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Deep Color Guided Coarse-to-Fine Convolutional
Network Cascade for Depth Image
Super-Resolution

Yang Wen, Bin Sheng™, Ping Li*, Weiyao Lin

Abstract—Depth image super-resolution is a significant yet
challenging task. In this paper, we introduce a novel deep
color guided coarse-to-fine convolutional neural network (CNN)
framework to address this problem. First, we present a data-
driven filter method to approximate the ideal filter for depth
image super-resolution instead of hand-designed filters. Based on
large data samples, the filter learned is more accurate and stable
for upsampling depth image. Second, we introduce a coarse-
to-fine CNN to learn different sizes of filter kernels. In the
coarse stage, larger filter kernels are learned by the CNN to
achieve crude high-resolution depth image. As to the fine stage,
the crude high-resolution depth image is used as the input so
that smaller filter kernels are learned to gain more accurate
results. Benefit from this network, we can progressively recover
the high frequency details. Third, we construct a color guidance
strategy that fuses color difference and spatial distance for depth
image upsampling. We revise the interpolated high-resolution
depth image according to the corresponding pixels in high-
resolution color maps. Guided by color information, the depth
of high-resolution image obtained can alleviate texture copying
artifacts and preserve edge details effectively. Quantitative and
qualitative experimental results demonstrate our state-of-the-art
performance for depth map super-resolution.

Index Terms—Depth super-resolution, color guidance, coarse-
to-fine convolutional neural network, filter kernel learning.

I. INTRODUCTION

MAGE super-resolution (SR) refers to construct a potential
high-resolution (HR) image from a low-resolution (LR)
depth image, and has been widely applied in medical
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images [1], [2], digital image enhancement [3], [4], video
surveillance [5], [6], etc. Since deep neural networks have
been demonstrated very effective for many computer vision
tasks by extracting useful semantic information from abundant
data, diverse deep neural networks based SR methods have
been developed. Typically, Super-Resolution Convolutional
Neural Network (SRCNN) [7], Super-Resolution using Very
Deep convolutional networks (VDSR) [8], and Deep Edge
Guided REcurrent rEsidual (DEGREE) [9] algorithms use
deep CNN to learn the end-to-end mapping between the
low/high-resolution images for color image super-resolution.
With the rapid development in the 3D imaging fields, reliable
depth information generated by the consumer 3D scanning
devices has captured the attention of researchers in various
applications, e.g., interactive free-viewpoint video [10], 3D
reconstruction [11], semantic scene analysis [12], [13], and
human pose recognition [14], [15]. It mainly contains two
major classes of depth measuring methods to obtain depth
information, which are passive and active sensors [16], [17].

For passive sensors, the most famous and widely used stereo
matching methods [19], [20] are always time consuming and
imprecise in textureless or occluded regions instead of active
sensors which can produce more accurate results. Nowadays,
the two popular active sensors are Laser scanners and Time-of-
Flight (ToF) sensors. Even though Laser scanners can generate
the depth map with high-quality, they can only measure a
single point at a time and their applications are subject to
environmental restrictions. Compared with Laser scanners,
ToF sensors are cheaper and have the function of capturing
the depth maps of the fast-moving objects. Although these
advantages make ToF sensors get more attention, they are
still limited in resolution and random noise. For instance,
the resolution of MESA SR 4000 and PMD CamCube 3.0 are
only 176 x 144 and 200 x 200, respectively [16]. To promote
the use of depth information and meet the actual needs, Depth
image Super-Resolution (DSR) is proposed to manufacture a
visually satisfactory high-resolution depth image from a low-
resolution depth input based on traditional super-resolution
methods.

Most of the recent DSR methods propose to utilize an addi-
tional aligned high-resolution color image of the same scene
captured by the RGB-D cameras as assistance [18], [21]-[27].
For example, in [28], a manually-designed edge-preserving
filtering kernel is applied to propagate the local color infor-
mation to the depth image with the assumption that the color
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Fig. 1. Ambiguity and discontinuities in upsampling depth map. (a) Color
image. (b) Ground-truth. (c) (Enlarged) LR depth map downsampled by a

factor of 8. (d) Guided image Filtering (GF) [18]. (e) SRCNN [7]. (f) Our
proposed method without edge ambiguity and discontinuities.
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edges aligned well with the depth edges. However, artifacts
including edge blurring and texture copying may occur when
the assumption is violated. First, if smooth regions having rich
color texture, texture information would be transferred to the
upsampled object surface. Second, if color edges do not align
well with the depth edges, the upsampled object boundary
would be ambiguous via inappropriate color engagement.
In fact, the optimal guidance is indeed the ground-truth high-
resolution depth image. However, due to the inevitable noise
of the equipment, the theoretical precision of the optimal
guidance cannot be achieved in practical applications.

