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Face Sketch Synthesis Using Regularized
Broad Learning System

Ping Li , Member, IEEE, Bin Sheng , Member, IEEE, and C. L. Philip Chen , Fellow, IEEE

Abstract— There are two main categories of face sketch synthe-
sis: data- and model-driven. The data-driven method synthesizes
sketches from training photograph–sketch patches at the cost
of detail loss. The model-driven method can preserve more
details, but the mapping from photographs to sketches is a
time-consuming training process, especially when the deep struc-
tures require to be refined. We propose a face sketch synthesis
method via regularized broad learning system (RBLS). The
broad learning-based system directly transforms photographs
into sketches with rich details preserved. Also, the incremental
learning scheme of broad learning system (BLS) ensures that
our method easily increases feature mappings and remodels the
network without retraining when the extracted feature mapping
nodes are not sufficient. Besides, a Bayesian estimation-based
regularization is introduced with the BLS to aid further feature
selection and improve the generalization ability and robustness.
Various experiments on the CUHK student data set and Aleix
Robert (AR) data set demonstrated the effectiveness and effi-
ciency of our RBLS method. Unlike existing methods, our method
synthesizes high-quality face sketches much efficiently and greatly
reduces computational complexity both in the training and test
processes.

Index Terms— Bayesian estimation, face sketch synthesis,
incremental learning, regularized broad learning system (RBLS).

I. INTRODUCTION

FACE sketch synthesis has been widely applied in digital
entertainment and law enforcement [1]–[3]. In terms of

digital entertainment, everyone can become a painter and get
easy access to sketches that are originally drawn by skilled
artists. Another application is for assisting law enforcement.
As the photographs of a criminal suspect are not available in
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Fig. 1. Examples of face photographs and sketches. (a) and (b) Photographs.
(c) and (d) Corresponding sketches drawn by artists.

most cases, the best way to find the suspect in a mug-shot data-
base is to match sketches, which are drawn by skilled artists
with the aid of eyewitnesses, with photographs. However, due
to the different modalities between photographs and sketches
as shown in Fig. 1, face sketch recognition encounters great
difficulty. Thus, the solution is to transform them into the same
modality.

Existing face sketch synthesis methods can be divided into
two categories: data-driven methods and model-driven meth-
ods [4]. Data-driven methods search similar sketch patches
from the training photograph–sketch pairs and combine them
via weights to get a new sketch of a test photograph. Tang
and Wang [5], [6] employed the principal component analy-
sis (PCA) to reconstruct sketches through a linear combination
of training sketches. Liu et al. [7] took the nonlinear mapping
from photographs to sketches to synthesize face sketches based
on locally linear embedding (LLE). Wang et al. [8] proposed
a Bayesian framework for face sketch synthesis and divided
the synthesis process into two parts: the neighbor selection
model and the weight computation model. However, their
method still suffered from time-consuming computation as
complex optimization problems. Besides, some necessary pre-
processing/postprocessing, such as image blocking and patch
aggregation, have to be employed in the synthesis [9]–[11].
Moreover, some details in the test photograph, which do not
exist in the training set may lost. All these factors limit the
practical efficiency of data-driven methods.

Model-driven methods learn a mapping function from
the training photograph–sketch pairs. They learn the con-
version model between two different modalities and can
directly transform photographs to sketches in batch with
the trained model. Wang et al. [12] proposed to learn
some linear regressors from training photograph–sketch pairs.
Zhang et al. [13] used a fully convolutional network (FCN)
to learn the end-to-end nonlinear photograph–sketch mapping.
Wang et al. [4] utilized a backprojection generative adversarial
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Fig. 2. Overall framework of the proposed method. Face alignment and image clipping are necessary preprocess operations to fit for the system. Random
convolution is employed to form mapped features, and features are improved to obtain enhancement features. The input layer of the flat network consists of
feature nodes (blue nodes) and enhancement nodes (orange nodes), constructing by concatenation of mapped features and enhancement features, respectively.
All nodes are directly connected with target sketches. Once incremental nodes (red nodes) are necessary to improve the network, incremental learning is
implemented. The regularized algorithm is used to further enhance the generalization. After training, face photographs can be transformed into sketches.

network (BP-GAN) to perform the synthesis tasks to improve
the results. While deep neural networks have shown great
capability in feature extraction and function approximation,
they suffer from a time-consuming training process using
backpropagation methods due to the deep structure. Moreover,
the hyperparameters of network structures, such as numbers
of layers, number of filters, and size of filters, have to be
selected artificially by prior knowledge before training. Thus,
if the structure is insufficient for modeling, it has to be
remodeled and a complete retraining is needed. Recently, new
advancements are made to enhance the face sketch synthe-
sis. Zhu et al. [14] proposed a face sketch synthesis using
deep graphical feature learning. Chen et al. [15] introduced
a semisupervised deep learning to deal with face photographs
in the wild. Wang et al. [16] produced face sketches in an
adversarial manner. Wang et al. [17] proposed an anchored
neighborhood index method to utilize the training face sketch
patches. Wang et al. [18] further introduced a random sam-
pling with locality constraint for fast face sketch synthesis.
Zhu et al. [19] proposed a deep collaborative framework for
face photograph–sketch synthesis. Radman and Suandi [20]
enhanced the facial structures in face sketch synthesis via a
superpixel-wise method.

To solve the problems of long training and retraining in
deep learning, inspired by the random vector functional-link
neural network (RVFLNN) and the dynamic step-wise updat-
ing algorithm [21], Chen et al. [22], [23] recently proposed
a broad learning system (BLS) to provide an alternative to
deep structures. The system has been demonstrated great
performance in classification and regression [22]–[24].

We propose a face sketch synthesis method via
BLS [22], [23] with a flat network, and the system is refined
to adapt to the face sketch synthesis task by a regularized
algorithm, which we call regularized BLS (RBLS). The
proposed overall face sketch synthesis framework is shown
in Fig. 2. A feedforward face sketch synthesis network (see
Fig. 3), which is a one-layer structure with the input layer
consisting of feature nodes and enhancement nodes, is trained
by the system. Face photographs and training sketches are
aligned and clipped to fit the BLS. A nonlinear conversion

model from photographs to sketches is learned by training
photograph–sketch pairs based on RBLS. After training,
photographs can be transformed into sketches by the trained
model directly. The modeling process can be divided into two
steps: feature extraction and weight computation. Preprocessed
training photographs are extracted face features by several
randomly generated convolutional filters to form feature
nodes in the input layer. Then, the network is extended by
enhancement nodes which we call feature enhancement. Ridge
regression learning is introduced to analytically compute
initial connecting weights between the input feature layer and
the output sketch layer. An incremental learning algorithm for
increment feature mappings is provided for fast remodeling
when extra features are necessarily added to improve the
performance. Finally, a regularized algorithm is applied to
improve the generalization ability and robustness and get the
final trained network. Instead of the long training and complex
optimization in deep learning, we use the flat network of
RBLS to extract features and get the mapping model from
features space of photographs to sketches via a very short
training process. Combining with incremental learning,
the network structure is improved without a retraining process
by increasing feature mappings. The regularized algorithm
used is for further feature selection and makes the output
weights smooth and sparse for generalization ability and
robustness improvement. In sum, our approach makes the
following four main contributions.

