in
which they first extracted interesting objects (tubes), then
moved them along the time axis while preserving activities
and local chronological orderings. It can handle always-on
videos and take illumination-varying backgrounds into
account. However, since it processes moving objects only in
the temporal domain, this method cannot fully utilize the
video space in the spatial domain and may produce
collision artifacts when the synopsis is compressed much
or contains more moving objects.

Synthesis-based summarization. The synthesis-based video
summarization approach was proposed in [5], which
defined a bidirectional similarity measure to decide how
visually similar a summary was to the underlying source
video. A good summary contains as much visual informa-
tion from the source as possible, and introduces as few new
visual artifacts as possible. The best-matching patches in the
source and summary are found and then go through a
weighted average process to obtain the final summary.
Since the nearest neighboring patches need to be computed
and stored, the algorithm is time and memory intensive.
Barnes et al. [18] and Xiao et al. [19] proposed fast patch
match methods which can accelerate the nearest neighbor
search to a certain extent, but the synthesis-based approach
is still not scalable for long videos.

Patch-based image editing. Like pixels, patches can also be
used as the basis for analyzing and editing images. Features
are either extracted from patches for further analysis, or the
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patch is directly operated on for image editing. It is often
more effective to work on patches than on pixels. Kwatra et
al. [20] proposed a patch-based texture optimization frame-
work which improves texture quality compared to pixel-
based methods [21]. Xiao et al. [22] obtained effective
upsampling results by combining patch-based texture
synthesis and joint bilateral filter. Image and video
completion methods [23], [24], [25] also work on the patch
level. Cho et al. proposed a patch transformation method
[26] that provides image editing tools for image reorganiza-
tion, object removal, image retargeting, and so on. More
recently, Cho et al. [27] edited images by working on
overlapped patches, and a patch jittering postprocessing
step was proposed to improve the quality of the edited
image. In our work, we improve the method of [27] to
synthesize the compact background.

3 OVERVIEW

Fig. 1 illustrates the main motivation of our proposed
approach. Given an input video (Fig. 1a), visual motion
collisions occur when shifting objects along the temporal

axis (Fig. 1b). Using the spatial free space observed in most
site-seeing surveillance videos, we attempt to shift active
objects in both the spatial and temporal domains (Fig. 1c). In
this fashion, we not only condense temporal free space, but
also make full use of spatial free space for movements,
which can effectively avoid visual artifacts, such as moving-
object collisions, producing high-quality video synopsis
results with scene-path context.

Our video synopsis framework is composed of four main
stages. In the first stage, we analyze the input video and
explicitly extract the background and moving objects out of
the video. In the second stage, we shift active objects in the
spatiotemporal video volume by using the global spatio-
temporal optimization, which computes new positions in
the synopsis for clustered objects. In the third stage, using a
MPR method, we synthesize a compact background with
the scene-path context to fit the clustered objects. Finally,
we seamlessly fuse objects into the synthesized compact
background using a gradient-domain editing tool.

Fig. 2 shows the main advantages of our proposed
approach. Fig. 2b shows that shifting objects only in the
temporal domain leads to heavy object collisions (the circled
cars, for example). Our global spatiotemporal optimization
effectively eliminates these collisions (Fig. 2c). Since the
original video background (Fig. 2d) may not be compatible
with the shifted objects (cars running out of the road in
Fig. 2e), we compute a larger virtual motion space by
synthesizing a compact background to remove these
inconsistencies (Fig. 2f). Finally, the shifted objects are
seamlessly composited into the compact background,
producing an appealing video synopsis (Fig. 2g).

4 COMPACT VIDEO SYNOPSIS

In this section, we first analyze the input video to extract the
background and moving objects. Then, we describe our
global spatiotemporal optimization in detail. Finally, we
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Fig. 1. (a) Input video. (b) Temporal shift of objects, reducing video
length by eliminating temporal free space but producing collisions
among the moving objects. (c) Our global shift optimization avoids
motion collisions between objects

Fig. 2. (a) Input video (total running time: 3 mins) with two interesting objects marked. (b) Temporal shifting [4] produces collisions if compressed too
much (total running time: 23s) (two marked cars as example). (c) Objects shifted globally to avoid such artifacts. (d) The original extracted
background. (e) Shifted objects not compatible with the original background. (f) The synthesized compact background. (g) Shifted objects
composited into the compact background, producing an even shorter synopsis (total running time: 15s) without visual artifacts.
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present the compact background synthesis using the scene-
path context, and the method to seamlessly fuse the
clustered moving objects into the compact background.