Motivated by the fact that color information can provide
valuable guidance for image super-resolution and the success
of deep CNN models in modeling complex image details,
we present a novel deep color guided coarse-to-fine CNN to
learn ideal filter for depth map SR. For a LR depth map,
we employ bicubic interpolation to estimate its initial HR
version firstly. Since pixels in depth discontinuity regions are
regarded as uncertain ones, we modify them according to
the pixels of the corresponding positions in HR color image
so that both color and depth images are considered. Then,
we learn an edge-preserving filter kernel by deep CNN on
an external database to upsample the low-resolution depth
images instead of traditional handicrafts. The use of deep
CNN can better extract the mutual information between the
LR depth image and the HR color image. This is the reason
why the proposed data-driven filters can better approximate
the ground-truth high-resolution depth image. For example,
Fig. 1 shows several popular edge-preserving filter based
upsampling methods. Fig. 1(a) and Fig. 1(b) present the high-
resolution color image and the ground-truth map respectively.
Fig. 1(c)-Fig. 1(e) are HR depth maps obtained by other
filter methods, Fig. 1(f) is the result of our proposed method.
Fig. 1 demonstrates that our performance is out-performed
and can effectively reduce the texture copying effect and edge
discontinuity effect (especially in color regions). Our work
makes the following three main contributions:

o Significant Color Guidance: We integrate both HR
image’s color prior [29] and LR image’s depth prior
to guide low-resolution depth map upsampling. Since
the edge information of the marginal areas in the inter-
polated HR depth image is always inaccurate, we first
use canny operator to detect and expand the edge of
the interpolated HR depth image to obtain the marginal
areas, and then obtain the approximate depth value by
HR’s color information and the corresponding LR’s depth
information. The color guidance can improve the quality
of the interpolated depth image and optimize the learned
filter by combining HR’ color information and LR’ depth
information. It can also accelerate the network conver-
gence by subtracting the approximate depth value from
the interpolated depth image based on the idea of residual
learning [8], [9].

o Efficient Deep Cascade Structure: We introduce a
deep coarse-to-fine network cascade model to solve
depth image super-resolution problems. In the coarse
stage, a convolutional neural network is designed to
obtain larger filter kernels. Benefiting from the network,
the data-driven filter learned improves the quality of depth
image SR significantly. In order to achieve more details,
we learn a series of smaller kernels in the fine stage to
reduce filtering range. Combining two stages can give a
recovered HR depth image with high-quality and sharp
high-frequency details.

o Especial Data-Driven Upsample Filter: We propose the
concept of ideal filtering and design an edge-preserving
filter via deep convolutional neural networks for depth
map upsampling. The filter we learned can obviously
avoid complicated artificial designs and approximate the
ideal filter effectively. Experiments show that it achieves
better performance compared to state-of-the-art methods.

II. RELATED WORK
A. Single Image Super-Resolution

Image super-resolution is one of the most active research
topics in computer vision. Generally, there are mainly two
different types of approaches for image-super resolution.
(1) Single image super-resolution methods generally rely on
image priors to generate a HR image. Although the calculation
is simple, they cannot restore the high-frequency details very
well. For instance, Yan et al. [30] employed gradient profile
sharpness to realize SR. (2) Image super-resolution with
external data methods usually learn dictionaries, regression
functions or end-to-end mapping between the HR images and
their down-sampled LR versions. In [31]-[34], sparse rep-
resentation methods learned a couple dictionary to represent
LR image patches. Deep neural networks based methods deal
with SR problems in various ways. Moreover, Dong et al. [7]
directly learned an end-to-end mapping between the low/high-
resolution images using deep CNN. Wang et al. [35] incor-
porated the sparse prior into CNN by exploiting a learned
iterative shrinkage and thresholding algorithm. Though these
methods have a significant effect on single image super
resolution, they are not very suitable for depth maps because

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:36:10 UTC from IEEE Xplore. Restrictions apply.



996

they will still generate blurry artifacts at the edges and cannot
deal with depth image super-resolution problems very well.