1) A Feedforward Face Sketch Synthesis Network via
RBLS: We propose a model-driven face sketch synthe-
sis method. A feedforward sketch synthesis network
via RBLS is trained, by which photographs can be
directly transformed into sketches in batch with more
details preserved. Experiments show that our approach
outperforms most data- and model-driven synthesis
methods.

2) Incremental Learning for Fast Remodeling: Incremental
learning algorithm for increment feature mappings is
proposed. When the extracted feature mapping nodes
are not sufficient for the desired quality of synthesis
sketches, increasing feature mappings and remodeling
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Fig. 3. Feedforward face sketch synthesis network via RBLS. The input face
photograph is preprocessed and extracted features. Then, the mapped features
are improved as enhancement features. Mapped features are concatenated as
feature nodes and enhancement features are concatenated as enhancement
nodes. All nodes are taken as input of the flat network and connected with
the target sketch by connecting weights W n .

the network are to be implemented without a retraining
process.

3) Regularized Algorithm for Generalization Ability and
Robustness Improvement: A regularized method via
Bayesian estimation is proposed for further feature
selection and to improve generalization ability and
robustness.

4) Time-Saving for Modeling/Remodeling: Taking
advantage of flat network, our method significantly
shortens training and test time and greatly improves
efficiency. Combining with incremental learning,
the conversion network can be easily improved and fast
remodeled.

II. RELATED WORK

A. Data-Driven Face Sketch Synthesis

The conventional face sketch synthesis methods are data-
driven, which linearly combine candidate sketch patches
selected from the training sketches to synthesize a sketch
of a test photograph. Tang and Wang [5], [6] first proposed
to synthesize sketches by edge transformation based on the
assumption of linear mapping from photographs to sketches.
However, the whole linear assumption limited the ability to
represent the nonlinear mapping from photographs to sketches.
Liu et al. [7] presented a nonlinear approach via local geome-
try preserving to generate sketches, and a patch-based strategy
is adopted. Gao et al. [25] proposed to adaptively select the
number by sparse representation. Zhang et al. [26] converted
photographs to arbitrarily stylistic sketches based on only
one corresponding template sketch. Zhang et al. [27] proposed
to handle nonfacial factors with a single photograph–sketch
pair from coarse to fine. Zhang et al. [28] synthesized face
sketches based on prior knowledge and similarity between
different image patches. Considering the similarity between
adjacent patches, Wang and Tang [29] introduced Markov
random fields (MRF) into face sketch synthesis and employed
belief propagation to obtain face sketches. Zhang et al. [30]
proposed a face sketch generator via the compositional model
(CM). They imitated the drawing process of artists and
decomposed a face into components instead of patches.
Wang et al. [8] presented a Bayesian face sketch synthe-
sis framework consisting of two parts, the neighbor selec-
tion model and the weight computation model, and unified

the existing data-driven methods. For the neighbor selection
model, based on whether or not considering the neighboring
constraint between adjacent patches, they divided the existing
methods into two categories: one is neglecting the constraint,
representative methods being K-nearest neighbors (K-NN)
search-based methods [7] and sparse representation meth-
ods [25], [31], [32]; the other is based on the MRF selection
strategy [29], which takes the spatial neighboring constraint
into consideration. Similar to the neighbor selection model,
they also made a division for the weight computation model.
Although data-driven methods have shown good performance,
they are limited in practical use. There are three main draw-
backs in data-driven methods: high computation complexity,
complicated preprocess/postprocess, and loss of particular
detailed information. First, many complex optimization prob-
lems, such as belief propagation and least square, have to be
solved in the whole synthesis process. Among them, the most
time-consuming part is the neighbor selection process, espe-
cially performing neighbor searching on a large training data
set. Second, necessary preprocessing/postprocessing, such as
image blocking and patch aggregation, has to be employed.
Finally, all of these methods are based on the assumption that a
test photograph can be reconstructed from training data so that
the sketch can be estimated by training data. When the training
samples are insufficient to reconstruct the test photograph, loss
of detailed information occurs.

B. Model-Driven Face Sketch Synthesis

Data-driven methods have some limitations that their com-
putation complexity grows linearly with the size of the training
set as they have to traverse the whole training set to find
nearest neighbors. To solve this problem, Wang et al. [12]
proposed to learn a mathematical model from training
photograph–sketch pairs using a model-driven strategy that
sped the synthesis process a lot compared with data-driven
methods. However, the linear assumption has limitations in
learning the nonlinear mapping from photographs to sketches.
Recently, convolutional neural networks (CNNs) have demon-
strated outstanding capability in image style transfer [33]–[36]
and nonlinear mapping. Zhang et al. [13] developed an FCN
to learn the nonlinear mapping from photographs to sketches.
Jiao et al. [9] proposed a lightweight four-layer CNN method.
Though most details are preserved, the blurring effect happens
in the final results, and some textures and shadings are
lost. Chen et al. [37] proposed a pyramid column feature to
introduce sketch textures and shadings into the content image
created by a fully CNN.

Apart from CNN-based methods, generative adversar-
ial networks (GANs) have also made great contributions
to image generation. Philip and Jong [38] proposed a
conditional GAN face sketch synthesis framework and demon-
strated the great potential of GAN for face sketch syn-
thesis. However, the sketches are generated accompanying
noise. Wang et al. [4] proposed a BP-GAN-based face sketch
synthesis to denoise and synthesize high-quality sketches.
Bi et al. [39] designed a three-layer pyramid model for getting
multiscale information and trained the mapping relationships
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Fig. 4. Structure of BLS. The input data are extracted features to con-
struct feature nodes Zn = [Z1, . . . , Zn ] by Zi = φ(X Wei + βei ). Then,
the network is extended by enhancement nodes H n = [H1, . . . , Hn], where
Hi = ξ(Zi Whi + βhi ). (c) Final flat network structure for BLS, whose
input layer consists of feature nodes and enhancement nodes and output
layer is target results Y . The input layer and output layer are connected by
weight parameters W n as W n = [Zn |H n]†Y , where † denotes pseudoinverse.
(a) Input date. (b) Nodes contribution for input layer. (c) Flat networks
structure for BLS.

with a multiscale conditional GAN achieving nice Scoot
score [40]. Yi et al. [41] proposed a novel GAN-based archi-
tecture named APDrawingGAN that builds upon hierarchical
generators and discriminators. Inspired by knowledge transfer,
Zhu et al. [42] learned knowledge of face photographs and
face sketches separately by training two teacher networks
on a large amount of data in related tasks simultaneously.
Then, they used a student network to mimic and transform the
obtained two kinds of knowledge and transfer them mutually.
The proposed method can well synthesis the face sketch even
with a small set of photograph–sketch pairs. Zhang et al. [30]
introduced a CM-based face sketch generator, which nicely
reduced high-frequency loss and enhanced the sketch syn-
thesis results. Zhang et al. [43] further proposed dual-transfer
face sketch–photograph synthesis framework, which generated
more identifiable facial structures with higher recognition
rate. Zhang et al. [44] again presented a neural probabilistic
graphical model for face sketch synthesis, which could obtain
specific features effectively and recover common structures in
synthesized sketches. All these methods are based on deep
structures, which means time-consuming training with error
backpropagation. Moreover, a completely retraining process
occurs when the deep structure is insufficient to learn the
model.