4.1 Video Analysis

We use a space-time volume Iðx; y; tÞ to represent an input
video I, where ðx; yÞ is the spatial coordinate of a pixel in
frame t, satisfying ð1 � x �W Þ, ð1 � y � HÞ, and ð1 �
t � NÞ. With the input video, we first extract background
B and interesting objects s. Typically, interesting objects are
simply defined as moving objects, such as running cars or
walking people. Sometimes, exceptions may be noted: not
all moving objects are interesting, and not all static objects
are less important. To handle such exceptions, more
sophisticated techniques in pattern recognition [28] can
be incorporated.

Before extracting active objects and synthesizing the
compact background, we first extract the background of the
input video. For most site-seeing surveillance videos, video
frames change due to the entering and exiting of moving
objects and due to varying illumination. The background is
usually static in daily periods. Based on this observation,
we use a temporal median operator over a short period to
extract the corresponding background. The median value of
pixels with the same location ðx; yÞ in a short video clip
makes up the background value of the location. In our
experiments, we compute a background image every
minute (1,800 frames for a 30 Fps video), which can
alleviate the effects of varying illumination. For more
complex situations, such as moving objects covering pixels
over a long duration, we recommend using a shorter
temporal window background estimation method [29].
With the background extracted, the activity measure
�ðx; y; tÞ for pixel Iðx; y; tÞ is defined as the difference
between the pixel and its corresponding background value

�ðx; y; tÞ ¼ kIðx; y; tÞ �Bðx; yÞk; ð1Þ

where Bðx; yÞ is the pixel value at coordinate ðx; yÞ in
background B.

Next, we explicitly detect and extract interesting objects
from the input video. As the objects will be later composited
back into the background using Poisson Video Editing [30],
precise object extraction is not necessary. In our system, we
first subtract the extracted background from the original
frames. Then, we construct a mask of all foreground pixels
with greater absolute differences than a threshold value (10
out of 255 is used). We apply a 2D morphological dilation
on all the mask frames to obtain larger moving masks. The
morphological mask is a circle with a radius of 3 pixels, and
we iterate the dilation three times. If needed, the back-
ground cut by Sun et al. [31] can be used to precisely
segment foreground objects, and is more robust but
computationally more expensive. We connect all object
masks together across frames to construct a 3D tube of
moving object. However, when the objects move fast or
overlap with each other, we perform real-time tracking [32]
to construct object tubes. Fig. 3a shows one frame of input
video, Fig. 3b shows the extracted background and Fig. 3c
shows the extracted moving object.

4.2 Global Spatiotemporal Optimization

The spatiotemporal operator Vs ¼ ðsx; sy; stÞ of interesting
object s, where sx and sy are spatial offsets and st is
temporal offset, shifts the object to position ~s in the synopsis
by ~s ¼ sþ Vs. Most objects are shifted forward along the
timeline, so that the length of synopsis O, denoted by M, is
much shorter than that of the input video. We compute the
optimal new positions for the interesting objects by using a
global spatiotemporal optimization which minimizes the
following Gibbs function

EðVsÞ ¼ EdataðVsÞ þ EsmoothðVsÞ: ð2Þ

The data term is defined on single objects si

EdataðVsÞ ¼
X
si

�
Ea

�
~si
�
þ �Ed

�
~si
��
; ð3Þ

where Ea encodes activity cost, and Ed is spatial distance
cost. The smoothness term is defined on pairs of objects si
and sj

EsmoothðVsÞ ¼
X
si;sj2S

�
�Est

�
~si; ~sj

�
þ �Ec

�
~si; ~sj

��
� �
�
~si; ~sj

�
;

ð4Þ

where,

�ð~si; ~sjÞ ¼
1; if ~si 6¼ ~sj;
0; otherwise:

�
ð5Þ

The smoothness term is the sum of weighted collision cost
Ec and spatiotemporal consistency cost Est. �, �, and � are
weights that can be tuned by users, and their default values
are 2, 5, and 0.5 in our experiments.
Ea favors a synopsis with maximum activities by

penalizing objects moving outside of the synopsis. It is
zero if an object stays in the synopsis as a whole. Otherwise,
it is sum of the activity values of pixels outside the synopsis.