B. Depth Image Super-Resolution

Depth map SR methods can be grossly divided into learn-
ing based and filtering based methods. For learning-based
ones, Diebel and Thrun [36] conjugated a Markov Random
Field (MRF) and gradient method to upsample LR depth
map. Ferstl et al. [37] considered depth map upsampling as
a convex optimization issue with higher order regularization.
It is demonstrated that an additional high-resolution color
image is very useful for depth SR. However, Learning-based
methods are often limited in application because of their high
computational complexity. For filtering-based ones, Guided
Filter (GF) [18] was used as an edge-preserving smoothing
operator like the popular Bilateral Filter (BF) [22] which
calculated the edge-smoothing output via both the spatial
and intensity domain information. Although GF [18] could
keep the edges well and compute easily, it also suffered
from halo artifacts sometimes. Gradient domain guided fil-
ter [38], [39] could keep edge better by adding an explicit first
order edge sensing constraint. Joint Bilateral Filter (JBF) [29]
employed an additional guidance to improve the quality of the
input target image taken from a dark or noisy environment.
Hua et al. [40] approximately applied the filtering procedure
with local gradient information of the depth image with the
guidance of a HR color image. Yang et al. [24] employed
edge-preserving filters like JBF to upsample a depth image
with an additional color image. These methods are based on
the assumption that local pixels with similar color will have
similar depth value. However, sometimes this assumption is
unfounded: (i) texture copying artifact may occur in textured
color and textureless depth; (ii) blurry edges will occur on
textureless color and textured depth or when the color and
depth edges are not aligned well. Chan et al. [21] proposed a
noise-aware filter and use the input depth values as guidance
in geometrically smooth region and color image as guidance
in depth discontinuities. It can suppress texture copying but is
still suffering from blurry edge.

Recently, color guidance pre-processing aims to employ
a pre-aligned high-resolution color image to guide the low-
resolution depth map upsampling. For instance, image guided
depth upsampling using anisotropic Total Generalized Vari-
ation (TGV) [37] and high-quality depth map upsampling
for 3D-ToF cameras Non-Local Means (NLM) [41] are also
very classical color assisted depth image super-resolution
approaches. Anisotropic Total Generalized Variation Net-
work (ATGV-Net) [42] modelled the piecewise affine struc-
tures apparent by a variational method. Song et al. [43]
used both the statistics of the depth field and the local
correlation between the color map and the depth map.
Hui et al. [44] proposed a Multi-Scale Guided convolutional
Network (MSG-Net) for depth map super resolution. Since
color information is vital to depth image SR for providing
the edge guidance, we have applied the high-resolution color
image as supporting information so that pixels with different
depth can be weighted differently according to the color
value during the upsampling process. In view of the excellent
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performance of CNN on depth map upsampling, it is now
gradually combining color image to solve DSR problems.
Since traditional filter based DSR method cannot recover high
frequency details effectively, here we use the cascade CNN
network and additional HR color images to train the ideal
upsampling filter.

III. PROPOSED METHOD

In this paper, we propose a meaningful framework to deal
with the low-resolution depth image upsampling issue. Fig. 2
shows the proposed architecture. It mainly includes three
components: color guidance pre-processing, coarse stage for
DSR, fine stage for DSR. In the color guidance part of
Fig. 2, an input low-resolution depth map is interpolated to
be an initial high-resolution version firstly. Then, since the
high frequency components of color images such as edges
are propitious to assist the depth pixel prediction, we modify
the uncertain interpolated depth values in marginal areas to
solve the edge discontinuity and texture copying problems.
Firstly, we obtain the edge by Canny operator and then dilated
it by 5 pixels. After that, local real depth constants are
computed according to the minimum difference between the
central pixel and neighboring pixels in color image. At last,
the local real depth constants are subtracted from the initial
high-resolution depth version based on the residual learning
idea. For coarse stage, since learning-based methods are very
powerful to generate plausible details from external database
meanwhile suppress artifacts, we learn larger filter kernels by
a three layers CNN model, and then the kernels are used
to reconstruct the high-resolution depth image named HR
Depth_1. As shown in Fig. 2, the fine stage is prone to generate
more fine details based on the HR Depth_1 for the reason that
more shape edges can be preserved by smaller local area. Since
HR Depth_1 has higher resolution than the original version,
if as fine network input, the higher depth map can be achieved
via the fine network, and at the same time, the MSE between
different HR depth images can be used to judge whether the
network converges or not.

In this section, we first briefly introduce edge-preserving fil-
ters methods for depth image super-resolution in Section III-A,
and then we present the proposed color guided CNN-based
DSR in Section III-B, and illustrated how to build deep coarse-
to-fine convolutional network cascade for depth image SR in
Section III-C. Finally, the details of the proposed network
model are discussed in Section III-D.