C. Broad Learning System

Most model-driven methods are based on deep learn-
ing methods. However, due to the deep structure and
abundant connecting weights, these methods suffered from
time-consuming training processes. Pao and Takefuji [45]
proposed an RVFLNN to solve the long training process
problem in deep structure and demonstrated its generalization
capability in function approximation [46]. They moved down
hidden nodes in the traditional single-layer feedforward neural
network (SLFN) as enhancement nodes and connected output
nodes with input nodes and enhancement nodes. This simple
improvement makes a direct connection between input and
output and significantly improves the performance of the net-
work. Taking inspiration from RVFLNN and adopting mapped
features as its input, Chen et al. [22], [23], [47] proposed
a BLS to offer an alternative way of deep learning. The
structure of BLS is shown in Fig. 4. Instead of deep structures,
the system is established as a flat network whose input layer
consists of two parts, feature nodes generated from the original

inputs, and enhancement nodes generated from feature nodes
to expand the structure [see Fig. 4(b)]. The weights and biases
to generated feature nodes and enhancement nodes are gen-
erated randomly. Then, all nodes are connected with outputs
through connecting weights [see Fig. 4(c)]. Ridge regression
learning algorithms are given to solve the connecting weights
within a single learning step. In addition, incremental learning
algorithms are designed for fast remodeling without retraining
process when encountering increasing nodes and input data.
Inspired by their work, we propose a feedforward face sketch
synthesis network via an RBLS. Taking full advantage of the
flat structure of BLS, the proposed network can be constructed
at a fast speed. Meanwhile, the trained network can be demon-
strated a better performance in face sketch synthesis with
more detailed information preserved. Incremental learning for
increment feature mapping is developed to improve the perfor-
mance and for fast remodeling. Also, the regularized algorithm
applied refines the system and improves the generalization
ability and robustness.

III. OVERVIEW

Given a face photograph x , to estimate its corresponding
sketch y, we first learn a feedforward face sketch synthesis net-
work from training photograph–sketch pairs based on RBLS.
Taking advantage of the great ability in feature extraction and
function approximation of the network, the trained network
can approximate a nonlinear function F(·), which maps pho-
tographs to sketches. Then, the target sketch y can be esti-
mated by y = F(x). The overall framework of the proposed
method is shown in Fig. 2. A feedforward face sketch synthesis
network (as shown in Fig. 3) based on a flat network is trained.
As we can see, unlike the conventional RVFLNN taking the
input photograph image directly, it takes mapped features as
the input of the network. First, input face photographs X
are mapped to construct n feature maps Zn = [Z1, . . . , Zn]
(denoted by blue nodes called feature nodes in Figs. 2 and 3).
Then, the mapped features are enhanced as enhancement nodes
H n = [H1, . . . , Hn] (denoted by orange nodes in Figs. 2
and 3). Finally, the feature nodes and enhancement nodes are
concatenated together and connected with the output sketches
Y through connected weights W n . The mapping from the
mapped features to the outputs can be denoted as

Y = [Z n|H n]W n . (1)

The proposed feedforward face sketch synthesis network is
trained to learn the connecting weights W n . To make W n

smooth and sparse, a regularized algorithm based on the
Bayesian estimation is introduced to refine the system. Then,
the total system approximates the nonlinear function F(·),
which maps face photographs to sketches.

The learning process can be divided into two steps: 1) fea-
ture extraction and 2) weight computation. In this article,
we employ random feature extraction and feature enhance-
ment using convolution kernels generated randomly. After the
necessary preprocessing operations such as face alignment and
image clipping, all training face photographs are convoluted
with randomly generated convolution kernels to obtain mapped
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features. Next, the mapped features are improved by random
convolution once again to form enhancement features. All the
mapped features are concatenated to construct feature nodes
and so are the enhancement features to construct enhancement
nodes. Then, these two types of nodes are concatenated
together and taken as the input of the flat network and are
connected with target sketches directly. Initial connecting
weights W n can be solved by the error backpropagation
algorithm. Another more direct solution without iteration is
to compute pseudoinverse by the ridge regression learning
algorithm. More details are shown in Section IV.

Once the network is insufficient to learn the mapping from
face photographs to sketches that are usually determined by
numbers of feature nodes and enhancement nodes, hyperpara-
meters adjustment and remodel are necessary. In general, for
deep structures, when the network parameters are adjusted and
a remodeling process occurs, they will encounter a complete
retraining process that consumes much time. However, for
the proposed method, an incremental learning algorithm for
increment feature mapping is given to avoid the retraining
process and achieve fast remodel. More details are shown in
Section V. Through the standard BLS above, we can get initial
connecting weights. However, as noise exists and the small
size of training data, the system has to be further refined for
better generalization ability and robustness. Recent success in
pattern classification and recognition has demonstrated that the
Laplacian error distribution could be more realistic [48]–[50],
which can fit long tails caused by small fraction outliers
better [51], [52]. Therefore, we use the Laplacian assumption
to model errors realistically [48]–[52], and the l1 and l2 regu-
larizers are combined to form the loss function based on the
Bayesian estimation [52]. Then, the system is optimized by the
optimization function. More details are shown in Section VI.

IV. FACE SKETCH SYNTHESIS USING BLS

In this section, details of face sketch synthesis by BLS are
given. The learning process can be divided into two steps:
feature extraction and weight computation. First, all of the
training photograph–sketches pairs and test photographs are
preprocessed to fit for the BLS. Then, random convolution
feature extraction is employed for face feature extraction
and feature improvement. Finally, the connecting weights are
solved by ridge regression. Then, we get the initial connecting
weights for the synthesis network.

A. Preprocessing

Given training photograph–sketch pairs, we first make two
eye centers of all face images be at a fixed position by translat-
ing, rotating, and scaling, namely face alignment. As described
in [29], this simple face alignment step arranges the same
face components to the same region in different images,
making it robust to map the photographs to sketches. Another
preprocessing step takes its inspiration from [13]. We crop
original images with a size of 200 × 250 into images with a
size of 180×200 to throw away the blank regions. Experiments
show that this step can effectively improve the quality of
generated sketches.