Ea

�
~si
�
¼

X
ðx;y;tÞ2~sinsynopsis

�~siðx; y; tÞ; ð6Þ

where ðx; y; tÞ 2 ~si n synopsis represents pixels belonging to
~si but not the synopsis, and �~siðx; y; tÞ is the pixel activity
value defined in (1).
Ed prevents objects from being shifted far away from

their original trajectories in the spatial domain; otherwise,
objects may scatter anywhere in the synopsis and serious
inconsistencies among them would occur. We define it as
object spatial distance

Ed

�
~si
�
¼ nsi

���~si;x; ~si;y���2
; ð7Þ
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Fig. 3. (a) One frame of input video. (b) Extracted background.

(c) Extracted object.
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where nsi is the number of pixels of object si (this balances
the spatial distance cost against other costs that use all pixels
of an object, and not just one). In Fig. 4, we illustrate the
comparative results with and without using spatial distance
cost Ed, which shows that shifted objects do not drift far
away from their original positions when using the cost.
Ec encodes the collision cost of all pairs of objects. For the

overlapped part of two shifted objects ~si and ~sj, we define
the collision cost as the sum of the products between pixel
activities of two objects

Ec

�
~si; ~sj

�
¼

X
ðx;y;tÞ2~si\~sj

�~siðx; y; tÞ ��~sjðx; y; tÞ: ð8Þ

We see that the collision cost is zero if two objects do not
collide with each other. We shift the objects in both the
spatial and temporal domains, which expands the motion
space for objects and effectively reduces collision artifacts.
Est preserves the spatiotemporal relations of objects:

1) Chronological order should be kept, i.e., objects behind
other objects should not appear in front of them. The cost of
reversing the chronological order of two objects is the sum
of their activities; when the chronological order is kept, the
cost is zero. 2) The spatial relative locations of two objects
should be preserved if they are neighboring each other. The
cost of breaking such relationships is defined as the
difference of their spatial offsets, which is then weighted
by the original distance of the two objects. Let tfsi and tfsj be
the first frames of two objects si, sj. We compute a variable
u ¼ ðtfsi � t

f
sj
Þ � ðtf~si � t

f
~sj
Þ. Then we determine whether the

chronological order of the two objects is broken or not by

�ðuÞ ¼ 0; if u � 0;
1; else:

�
ð9Þ

We determine whether two input objects are neighbor-
ing each other by checking if they share common frames. If
so, we compute the nearest distances of the two objects for
all common frames, from which we find the minimum
distance dðsi; sjÞ; otherwise, dðsi; sjÞ is set as 1. Let �si ¼P
ðx;y;tÞ2si �siðx; y; tÞ be the object’s activity. Then, we define

the spatiotemporal consistency cost as

Est
�
~si; ~sj

�
¼ �ðuÞ � ð�si þ �sjÞ þ ðnsi þ nsjÞ

� expð�dðsi; sjÞ=�stÞ � k
�
~si;x; ~si;y

�
�
�
~sj;x; ~sj;y

�
k2;

ð10Þ

where �st determines the extent of how close the two objects
are, and is set as 40 in our experiments. Fig. 5 shows that
using our spatiotemporal consistency cost Est, the chron-
ological order among objects is preserved. We show in Fig. 6
that the spatial relations among objects are preserved.
�ð~si; ~sjÞ makes (2) regular according to the theoretic

results of [33], which guarantees the equation is graph-
representable. We use the Graph Cuts technique to
minimize (2).

Energy Minimization. We use alpha-beta swap Graph
Cuts method [34] to minimize the global spatiotemporal
optimization given in (2). First, we construct a graph for the
synopsis where each node Ni in the graph corresponds to
an input object si, and the edge Ei;j connects nodes Ni and
Nj. The cost of node Ni is Eað~siÞ þ �Edð~siÞ when assigning
label ~si to it, and the cost of edge Ei;j is ð�Estð~si; ~sjÞ þ
�Ecð~si; ~sjÞÞ � �ð~si; ~sjÞ when assigning labels ~si and ~sj to
nodes Ni and Nj, respectively. With the constructed graph,
the minimum cut of the graph minimizes (2).

For each node Ni, the number of its possible labels is the
number of pixels in the synopsis W �H �M. The label
number is usually too large for efficient computation. For
instance, there are about 109(640� 480� 60� 30) labels for
a 60-second synopsis with a resolution of 640� 480 and FPS
of 30. To speed up the computation, we sample the synopsis
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Fig. 4. Comparative results with and without using Ed. (a) and (b) are
two frames from the input video. (c) Using Ed, the two marked objects
are not shifted far away from their original trajectories and are perfectly
fused into the background. (d) Without Ed, the marked objects are
shifted away from their original trajectories.