A. Filtering-Based Depth Super Resolution

According to the Subsection II-B, it has been demonstrated
that filter-based methods with the guidance of an additional
high-resolution color image have a remarkable performance
for upsampling a low-resolution depth image. In this paper,
we introduce a concept of the ideal filter for upsampling and
design an approximate ideal filter to realize the depth map
super-resolution. Universally, the filtering-based DSR can be
formulated as follows:

D, = z (wp,gLq,)/ Z Wp.q (1)

q,€Q)p q€Q
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Fig. 2. Conceptual illustration of our framework. It mainly includes three parts: color guidance, coarse stage, and fine stage. In the color guidance part, we first
interpolate the LR depth image by bicubic algorithm to obtain the initial HR depth image, then we detect the edges of the interpolated high-resolution depth
map by canny operator and dilate the edges by five pixels to determine the marginal areas. To calculate the approximate depth value, both the neighborhood
information determined by HR color image and the depth information of LR depth image are utilized. Finally, we subtract the approximate depth from the
marginal area of the interpolated high-resolution image. In the coarse stage, the modified interpolated HR depth map is used as the input of CNN to generate
the approximate ideal filter, which is named Kernels_1 in the figure. Then the coarse HR depth_1 map can be constructed by filter_1. In order to recover better
details, the coarse HR depth_1 is used as input for the fine CNN. Through the fine CNN, smaller kernels are obtained to consider smaller neighborhood and
recover better resolution HR depth_k. MSE is used to judge the convergence of network, the network can be considered convergent if MSE is small enough.

where D and L denote the upsampled depth image and the
input low-resolution depth image respectively, g denotes the
coordinate of pixels in image D, g, denotes the corresponding
(possibly fractional) coordinates of ¢ in the image L. w4
represents the edge-preserving filter kernel €, centered at
pixel p. If G denotes the guidance image, then the joint
bilateral filter kernel can be described as:

Il p,aqll | Gp, Gy
oy 205

Wp,qg = exp(— ) (2)
where og and op are two constants to adjust the spatial
similarity and range (intensity/color) similarity. 1,11 denotes
the distance between two constants. Fig. 3(c) presents the
joint bilateral filter kernel computed with high-resolution color
image in Fig. 3(b) when o5 = 10 and o = 10.

Since the joint bilateral filter has limitations when the
color edge is not consistent with the depth edge, as shown
in Fig. 3(c). We introduce the ideal filter kernel shown
in Fig. 3(d), it is defined as that when the ground-truth
high-resolution depth image is used as guidance. Fig. 3(d)
presents the corresponding filter kernel when og = +00 and
or = 5. Theoretically, os/og should be infinitely large/small
to maximize/minimize the contribution from correct/incorrect
depth seeds. However, og is set to a relatively small value
to suppress inevitable depth noise in practice and og is set

ey | o
5

(@)

(@

Fig. 3.  Filter kernels. The first row presents the database without well-
aligned color or depth edges. (a), (b) and (f) are the input depth image, color
image, and ground truth depth image, respectively. In (c), the Joint Bilateral
Filter (JBF) (with the color as the guidance) can well approximate the ideal
filter kernel (Refer to Section III-A for details); In (d), kernels computed with
the guidance of the ground-truth depth in (f). The color represents the filter
weights. Red color corresponds to large weights while blue represents small
value. The last two rows present two databases when the color edges are
different from the depth edges, it can be seen that the joint bilateral filter
kernel will be quite different from (d). While our proposed method can learn
a much better approximation of the ideal filter kernel as shown in (e).

© ®

to infinitely large to ignore the spatial similarity. Recently,
the deep convolutional neural network has been demonstrated
to be very effective for extracting useful features with better
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performance than most manually-designed features. Inspired
by this, we aim to use deep CNN to learn the ideal filter kernel
for DSR. Especially, the end-to-end mapping relationship
between patchg and its corresponding filter kernel w, based
on deep CNN can be directly described as:

wy = fenn(patchl)) 3)

where H denotes the bicubically-upsampled version of input
low-resolution depth image L, while patch;’ denotes a
p-centered block of image H. The above formulation is a
direct application of CNN for filtering based DSR. It sounds
like a natural solution. However, its performance is far from
expectations because that depth images are normally noisy
without color information.

B. Color Guidance With High-Resolution Color Image

To solve the problem of lack of color guidance, as discussed
in Sec III-A, we use an additional HR color image as guidance
for pre-processing and approximating the ideal filter. The color
guidance process mainly consists of five steps. First, we obtain
the initial HR depth image by bicubic interpolation method
from LR depth image. Second, we mainly detect the edge of
the initial HR depth image by canny operator. Third, we inflate
the edges detected by the canny to determine the marginal
areas. Fourth, for a neighborhood centered on a pixel p in the
marginal area of the initial HR depth image, we find a set of
pixels with similar colors in the corresponding region of the
HR color image and determine the location of the pixel ¢ that
has the most similar color with the pixel p. Finally, we find
the pixels corresponding to the position of pixel g in the LR
depth image, and d,, is the depth value of the pixel p.