B. Feature Extraction

Traditional RVFLNN takes original inputs directly as the
input of the first layer in the network. Another feasible
choice is to take feature mapping as input. As mentioned
in Section III, BLS first maps inputs into feature spaces
which we call feature mapping or feature extraction. Feature
extraction consists of two steps: feature nodes generation
and enhancement nodes generation. Assume an input face
photograph x , which is preprocessed, with a size of 180×200.
Features of the input photograph are extracted and enhanced
by randomly generated convolution kernels to form feature
nodes and enhancement nodes as the input of the network.
For n feature mappings, zi denotes the i th feature map of x ,
which can be represented as

zi = φ(x ⊗ w fi + β fi ), i = 1, . . . , n (2)

where w fi and β fi are the randomly generated filter and bias
corresponding to the i th feature map, respectively. φ(·) is an
activation function. ⊗ represents the convolution operation.
Feature nodes are constructed by concatenating all the n
mapping features. We denote all the feature nodes as

zn ≡ [z1, . . . , zn]. (3)

For each feature mapping, we enhance it as an enhancement
mapping by

h j = ξ(z j ⊗ we j + βe j ), j = 1, . . . , n (4)

where we j and βe j are the randomly generated filter and
bias similar to w fi and β fi , respectively. ξ(·) is a activation
function like φ(·). All of the n enhancement feature maps are
concatenated to construct the enhancement nodes as

hn ≡ [h1, . . . , hn]. (5)

Then, feature nodes and enhancement nodes are concate-
nated together to construct the input layer of the flat network
of BLS. This step is equal to moving down the hidden layer
of RVFLNN, which means connecting its input layer with the
output layer, expanding the structure of BLS in the wide sense.
The final broad model can be denoted as

y = [zn|hn]W n (6)

where W n are connecting weights for the synthesis network
and y is the target sketch of the input face photograph x .

C. Weight Computation

Giving training photograph–sketch pairs, we first map the
face photographs to feature spaces and construct feature nodes
and enhancement nodes. Meantime, the randomly generated
filters and biases are preserved for testing. The connecting
weights W n can be solved under the constraint that the
generated sketch F(x; W n) by BLS should be as close to the
ground truth which is drawn by artists. Let (xi , yti ) denote
the training photograph–sketch pairs. For N pairs of training
images, the weight computation can be represented as the
following optimization:

min
W n

1

N

N∑
i=1

∥∥F(xi; W n) − yti

∥∥2
(7)
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where we adopt the mean squared error (MSE) as the loss
function. Gradient descent can be applied to train the network.
While iterative computation is needed when implementing
the gradient of the loss function, a straightforward method
is to compute pseudoinverse and solve the problem in a single
step. Let X = [x T

1 , . . . , x T
N ]T and Y = [yT

t1
, . . . , yT

tN
]T denote

the concatenation of the N training photographs and training
sketches, respectively. We rewrite (6) as

Y = [Z n|H n]W n (8)

where Z n = [(zn
1)

T , . . . , (zn
N )T ]T is the concatenation of

all features nodes for the N face photographs and H n =
[(hn

1)
T , . . . , (hn

N )T ]T is the concatenation of all enhancement
nodes. The connecting weights W n can be solved by

W n = [Z n|H n]†Y. (9)

Denote

A = [Z n|H n]. (10)

The pseudoinverse A† can be solved by

A† = (AT A)−1 AT . (11)

To get a more stable estimate for W n , a weight penalty term
is added to the loss function. We follow [52] to optimize W n

through solving the following minimization as:
min
W n

∥∥AW n-Y
∥∥2

2 + λ
∥∥W n

∥∥2
2 (12)

where λ is a regularizer to control the network structure
complexity and enhance the generality. Equation (12) is actu-
ally the loss function of BLS. Thus, through assigning the
derivation of (12) with respect to W n as zero, we could,
hence, obtain the solution of W n as follows:

W n = (λI + AT A)−1 AT Y. (13)

For the pseudoinverse, we have

A† = lim
λ→0

(
λI + AT A

)−1
AT . (14)

Then, we get the initial connecting weights. Algorithm 1
shows the training process.

V. INCREMENTAL LEARNING APPROACH

While the selected feature mappings are insufficient for
learning the photograph-to-sketch mapping, the solution we
usually adopt is to increase the feature mapping, accompanied
by the increasing of enhancement nodes (see Fig. 5). This
is similar to most popular deep structures such as CNN.
When the established structures cannot learn the task well,
increasing the number of filters or layers may be applied
in deep structures. While the remodeling process in deep
structures suffers from a complete retraining process that
takes up most of the time in the process of model selection,
the incremental learning algorithm developed for a BLS can
avoid the retraining process, which provides a better choice
for fast model selection. Here, we consider the incremental
learning for additional feature nodes accompanied by increas-
ing of enhancement nodes. Assume the initial network with n

Algorithm 1 Face Sketch Synthesis Using BLS

Input: N training photo-sketch pairs
(
xi , yti

)
, the number of

feature maps n
Output: Connecting weights W n

1: for i = 1; i ≤ n do
2: Random w fi , β fi , wei , βei ;
3: for k = 1; k ≤ N do
4: Calculate zi (xk) = φ

(
xk ⊗ w fi + β fi

)
;

5: Calculate hi (zi (xk)) = ξ(zi (xk) ⊗ wei + βei );
6: end for
7: end for
8: for k = 1; k ≤ N do
9: Set the feature nodes zn

k = [z1(xk), . . . , zn(xk)];
10: Set the enhancement nodes hn

k = [h1(xk), . . . , hn(xk)];
11: end for
12: Concatenate all the feature nodes for the N face photos

Z n = [(zn
1)

T , . . . , (zn
N )T ]T ;

13: Concatenate all the enhancement nodes for the N face
photos H n = [(hn

1)
T , . . . , (hn

N )T ]T ;
14: Concatenate all nodes A = [Z n|H n];
15: Obtain pseudoinverse A† = limλ→0

(
λI + AT A

)−1
AT ;

16: return W n = A†Y ;

Fig. 5. Increment of feature mappings. While the selected feature mappings
are insufficient for learning the photograph-to-sketch mapping, increasing
the feature mappings and remodeling are adopted to improve the perfor-
mance, accompanied by the increasing of enhancement nodes. Additional
feature nodes and enhancement nodes are added by the proposed incremental
algorithm, and the updated connecting weights can be calculated without a
complete retraining process.

feature mappings and n enhancement mappings. The (n +1)th
feature mapping and its corresponding enhancement mapping
can be denoted as

zn+1 = φ(x ⊗ w fn+1 + β fn+1) (15)

hn+1 = ξ(zn+1 ⊗ whn+1 + βhn+1) (16)

where w fn+1 , β fn+1 , whn+1 , and βhn+1 are randomly generated.
Denote Zn+1 = [(zn+1(x1))

T , . . . , (zn+1(xN ))T ]T and Hn+1 =
[(hn+1(x1))

T , . . . , (hn+1(xN ))T ]T as the (n+1)th feature map-
ping and enhancement mapping of the N face photographs,
respectively.