Fig. 5. Comparative results with and without using Est. (a) The input
1,200th frame. (b) The input 10,280th frame. (c) Using Est, the two
objects keep their chronological order in the synopsis. (d) Without Est,
the blue object walks in front of the red one, which is not the case.
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pixels in the spatiotemporal space using grids of size 	 ¼ 20
pixels in our experiments, which results in a much smaller
label set W �H �M=	3. For the same-length synopsis, the
label number is 69,120ðð60� 30� 640� 480=203ÞÞ now,
which is still somewhat time consuming.

To further reduce computational cost, we approximate
the global optimization by splitting it into two consecutive
optimizations, which degrades the label space from 3D to
1D and 2D. We first constrain the spatial offsets sx and sy to
be zero and only shift objects along the temporal axis using
temporal optimization. Then, we constrain the temporal
offset st to be zero and shift objects into the spatial free
space using spatial optimization. Now, for the 60-second
synopsis, the spatial shift optimization has only 768ð640�
480=202Þ labels. However, for the temporal shift optimiza-
tion, the procedure may become trapped in a local
minimum. For example, one special case may occur: all
the objects are inside the synopsis, and are shifted into the
same label. Both the data term and smoothness term are
zero in this case, but it is not the desired result. To avoid the
local minima, we expand the temporal label space from
M=	 to n �M=	, where n is the number of nodes. In the
graph construction, we set the valid label range ½i �
M=	; ðiþ 1Þ �M=	Þ (otherwise invalid range) for each node
Nið0 � i � nÞ. For invalid labels, the costs of node Ni and
edge Ei;j are set to 1. After optimization, for an object si
with label ~si, its temporal position is ~si mod M=	. For the
60-second synopsis with 15 moving objects, the temporal
optimization has only 1,350ð15� 60� 30=20Þ labels. Using
this approximation method, we greatly speed up global
spatiotemporal optimization in our system.

4.3 Iterative Object Shifting

In the global optimization, the spatiotemporal consistency
cost Est keeps the spatial relations of any two neighboring

objects. For the example in Fig. 7a, the collisions among
objects are eliminated and the relative positions among
pairs of neighboring objects are preserved, even though the
objects are distributed somewhat unordered in the overall
view. To further refine the synopsis results, we try to keep
the relative positions among multiple objects rather than
between pairs of neighboring objects, using an iterative
object shifting scheme.

The basic idea is that objects are clustered into several
groups, and objects in a group are shifted with the same
vector in the spatial domain. After energy function (2) is
minimized, we divide the shifted objects into K groups
based on the calculated spatial offsets ð~si;x; ~si;yÞ using the K-
Means method. The objects with similar shift vectors are
assigned to the same group. For each of the groups, we
compute its centra ðck;x; ck;yÞ, where k 2 ½1; K�. Then, we
define the spatial consistency cost ESC for a shifted object ~si
as the difference between its offset and the centra of the
cluster it belongs to

ESC

�
~si
�
¼ nsik

�
~si;x; ~si;y

�
� ðck;x; ck;yÞk2; ð11Þ

where ~si belongs to the k� th group. Finally, the data term
EdataðVsÞ in (3) is redefined by adding the spatial consis-
tency cost

EdataðVsÞ ¼
X
si

�
Ea
�
~si
�
þ �Ed

�
~si
�
þ 
ESC

�
~si
��
; ð12Þ

where the weight 
 is set as 0.5 in our experiments.
With this new data term, we minimize (2) iteratively to

obtain better global shifting of interesting objects. The
iterative scheme works as follows: First, it divides objects
into groups according to the spatial shifting vectors
computed in the previous iteration, then it computes group
centra and minimizes (2) with the data term shown in (12)
to output new object shifting vectors. This procedure goes
on about 4 or 5 times until the positions of shifting objects
converges. By setting K as 2 or 3, Figs. 7b and 7c show that
the cars are grouped into two or three queues using our
iterative object shifting.

4.4 Compact Background Synthesis

Our global spatiotemporal optimization expands the motion
space of objects, which leads to the problem of presenting a
compatible background for shifted objects. This problem
will not occur in scenes that are full of moving space, for
example in Figs. 4, 5, 6, where people can run on every
athletic track. However, in other scenes, there may be not
enough moving space for the shifted objects, for example in
Figs. 2e and 7, with cars running out of road. The task in this
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Fig. 6. The relative spatial relations of objects are kept in the synopsis.
(a) The 2,400th frame from the input video. (b) The 100th frame from the
synopsis (corresponding to (a)). (c) The 2,480th frame from the input
video. (d) The 180th frame from the synopsis (corresponding to (c)).

Fig. 7. Iterative object shifts. (a) Without ESC , the shifted objects may be
distributed freely. (b) With ESC , by setting K ¼ 2, the shifted objects are
clustered into 2 groups, and each of them moves with the same vector.
(c) The iterative shifting result produced by setting K ¼ 3.
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section is to synthesize a compact background that expands
the moving space, constrained by the shifted objects and by
user interactions. The synthesized compact background
must fit all shifted objects to avoid unrealistic artifacts. We
use a patch relocation scheme to achieve this goal. We also
develop a multilevel relocation method to further improve
the quality of this synthesis.

Patch Relocation. Inspired by patch transformation [27],
we relocate existing image patches of extracted background
to generate a compact background. We divide the back-
ground into grids (grid size 	) and construct a MRF on the
grids, where each grid is viewed as a node in the MRF. The
problem is how to assign each MRF node an index xi of
patch (here the grid is considered as a patch). In a good
relocation of patches, adjacent patches should fit each other
and the relocation should be subject to the constraints of
shifted objects. With the MRF framework, the above
requirements are formulated as a joint probability

P ðXÞ ¼
Y
i

�iðxiÞ
Y

i;j2NðiÞ
�i;jðxi; xjÞ; ð13Þ

where �i;jðxi; xjÞ is the compatibility of two patches at node
i and j; �iðxiÞ is the local evidence term used to represent
the constraints. To maximize this joint probability using
loopy belief propagation [35], (13) is factorized into

P ðXÞ ¼
Y
i

Y
j2NðiÞ

pðyijxiÞpi;jðxjjxiÞpðxiÞ; ð14Þ

where for node i, NðiÞ are the indices of its four neighboring
nodes; xi is the index of the patch assigned to node i; yi is its
original patch index at location i; pi;jðxjjxiÞ is the normal-
ized compatibility between patches xi and xj with respect to
the relative locations between nodes i and j, which is
defined as

pi;jðxjjxiÞ ¼
�i;jðxi; xjÞP
k �k;jðxk; xjÞ

: ð15Þ

As for local evidence, pðyijxiÞ ¼ �iðxiÞ. Finally, pðxiÞ is
modeled as a uniform distribution. The compatibility term
�i;jðxi; xjÞ is formulated as

�i;jðk; lÞ ¼ exp
�Eseamðk; lÞ

�2
�

� �
; ð16Þ

where Eseamðk; lÞ is the minimum energy among contin-
uous seams between two patches k and l, calculated by
dynamic programming [36]. �� is fixed as 0.2 after cross
validation. With the local evidence term, we determine
how likely it is for a patch to be assigned to a node. For the
constrained nodes, if fixing patch k for node i, we set
pðyijxi ¼ kÞ ¼ 1, and pðyijxi ¼ lÞ ¼ 0 for any l 6¼ k. In our
method, the constrained nodes are the ones occupied by
shifted objects ~si in the synopsis. The corresponding
patches occupied by object si in the input video are set
for those constrained nodes. For the unconstrained nodes,
pðyijxiÞ is computed as the difference between the assigned
patch l and the original one yi:

pðyijxi ¼ lÞ / exp �
ðmðyiÞ �mðlÞÞ2

�2
evid

 !
; ð17Þ

where mð�Þ is the mean color of argument and �evid is fixed
as 0.4.

Fig. 8 gives an example of patch relocation. We use
Loopy Belief Propagation to maximize (14) (refer to [27] for
more detail). The global patch relocation may sometimes
retain artifacts as shown in Fig. 8d. We use a LR technique
to remove the artifacts. As illustrated in Fig. 8e, the user
explicitly indicates the artifact region and it is then divided
into grids (the green ones) to construct a local MRF. Using
the source patches (the orange ones) selected by the user
input, the local patch relocation is performed on these
nodes and patches. Fig. 8f shows the final compact
background synthesized after the local relocation step.

MPR. The patch relocation is modeled on low-level
vision. When synthesizing a complex compact background
with strong structure or the background is densely sampled
in grids, a single patch relocation process may fall into local
minima easily (Fig. 10c). This is due to the fact that a small
patch itself cannot contain much image structure. For
complex scenes, we prefer a larger patch size to preserve
important structures; however, serious visual seams among
big patches occur (Fig. 10e). To flexibly utilize different
patch sizes, we develop MPR in our synopsis system. We
first determine the compact appearance at coarser levels
(larger patch sizes), and then refine the detail at finer levels.
In our experiments, the patch size in the coarsest and finest
levels varies from 80 to 20 pixels, respectively. The number
of MRF nodes at the finer level is four times than that of the
coarser level. In two consecutive levels, we use the result of
the coarser level to initialize the BP iterative procedure of
the finer one.