We perform feature mappings for the N face pho-
tographs, and we represent all the input nodes with Fn

n =
[Z1, Z2, . . . , Zn|H1, H2, . . . , Hn], containing n groups of fea-
ture nodes and n groups of enhanced nodes. For simplic-
ity, we denote the concatenation of the feature nodes and
enhancement nodes as An = Fn

n . The final BLS is formu-
lated as: Y = AnW n . The weight coefficient W n could be
calculated by pseudoinverse in BLS as W n = (An)†Y , and the
pseudoinverse of input nodes (An)† could be calculated by
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(An)† = limλ→0
(
λI + An(An)T

)−1
(An)T . I is a unit matrix

with proper dimensions, and λ is a regularization parameter
for ridge regression (see the detail in [22]) and λ is set as 10−8.
The updated input nodes An+1 = Fn+1

n+1 are denoted as

An+1 = [Z1, Z2, . . . , Zn+1|H1, H2, . . . , Hn+1]
≡ [Fn

n |Zn+1|Hn+1] = [An|Zn+1|Hn+1] (17)

which is the upgrade of new mapped feature nodes and the
corresponding enhancement nodes. Then, the pseudoinverse of
the new input nodes

(
An+1

)†
can be calculated as

(
An+1)† =

[(
An

)† − (
An

)†[Zn+1|Hn+1]BT

BT

]
(18)

where BT can be calculated by the additional feature node
Zn+1, the additional enhanced node Hn+1, and the origi-
nal input nodes An = Fn

n . According to [22], let D =
(An)†[Zn+1|Hn+1], and we hence have

BT =
{

(C)† if C �= 0

(1 + DT D)−1 DT (An)† if C = 0
(19)

where C = [Zn+1|Hn+1] − An D.

Algorithm 2 Incremental Algorithm of the Increment Feature
Mapping

Input: N training photo-sketch pairs
(
xi , yti

)
, the initial con-

necting weights W n

Output: Updated connecting weights W
1: while T he training error threshold is not satisfied do
2: Random w fn+1 , β fn+1 , whn+1 , βhn+1 ;
3: for k = 1; k ≤ N do
4: Calculate zn+1(xk) = φ(xk ⊗ w fn+1 + β fn+1);
5: Calculate hn+1(xk) = ξ(zn+1(xk) ⊗ whn+1 + βhn+1);
6: end for
7: Concatenate all the new feature nodes for N face photos

Zn+1 = [(zn+1(x1))
T , . . . , (zn+1(xN ))T ]T ;

8: Concatenate all the new enhancement nodes for N face
photos Hn+1 = [(hn+1(x1))

T , . . . , (hn+1(xN ))T ]T ;
9: Update An+1 by Eq. (17);

10: Update (An+1)† and W n+1 by Eq. (18) and Eq. (20);
11: Set n = n + 1;
12: end while
13: return W = W n ;

Obviously, the weight W n+1 can be computed as

W n+1 =
[

W n − (
An

)†[Zn+1|Hn+1]BT Y
BT Y

]
. (20)

Obviously, the new weights W n+1 could be computed based on
the pseudoinverse of all input nodes An+1 = Fn+1

n+1 , and only
the pseudoinverse of additional nodes needs to be calculated
without calculating the entire input nodes so that the system
could be built quickly. The incremental algorithm of the
increment feature mapping is shown in Algorithm 2.

VI. REGULARIZED METHOD VIA BAYESIAN ESTIMATION

What is mentioned above is the standard BLS and its
incremental learning used for face sketch synthesis. However,
the MSE criterion applied in the standard BLS is insufficient
for the situation with unexpected input such as images with
noise. Besides, as for the face sketch synthesis problem,
the training data are usually too small to get a good general-
ization ability and a stable output by the standard BLS. Thus,
to better model the errors in most real situation where noise
exists and performs feature selection, a regularized algorithm
for better generalization ability and robustness has to be
developed particularly. In the standard BLS, MSE is used to
model the errors with an assumption of Gaussian distribution.
However, the Gaussian distribution has a weakness to model
the real errors. To make the algorithm more robust, in this
section, the widely used Laplacian distribution is used to
model the errors more realistically [48]–[52] and optimize
the standard BLS. We follow [52] to employ the Bayesian
estimation to make our first assumption that W n follows a
Gaussian distribution, and we, hence, get the loss function as:

min
W n

∥∥AW n-Y
∥∥

1 + α
∥∥W n

∥∥2
2. (21)

Comparing (21) and (12), we can find that the l2 loss
function in (12) is replaced by the l1 loss function to improve
robustness. We utilize the Laplacian error distribution to
solve the problem when unknown noise/error exists and make
the algorithm more robust. The l1 loss function, which is the
difference in (21) from (12), can be explained to reflect the
sparsity of noise and the robustness of the improved BLS.
Also, the l2-norm regular term in (21) introduced by the
Gaussian assumption of W n can make the connecting weights
smooth. For small training data problems, a feature selection
strategy is employed, which gives a sparsity constraint to the
connecting weights W n .

We then follow [52] to make our second assumption that W n

follow the Laplacian distribution, and hence, we could get the
l1-norm regular term for the second term in (21). To combine
the advantages of both l1 and l2 regularizers, we get a loss
function by combining l2 regularizer and l1 regularizer as

min
W n

∥∥AW n-Y
∥∥

1 + α1

∥∥W n
∥∥

1 + α2

∥∥W n
∥∥2

2 (22)

where α1 and α2 are adjustable parameters. Unlike (12), (22)
cannot be solved analytically. We use it to further optimize iter-
atively the weight W n calculated by the standard BLS. Here,
an iterative optimization based on the augmented Lagrange
multiplier (ALM) [53] is given to solve the problem.

Through the strategy of ALM, (22) can be rewritten as
augmented Lagrangian function as

L(E, Q, W n , λ1, λ2) = ‖E‖1 + α1‖Q‖1 + α2

∥∥W n
∥∥2

2

+μ

2

∥∥∥∥Y − AW n − E + λ1

μ

∥∥∥∥
2

2

+μ

2

∥∥∥∥Q − W n + λ2

μ

∥∥∥∥
2

2
(23)

where λ1 and λ2 are Lagrange multipliers and μ ≥ 0 is
the penalty parameter. Optimized by the block coordinate

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 12:59:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Sketch synthesis results on the CUHK student data set. (a) Four test photographs from the CUHK student data set. (b) Corresponding sketches
drawn by artists used as ground truth. (c) Results of the LLE-based method [7]. (d) Results of the MRF method [29]. (e) Results of the MWF method [54].
(f) Results of the LR-based method [12]. (g) Results of the FCN method [13]. (h) Results of the BP-GAN method [4]. (i) Results of the standard BLS method
without the regularized algorithm. (j) Results of our proposed RBLS method.

Algorithm 3 Regularized Algorithm via Bayesian Estimation
Input: The concatenation of feature nodes and enhancement

nodes A, initial connecting weights W n , regularization
parameter α1, α2, penalty parameter μ

Output: Connecting weights W n

1: Initialize λ1, λ2;
2: while not converged do
3: Optimize E by Eq. (24);
4: Optimize Q by Eq. (25);
5: Optimize λ1 and λ2 by Eq. (26) and Eq. (27);
6: Optimize W n by Eq. (28);
7: end while
8: return W n ;

descent (BCD) method, the connecting weights can be updated
iteratively as follows:

E = max(|S| − 1/μ, 0) 	 sign(S) (24)

Q = max(|M| − α1/μ, 0) 	 sign(M) (25)

λ1 = λ1 + μ(Y − AW n − E) (26)

λ2 = λ2 + μ(Q − W n) (27)

W n = (AT A + (1 + 2α2/μ)I )−1(AT T + F) (28)

where S = Y − AW n + λ1/μ, M = W n − λ2/μ, T = Y −
E + λ1/μ, F = Q + λ2/μ, and 	 represent the element-wise
multiplication. The process is iteratively optimized until reach-
ing to convergence. The computational complexity can be
reduced by using the partial singular value decomposition
(SVD) [55] to simplify the computing process of the inverse
in (28). Algorithm 3 shows the implementation process of the
regularized algorithm.