As we shift objects grid by grid, mismatching problems
may occur when the patch size is not equal to the grid size.
In Fig. 9, we show a correct case in (a) and a problem case in
(b). In Fig. 9c, we give our solution to (b). In Fig. 9a, a grid is
a MRF node and we sample patches from grids. If the grid
and patch (and node) share a common size, the nodes of
shifted object O0 (blue ones) can find the corresponding
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Fig. 8. Patch relocation. (a) The extracted background image is divided
into grids, where the orange grids are patches. (b) One frame of shifted
objects. (c) The initial compact background (the orange regions) is
constructed based on the shifted objects, using them as constraints for
patch relocation. (d) Patch relocation automatically produces a compact
background subject to these constraints. (e) Local refinement (LR) on
the manually selected green region removes artifacts, using orange
regions as source patches. (f) The final compact background in the
video synopsis.
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patches of object O (red ones). In Fig. 9b, the patch (node)
size is double, and each patch consists of four grids now.
The mismatching problem happens because the shifted
object O0 occupies two nodes but the original object only
occupies one patch. In Fig. 9c, we sample patches by an
interval of a grid cell in both x and y directions. Then, we
can find two matched patches (red ones) for both blue
nodes. We use this method for the coarser levels to
eliminate the mismatching problem. Figs. 10e, 10f, and
10g give the results of our MPR from the coarsest to the
finest levels, validating the effectiveness of our method.

Finally, using the generated shifted objects and the
compact background, we seamlessly compose them to
produce the final video synopsis with more compact views

and a shorter synopsis length. In our experiments, we used
Poisson cloning [30] for video composition, which worked
well for our task.

5 RESULTS AND DISCUSSION

We have developed our compact video synopsis system in
C++, and run it on an Intel Core 2 Duo 2.1 GHz CPU
computer with 2 GB RAM. We have tested our approach on
several surveillance video examples (frame rate of 30 Fps),
and compared our results with previous methods. In
Table 1, we give relevant experimental information and
parameters for each example: The length of the input video
(Input Len.), the number of interesting objects (Obj. Num.),
the length of the synopsis (Synopsis Len.), the number of
groups K in the iterative object shifting method, the
number of labels Lt and Ls in the temporal and spatial
optimizations, and the time Tt and Ts consumed by the two
optimizations, respectively. We show whether the MPR
method and/or the LR scheme are used. We give the
running times of [4] in the last column.

We can see from the table that all the input videos are
longer than 5 minutes (30 minutes maximum) and that the
synopsis results are much shorter (15 seconds minimum).
Our global spatiotemporal optimizations contain few
enough labels, and most of them can be finished within
22 seconds. In the compact background synthesis, comput-
ing compatibility �i;jðxi; xjÞ between two patches consumes
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Fig. 10. MPR. Three levels are used, node sizes are 80, 40, and 20. (a) Extracted background. (b) The shifted objects. (c) Using single-level patch
relocation with patch size 20, the wall of the building becomes trapped in a local minimum. (d) Sampling patches for the coarser levels every
20 pixels rather than 80 (or 40). (e) Compact background on 2th level (patch size is 80). (f) Compact background on 1th level (patch size is 40).
(g) Compact background on 0 level (patch size is 20). (h) Compact background after LR.

Fig. 9. (a) The object O is shifted to the position of O0. When the patch
size equals the grid size, the red patches match the four blue patches.
(b) With patch size larger than grid size, the two blue patches of the
shifted object cannot find matched patches containing the original
object. (c) We sample the patches every grid size rather than every
patch size, to supply more sufficient patch samples for good matching.

TABLE 1
Experimental Parameters and Runtime Information in Video Synopsis
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most of the time. The total time used for compact back-

ground synthesis is less than 29 seconds. Since our system

includes both spatiotemporal optimization and compact

background synthesis, we consume more time than [4] for

more compact and shorter video synopsis results.
In Figs. 11, 12, 13, 14, and 15, we give video synopsis