VII. EXPERIMENTAL RESULTS

We evaluate the proposed method on the CUHK student
data set, which includes 188 face photograph–sketch pairs and
Aleix Robert (AR) data set, which includes 123 pairs [29].
Each face photograph has its corresponding sketch drawn by
the artist (see Fig. 1). We select 88 face photograph–sketch
pairs for training and the remaining for testing from the CUHK
student data set. For the AR data set, 80 pairs are selected
randomly for training and the remaining for testing.

A. Face Sketch Synthesis

Fig. 6 shows the sketch synthesis results for four test exam-
ples by LLE [7], MRF [29], Markov weight fields (MWF) [54],
linear regression (LR) [12], FCN [13], BP-GAN [4], BLS,
and our RBLS method on the CUHK student data set. The
first three methods are data-driven, and the other five methods
are model-driven. Among these, FCN [13] and BP-GAN [4]
are deep learning-based methods. Compared with data-driven
methods, our method keeps more detailed information. For
example, the man in row three has small eyes whose shapes
are changed by the first three methods. Similarly, on the
AR data set, Fig. 7 shows that our approach can preserve
more face details. As we can see from Fig. 7, the man
in row one wears glasses. The detailed glass structures are
destroyed when using data-driven methods, while the result of
our RBLS shows a more reliable result. The detailed structural
information of the women’s hair from row two to row three
can be found destroyed by different degrees using data-driven
methods, while model-driven methods can preserve more
structural information. This is because most data-driven meth-
ods are based on matching algorithms, which search similar
sketch patches from the training sets and synthesize the final
face sketch. It is, hence, difficult for data-driven methods to
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Fig. 7. Sketch synthesis results on the AR data set. (a) Four test photographs from the AR data set. (b) Corresponding sketches drawn by artists used as
ground truth. (c) Results of the LLE-based method [7]. (d) Results of the MRF method [29]. (e) Results of the MWF method [54]. (f) Results of the LR-based
method [12]. (g) Results of the FCN method [13]. (h) Results of the BP-GAN method [4]. (i) Results of the standard BLS method without the regularized
algorithm. (j) Results of our proposed RBLS method.

Fig. 8. Qualitative evaluation with local detail magnification for different approaches. (a) Input face photographs. (b) Corresponding sketches drawn by
artists used as ground truth. (c) Results of the LLE-based method [7]. (d) Results of the MRF method [29]. (e) Results of the MWF method [54]. (f) Results
of the LR-based method [12]. (g) Results of the FCN method [13]. (h) Results of the BP-GAN method [4]. (i) Results of the standard BLS method without
the regularized algorithm. (j) Results of our proposed RBLS method.

reconstruct uncommon details. However, model-driven meth-
ods directly learn the modality of sketches from training
sets and transform target photographs into sketches with vital
details preserved through the trained model. In this article,
taking the advantages of model-driven methods, we train a
broad learning network to learn the sketch modality and
realize direct photograph–sketch transformation. In this way,
our approach is able to imitate the underlying sketch styles and
preserve more semantic details from the target photographs.

In comparison with some model-driven methods as shown
in Figs. 6 and 7, our method provides more reliable results.
As the linear assumption has limitations in learning the model
of photograph–sketch transformation, the LR method used
in Figs. 6(f) and 7(f) has a limitation in performance. For
the deep learning methods (i.e., FCN and BP-GAN), our
results are better in visual detail quality. As can be seen
from Figs. 6 and 7, the results of FCN are accompanied with
noise and are blurred, and the synthesis results of BP-GAN
have many detail loss [see row two in Fig. 6(h) and row two

in Fig. 7(h)] and deformation [see Fig. 7(h)]. In Fig. 6 and 7,
we can find that the face sketch synthesis results of our RBLS
are much smoother than that of the traditional BLS. The results
synthesized by BLS are corrupted by noise and some details
are vague, while these problems are effectively addressed by
our proposed RBLS-based approach, which demonstrates the
effectiveness of our proposed sketch synthesis method.

Fig. 8 shows two detailed face sketch synthesis results with
enlarged views to demonstrate the advantages of our RBLS
synthesis. The first row of Fig. 8 shows a boy with two strands
of delicate hair from the CUHK student data set. From the
comparison of the enlarged views of the critical hair region,
we can see that only our synthesis result offers clear hair
structures. All the other methods could not restore the delicate
hair structures well. The second row of Fig. 8 shows a young
girl with a neat collar from the AR data set. All the methods
except BLS and our RBLS could not preserve the neat collar
structures. While BLS introduces many noises, our RBLS
restore clear collar structures are the original photograph and
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Fig. 9. Extended comparison of face sketch synthesis results on the CUHK
student data set. From left to right: input face photograph, PS2-MAN [16],
Uni-Net [19], Col-Nets [19], Col-cGAN [19], our proposed RBLS, and ground
truth drawn by artists.

the sketch by an artist while significantly reducing noises.
At the same time, our proposed RBLS synthesis also offers
clear details for the mouth, eyes, eyebrow, and hair of the girl,
which shows the robustness of our RBLS-based face sketch
synthesis.

B. Extended Sketch Synthesis

Since the key advantages of our proposed RBLS approach
lies in the efficient high-quality face sketch synthesis, we fur-
ther test the effectiveness of our RBLS method on dif-
ferent data sets in comparison with more state-of-the-art
methods, i.e., PS2-MAN [16], Uni-Net [19], Col-Nets [19],
Col-cGAN [19], FCN [13], LR [12], BP-GAN [4],
Fast-RSLCR [18], and SuperLLC [20]. Fig. 9 shows more
extended comparison results of face sketch synthesis on
the CUHK student data set. In Fig. 9, we compare our
proposed RBLS face sketch synthesis with PS2-MAN [16],
Uni-Net [19], Col-Nets [19], and Col-cGAN [19]. The first
row contains a man in relatively good lighting conditions,
and the other three rows have a bit darker lighting condition.
In all four cases, our RBLS synthesis provides realistic face
sketch synthesis results. PS2-MAN tends to produce unnec-
essary noises around the boundary areas (e.g., noses and
necks), Uni-Net has some distortions in the collar regions,
Col-Nets generated overly highlighted wrinkles (e.g., the face
on the second row), and Col-cGAN generally has good visual
effects but also produces some distortions in the collar regions
(e.g., the last three rows). Our RBLS excels in the term
structure details, especially good at preserving detailed subtle
structural information such as hair structures.