results for site-seeing surveillance videos and compare our

work with [4]. The previous work is powerful in compres-

sing time-scale redundancies but may produce collision

artifacts if compressed much. The video synopsis examples

we tested showed that our approach produces more

compact and shorter synopsis results without collision

artifacts. The video synopsis demos are included in the

online video submission.
In Fig. 11, the input video (10 minutes) shows a bridge

scene where many people cross randomly. Shifting them

only along the time axis as in [4], people collide with each

other easily, especially when people walk in opposite

directions, since the movement space is very narrow. The

top row shows four frames with collisions from the synopsis

(2 minutes) of [4]. The collision artifacts (i.e., moving objects

colliding on the bridge) make the synopsis flicker and
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Fig. 11. Input video (10 minutes). Top: Video synopsis result of [4] (2 minutes in total, and 400th, 600th, 2,500th, 3,000th frames are shown). Bottom: Our
synopsis (1 minute in total, and 100th, 600th, 1200th, 1,500th frames are shown), by setting K to 3 in the iterative object shifting.

Fig. 12. Input video (3 minutes). Top: Video synopsis result of [4] (23 seconds in total, and 50th, 250th, 350th, 450th frames are shown). Middle: Our
synopsis (15 seconds in total, and 50th, 150th, 250th, 350th frames are shown), by setting K to 2 in the iterative object shifting step. Bottom: Our even
shorter synopsis (10 seconds in total, 10th, 100th, 170th, 200th frames are shown), by setting K to 4.
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inconsistent. The bottom row shows the results of our
spatiotemporal synopsis. Our result is shorter in length
(1 minute), and there are no collisions. We achieve this by
expanding the movement space into free spatial domain in
an environmental-path context aware fashion. In this
example, K is set to 3 in the iterative object shifting method.

Fig. 12 shows a traffic-circle video example (3 minutes) in
which cars run in and out. In this case, all the cars are
moving in the same direction. The top row shows the
synopsis result of [4] which shifts the cars temporally only.
If compressed too much in the time domain (23.3 seconds),
the cars move too close to each other and collision artifacts
occur among them. In our approach, the global spatiotem-
poral optimization shifts cars in both temporal and spatial
free space, and we accordingly expand the movement space
into the compact background. Our results in the second row
show that collisions are avoided and our synopsis is shorter
(15 seconds). For the bottom row, the parameters are set as:
� ¼ 1, � ¼ 2:5, � ¼ 0:1, 
 ¼ 0:5, and K ¼ 4. � and � are
decreased to increase the relative weight of term Ea, which

ensures that the objects remain within the synopsis. � is
decreased to move objects a little farther away, which
allows us to expand more into spatial free space and to
obtain an even shorter synopsis (10 seconds).

In Fig. 13, the input video is approximately 30 minutes.
Change in shadows is apparent in the video. Our approach

extracts a background image every minute. Based on these
backgrounds, we synthesize time-varying compact back-
grounds, which are then composited with the shifted
objects in the spatiotemporal space. Thus, the shadow-
variance phenomenon is preserved quite well in our final
compact synopsis. Here, we show our video synopsis result,
which is the same length as that of [4]. However, ours
contains no collisions.

In Fig. 14, the input video (5 minutes) shows a narrow
winding road in the woods, where people come and go very
often. The top row shows the video synopsis result

(24 seconds) of [4] using temporal shifts only, in which
collisions among people walking in opposite directions are
apparent. Using our approach, the moving objects are
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Fig. 13. Input video (30 minutes). Top: Video synopsis result of [4] (1 minute in total, and 212th, 570th, 855th, 1,477th frames are shown). Bottom: Our
synopsis (1 minute in total, and 212th, 570th, 855th, 1,477th frames are shown).

Fig. 14. Input video (5 minutes). Top: Video synopsis result of [4] (24 seconds in total, and 150th, 215th, 300th frames are shown). Bottom: Our
synopsis (24 seconds in total, and 150th, 215th, 300th frames are shown).
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shifted in the global spatiotemporal video volume, which
effectively avoids motion collision artifacts. In the compact
background, we expand the moving space to three roads by
setting K to 3. The bottom row shows our synopsis result
(also 24 seconds for comparison) without motion collisions.

In Fig. 15, the input video (10 minutes) shows a narrow
lane often seen in hilly areas. Due to the side camera view,
the moving people may cover parts of railings of the road.
Since the extracted mask of moving people is not precise
and is larger than the people themselves, it may contain
extra railings. If we provide a wider lane in the compact
background, people with extra railings would appear in the
middle of lane, which causes visual artifacts. To avoid this
kind of artifact, we relax the coefficient � of cost term Ed to
0.1, which moves the objects a little farther from their
original trajectories. Accordingly, two lanes are synthesized
in the compact background, which is very compatible with
the shifted objects. The top row shows the video synopsis
(66 seconds) of [4] with serious motion collisions. The
bottom row shows our shorter synopsis result (40 seconds)
without any collisions.