In addition, we have utilized more data sets to test our
RBLS approach, i.e., CUHK Face Sketch XM2VTS and
CUHK Face Sketch FERET (CUFSF). The XM2VTS and
CUFSF databases contain face sketches with relatively shape
exaggeration designed by artists. The CUFSF data set contains
1194 pairs of face photograph and face sketch, and the

Fig. 10. Extended comparison of sketch synthesis on the XM2VTS data
set. From left to right: input face photograph, ground truth drawn by artists,
FCN [13], LR [12], BP-GAN [4], Fast-RSLCR [18], SuperLLC [20], and our
proposed RBLS synthesis.

Fig. 11. Extended comparison of sketch synthesis on the CUFSF data set.
From left to right: input face photograph, ground truth drawn by artists,
FCN [13], LR [12], BP-GAN [4], Fast-RSLCR [18], SuperLLC [20], and
our proposed RBLS synthesis.

XM2VTS data set consists of 295 pairs of face photograph
and face sketch. We utilize the leave-one-out method to
test our RBLS synthesis on the XM2VTS data set, while
we utilize half pairs for training and half pairs for testing
for applying our RBLS synthesis on the CUFSF data set.
Fig. 10 shows more results of our proposed RBLS synthesis
on the XM2VTS data set in comparison with FCN [13],
LR [12], BP-GAN [4], Fast-RSLCR [18], and SuperLLC [20].
Fig. 11 shows more results of our proposed RBLS synthesis
on the CUFSF data set in comparison with these state-of-
the-art methods. From Fig. 10, we could find that our RBLS
results are of high-quality overall visual effects as good as
BP-GAN, but our approach outperforms the other state-of-
the-art methods in the ways of better-detailed structures (e.g.,
the hair). From Fig. 11, we could see that our RBLS synthesis
method offers comparable visual effects with the state-of-
the-art methods (e.g., BP-GAN, Fast-RSLCR, and SuperLLC).
Again, in terms of detailed structures like the hair regions,
our RBLS demonstrates its superiority. Please note that the
drawing styles of face sketches by artists for the CUFSF
database are not in a similar style with the CUHK Student, AR,
and XM2VTS databases. Therefore, all the generated sketch
results of Fig. 11 are of quite different styles compared with
results from the other three databases. We again show more
experimental results in comparison with some representative
methods on different data sets in Fig. 12. The extended sketch
synthesis experiments in Figs. 9–12 have demonstrated the
effectiveness and robustness of our RBLS face sketch synthesis
approach on different data sets.

C. Objective Image Quality Evaluation

In Sections VII-A and VII-B, the proposed method is
intuitively compared with some existing methods, and the

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 12:59:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: FACE SKETCH SYNTHESIS USING RBLS 11

TABLE I

SIMILARITY MEASUREMENT BETWEEN THE ESTIMATED SKETCH AND THE GROUND TRUTH

Fig. 12. Comparison with some representative methods for synthesizing
sketches on different data sets. The photograph in the first row is from
the CUHK data set. The photograph in the second row is from the AR
data set. The photograph in the third row is from the XM2VTS data set.
The photograph in the fourth row is from the CUFSF data set. (a) Input
photographs. (b) Results of the spatial sketch denoising (SSD) method [56].
(c) Results of the BP-GAN method [4]. (d) Results of the RL method [57].
(e) Results of the Fast-RSLCR method [18]. (f) Results of the SuperLLC
method [20]. (g) Results of the cascaded low-rank representation (CLRR)
method [58]. (h) Results of our RBLS.

conclusion that our method can preserve more details thus
giving better qualities is made. To be more convincing, in this
section, we use the sketches drawn by artists as reference
images and make objective evaluation by three objective image
quality measurement methods, namely MSE, peak signal-to-
noise ratio (PSNR), and structural similarity (SSIM). Table I
gives the average MSE, PSNR, and SSIM scores of the
estimated sketches on CUHK and AR. We also compared the
Scoot score [39], [40] on the CUHK data set and the feature
similarity (FSIM) score on the AR data set in Table I. As
mentioned above, the MSE is used as the loss function whose
values represent the loss of synthesis methods. As we can
see from Table I, the proposed method gives the minimum
loss both on the CUHK student data set and the AR data
set compared with the other methods. The PSNR and SSIM
are similarity measurements between the generated sketches
and the ground truth, which means that the greater the values
are, the sketches generated are more similar to the expected
results. The FSIM measures the FSIM, while the Scoot is a
perceptual similarity metric. We can find in Table I that our

Fig. 13. Average PSNR values for 100 test images of the CUHK data set and
average PSNR values for 43 test images of AR data set. The proposed RBLS
method is compared with the other seven methods, i.e., LLE [7], MRF [29],
MWF [54], LR [12], FCN [13], BP-GAN [4], and the standard BLS methods.
Results show that our method achieves a better image quality.

results give the maximum similarity and thus provide better
image qualities. Fig. 13 shows the average PSNR values for
the 100 test images of the CUHK data set and the average
PSNR values for the 43 test images of the AR data set. Fig. 14
shows the statistics of SSIM scores on the CUHK data set
and AR data set. The values of the y-axis are percentages
of synthesized sketches whose SSIM scores are not smaller
than the corresponding values of the x-axis. As we can see
clearly from Figs. 13 and 14, our approach outperforms the
other methods in most cases.

D. Face Sketch Recognition

An important application of face sketch synthesis is assist-
ing law enforcement, which matches the sketches of a sus-
pect with the photographs in the mug-shot database by face
sketch recognition. Thus, besides objective image quality
evaluation, face sketch recognition accuracy also reflects the
quality of synthesized sketches quantitatively. In this section,
the PCA-based face recognition method is employed to con-
duct face recognition experiments. The face photographs in
the gallery are first transformed into sketches by face sketch
synthesis methods, and then, the query sketch is matched with
the synthesized sketches. Table II gives the face recognition
accuracy of RBLS compared with several sketch synthe-
sis methods, including LLE [7], MRF [29], CM-based [30]
(denoted by CM in Table II), FCN [13], and the standard BLS.
We can find that our method achieves the best performance
both on the CUHK student data set and AR data set, which
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Fig. 14. SSIM scores on the CUHK data set and AR data set. (a) Results on CUHK data set. (b) Results on AR data set. The proposed RBLS method is
compared with other seven methods, including the standard BLS, FCN [13], BP-GAN [4], LLE [7], LR [12], MRF [29], and MWF [54] methods. The values
of the y-axis are percentages of synthesized sketches whose SSIM scores are not smaller than the corresponding values of the x-axis. Experiments show that
our method provides a better image quality.

TABLE II

COMPARISON OF THE RANK ONE FACE SKETCH RECOGNITION
ACCURACY ON THE CUHK AND AR DATA SETS

demonstrates the effectiveness of our method. As for LLE and
MRF methods, the image is blurred by the linear combination
and average of sketch patches, which leads to image quality
deterioration. The CM-based method imitates the drawing
process of artists and decomposed a face into components.
In this way, the synthesis quality can be improved to a
certain extent. However, its performance is still limited by the
drawbacks of data-driven methods. For model-driven methods,
although they overcome the weakness of data-driven methods,
their performance is limited by the small training samples and
unknown noises. Through our method, various experiments
have shown that our method well improves performance.

E. Time Complexity

As previously mentioned, the great advantages of our
method are the generalization capability in function approxi-
mation and the ability for fast training and remodeling. The
aforementioned experiments have demonstrated the excellent
performance of RBLS in approximating the nonlinear func-
tion, which maps face photographs into sketches from both
subjective and objective aspects. In this section, the time
complexity is discussed to show another advantage of the
proposed method. Compared with most of the data-driven
methods based on neighbor selection to synthesize a sketch,
the proposed method takes much less time. Even taking into
account the training time, the total synthesis time is about
70 s for the 88 training pairs and the 100 test photographs
on the CUHK student data set. Meanwhile, our RBLS could
offer a better synthesis quality efficiently, while other methods

usually take hundreds of seconds to synthesize only one
sketch. This is mainly caused by the time-consuming part of
data-driven methods, namely, the neighbor selection process
whose complexity is related to the number of training pairs
and patches.

Compared to most deep learning-based structures, such as
CNN, FCN, and BP-GAN, the proposed method can save
a lot of time in the training process, which only consumes
30 s for 100 training pairs in a regular PC, while the deep
structures usually take several hours even on a GPU with
high performance. This mainly benefits from the flat structure
of RBLS. Thus, there is no need for the iterative parameter
optimization process with complex error backpropagation,
which saves much time. The time complexity is proportional
to the numbers of filters or feature mappings. Table III gives
the timing performance results on the CUHK student data
set using an incremental learning algorithm for incremental
feature mapping. The initial number of feature mappings is set
as 3. To improve the performance and find the best network
structure, the number of filters (namely feature mappings) is
increased. With the proposed increment learning algorithm,
the remodeling process saves a lot of time. This is mainly
because, for deep structures, model selection and hyperpara-
meters setting are usually done artificially and empirically.
Thus, once the hyperparameters are changed, a complete
retraining process is necessary to remodel the network, which
consumes most of the time in modeling. However, in the
RBLS, the hyperparameters can be adaptively set to improve
the network at a fast speed by incremental learning.

F. Parameter Analysis

When applied to the sketch synthesis problem, the proposed
network based on RBLS has two network parameters: filter
number n and filter size s for feature extraction. In this section,
we use the CUHK student data set to discuss the situation
when using different sizes of filters. Then, the results of the
incremental learning algorithm are given to analyze the perfor-
mance of different numbers of filters. For simplicity, we use
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TABLE III

TIMING PERFORMANCE OF OUR RBLS INCREMENTAL LEARNING ON THE CUHK STUDENT DATA SET

TABLE IV

USER STUDY RESULTS

Fig. 15. Average PSNR values for different numbers of filters n when s = 5,
s = 7, and s = 9.

the notation n_s_s to represent the proposed method based on
RBLS with n filters with the size of s × s during the process
of feature nodes construction and the process of enhancement
nodes construction. Fig. 15 shows the performance when using
different filter sizes. We can see from Fig. 15 that, as the
filter size is increased, so does the average PSNR value, which
means better synthetic image quality. However, when the filter
size is increased close to 9, the performance does not improve
a lot. Overall, we find that appropriately increasing the filter
sizes can improve the performance, but the improvement is
limited to a certain extent, which may be caused by the
network structure that can be viewed as a two-layer perceptron.
Theoretically, in the case that the filter size is equal to 1,
the feature nodes and enhancement nodes are constructed
by feature components independently. However, when the
filter size is larger than 1, the conversion process combines
the neighborhood information. The experimental results have

shown that feature vectors are related to their neighbor feature
components, which is consistent with the theoretical analysis.

As mentioned above, the performance of the RBLS was lim-
ited by the two-layer network structures. An intuitive approach
to improve the performance is to increase the number of nodes
in the network by increasing the number of filters. Fig. 15
shows the experimental results of using different numbers of
filters for face sketch synthesis on the CUHK student data
set. As shown in Fig. 15, the performance is improved as
the number of filters increases as expected in a certain range.
However, continuing to increase the number of filters leads to
performance degradation. This is because when the number
of filters is larger, a lot of unnecessary feature information
is extracted. The information will corrupt the final synthesis
sketches and make the RBLS overfitting.

G. User Study

We perform both quantitative and qualitative user study
evaluations to test the performance of sketch synthesis results.
One aspect is the recognition speed (s) of users. For each test
photograph, users are provided with six different sketches.
We record the time users took to identify the exact person.
Another aspect we test is the retention percentage for users.
After a fixed time, users are again provided with the sketches
to check whether they can figure out the identities. We record
the mean value of the two aspects. The two aspects (recogni-
tion speed and retention) are evaluated in long- and short-term
manners. Short term denotes the first time we conduct the
test. Long term denotes the same test making two weeks later.
Again, we require the users to describe the attractiveness of
the sketches as: “High,” “Medium,” or “Low,” We studied
three groups of such sketch test, each with six different
sketches. The user study results are shown in Table IV.
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From Table IV, we can see that our sketches surpass
BP-GAN [4] and MWF [54] approaches in both retention
(short term and long term) and recognition speed (short term
and long term). Users also consider our sketches with high
evaluation for attractiveness.

VIII. CONCLUSION AND FUTURE WORK

In this article, we propose a new face sketch synthesis
approach via the RBLS. The core of this system is a flat
network with the advantages of fast modeling and remodeling.
To make full use of the 2-D information of photographs,
we extract image features by convolution. Besides, the incre-
mental learning algorithm is proposed to adaptively refine
the network for fast remodeling, and a regularized algorithm
via Bayesian estimation is utilized to further improve the
generalization ability and robustness. Experiments have shown
that the synthesized sketches have good perceptual quality with
more details preserved compared with traditional data-driven
methods. In comparison to deep learning-based methods,
the proposed RBLS approach can synthesize comparative
sketches with a faster speed due to the time-saving training
and remodeling. In summary, our proposed RBLS synthesis
provides a better choice for face sketch synthesis in practical
use.

Our RBLS synthesis still has its limitation. The results
generated by our approach may not be fully satisfactory when
the facial structures/poses are too complicated. We will work
on to solve such complications as our future work. We will
also utilize the latest face registration methods to enhance
the spatial correspondence between the face photograph and
the face sketch for more general applications. Some of the
generated face sketch results using our RBLS approach may
have horizontal bar artifacts and may not be fully satisfactory,
especially when dealing with complicated scenarios. In the
future, we will work on coprocessing and/or postprocessing
to solve such complications. Inspired by Zhang et al. [59],
we will also try to use scribbles locating key components of
face image for aiding to get better visual quality. Besides,
we attempt to utilize local edge information of facial features
to guide the face sketch synthesis like [60] so that the
spatial consistency can be ensured. Existing data sets for face
sketch synthesis mainly contain well-positioned front faces,
and however, scenes are usually complex in the wild. Thus,
like [61], we will consider building a new face data set of
complex scenes and evaluate existing face sketch synthesis
and the proposed method on the new data set. Handling images
with depth has been a new trend [62], and we will also extend
our proposed method to face images with depth, which means
that we will try to create a data set of face images with depth.
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