User Study. We performed a user study with 30
participants to validate the effectiveness of our spatiotem-
poral video synopsis method. Each time, a participant was
shown two synopsis videos side by side. On the left was the
result of [4] and on the right was our synopsis result. Each
participant browsed the five synopsis examples shown in
Figs. 11 to 15, and was asked to answer “Yes” or “No” to the
following five questions for each example:

1. Do you think the synopsis on the right is interesting?
2. Do you like the collisions in the synopsis on the left?
3. Do you care more about the objects themselves than

the relations between objects and the environment?
4. Can you recognize the objects in the synopsis on the

left?
5. Can you recognize the objects in the synopsis on the

right? Then they were shown the source video and
were asked to answer this question:

6. Is the synopsis on the right better than the synopsis
on the left for presenting the source video?

For each question, let Aij ¼ 1 if the ith user answered
“yes” to the jth example, otherwise Aij ¼ 0. We use the
following equation to compute the rate of “Yes” responses
to this question, which reflects the users’ opinions

R ¼
X30

i¼1

X5

j¼1

Aij

 !
=150 � 100%: ð18Þ

The “Yes” rates for the six questions were 82.7, 4, 66.7,
38.7, 96, and 84 percent, respectively. From this testing data,
we can see that most users think our work is more
interesting and our results are better than that of [4].

By directly operating on the extracted objects, Pritch et al.
[4] find and remove redundancies in a much finer grained
style than frame-based or synthesis-based synopsis meth-
ods. The algorithm used in [4] is very useful for compres-
sing surveillance videos and essentially inspires our work.
Since it compresses objects only in the time scale, one of its
advantages is that it does not need to adjust the background
of the scene. Thus, it can process videos of complex scenes
such as airports, flyovers, and crossroads. However, for
objects moving on the same path, this method compacts
them in a spatially narrow and temporally short space,
leading to numerous overlaps among objects and making it
difficult for users to understand what happened. Our
method can handle surveillance videos with narrow move-
ment space and with greater spatial free space, which
cannot be handled well by [4]. Our work is complementary
to [4] and enriches the object-based synopsis methods.

Limitation. When utilizing both the temporal and spatial
spaces to eliminate collisions, our method may fail to produce
a compact video synopsis for scenes with crowded activity in
both the spatial and temporal domains. For example, our
method cannot handle videos full of paths with objects
moving on them, since there is no spatial free space to expand
into. In such situations, methods of selecting important
objects and discarding undesired ones can be considered. The
use of different selection methods can result in different
synopses. We will further investigate these measurements
and extend our synopsis framework to effectively process
crowd-scene videos. The second limitation is that the
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Fig. 15. The input video (10 minutes). Top: Video synopsis result of [4] (66 seconds in total, and 200th, 600th, 1,200th, 1,800th frames are shown).
Bottom: Our synopsis (40 seconds in total, and 250th, 500th, 850th, 900th frames).
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spatiotemporal optimization stage has no interaction with the
compact background synthesis stage. As a result, even if the
spatiotemporal optimization stage works well, the back-

ground synthesis may fail to produce a consistent result.
Fig. 15 shows one example reflecting this limitation. To solve
this problem, the user needs to go back to the first stage and
adjust parameters to obtain better object shifting. The patch

relocation in our compact background synthesis stage may
fail if the original background has strong structure. Though
our proposed multilevel and local patch relocation methods
alleviate this problem to a certain extent, we still need a more

structure-aware image editing framework in the future.

6 CONCLUSION AND FUTURE WORK

Video synopsis is a useful tool for summarizing long
surveillance videos captured by digital cameras. In this

paper, we propose a novel global video synopsis approach
that shifts objects in spatiotemporal space. Our method
eliminates object collisions to create shorter, more visually
appealing synopses. We expand the movement space of

shifted objects into the compact background in an envir-
onmentally context-aware fashion, avoiding visual artifacts
such as cars running off the roads or people walking on
water. The experimental results show that our proposed

method is a practical and efficient video synopsis tool.
In the future, we will investigate how to use our synopsis

method as a video editing tool. We will also investigate
more structure-aware methods for synthesizing compact
backgrounds from videos. Currently, our proposed method

works on videos with static backgrounds. We will extend it
to handle videos captured by moving cameras. This is a
more challenging topic, due to the dynamic backgrounds,

and the different types of camera motion, such as panning,
zooming, and jittering, and so on.
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