Let patchg denotes a local patch of the high-resolution
guidance image G (e.g., the color image) centered at pixel p,
one simple solution is feeding both patchg and patchg to
the networks, and it can be simply described as:

wy = fenn (patchll, patch() “

In order to reduce the amount of computation with the help
of color image information, we draw on the idea of residual
network [8], [45]. we modify the uncertain interpolated depth
value by subtracting a value represented by d), from patchg .
Theoretically, d;, should be the real depth value of the center
pixel p in patch’l, so the guided patch can be described as:

Gpatchg = patchg —d, ®)

where patchg denotes the interpolated high-resolution depth
image centered at pixel p, d, denotes the approximately real
depth value obtained by HR color image and LR depth image,
Gpatch ;’ denotes the interpolated depth image patch guided
by HR color image. However, the ground-truth depth image
is not available in practice and thus an approximation of d)
is proposed in this paper.

Let Zp denotes a candidate set and the p; denotes the
corresponding coordinate of pixel p in the low-resolution
image L. Zp is filled by the pixels around p, in L:

q €Ly, iflq,pll<2 (©6)
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Fig. 4. Constructed edge maps with an upscale factor of 2. (a) and (b) are
the ground truth depth image with its edge map. (c) Edge map of bicubic
upsampled depth. (d) Edge map of bicubic upsampled depth after using guided
filter [18]. (e) Edge map of bicubic upsampled depth after using gradient
domain guided filter [38]. (f) Edge map of our method.
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Fig. 5. Ilustration of color guidance procedure. (a) and (b) are the
ground truth high-resolution color image and low-resolution depth image.
(c) The initial high-resolution depth map after bicubic interpolation with
16x upsampling factor. (d) Expanded edge map of the initial high-resolution
depth image. (e) The guided initial high-resolution depth image. (f) Super-
resolution depth image of our method.

Then the color differences between these candidates are used
to find the best approximation of d:

dp = Larg@in|G;7Gp| @)
ileLp

where i is the corresponding coordinate of pixel i in the
low-resolution image L and G is the original high-resolution
color image. As shown in Fig. 4, especially in the red
box, we can see that edges extracted from the depth map
interpolated by bicubic contains obvious jagged edges, while
the edge maps of depth images after using guided filter and
gradient domain guided filter [38], [39] cannot be recognized.
It shows our result is most similar to the ground graph
relatively. Nevertheless, Section IV also demonstrates that this
simple integration outperforms the current state-of-the-art DSR
methods. The guiding depth modification process is shown
in detail in the Fig. 5. As shown in the Fig. 5, Fig. 5(a)
and Fig. 5(b) are the ground truth high-resolution color
image and low-resolution depth image, respectively. Fig. 5(c)
shows the result of the initial high-resolution depth map after
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bicubic interpolation with 16x upsampling factor. Fig. 5(d) is
the expanded edge map of the initial high-resolution depth
image. Fig. 5(e) is the guided initial high-resolution depth
image after subtracting the approximate depth value. Fig. 5(f)
shows the super-resolution depth image of our method. From
Fig. 5, we can clearly see that the proposed color guid-
ance method effectively protects the edge information of the
depth map.

C. Deep Coarse-to-Fine Cascade Architecture

As discussed above, with the color guidance, approximate
ideal filter kernels can be learned via a convolutional neural
network to reconstruct the HR depth image. However, the filter
size may have a relationship with the quality of reconstructed
HR image. For example, some depth values may only relate
to the values in very small neighborhoods, and large kernels
may affect the upsampling results sometimes. Besides, it is
generally believed that the more convolution layers, the more
accurate the reconstruction results are. Based on this assump-
tion, we consider using deep coarse-to-fine network to increase
the layer of the network and change the kernel size for depth
map upsampling.

The architecture of our proposed network mainly includes
coarse stage and fine stage. In both stages, the convolutional
neural networks are composed of three convolutional layers,
each layer followed by an element-wise activation function
layer applies a linear convolution to its input. Every convolu-
tional layer has a filter bank W of size 51 X sp X s3 X 54 and
an s4-dimensional biases vector B, where s; is the number
of its input feature maps, s4 is the number of its output
feature maps, s» x s3 is the spatial support of the convolu-
tional kernel. Intuitively, the convolutional layer applies sa
convolutions on image. Each convolution has a kernel size
of 51 X s x 53, and each element of B is associated with a
convolutional kernel (which is an output feature map). The
Rectified Linear Unit (ReLU) is used as the activation func-
tion [46] so that it can converge much faster while maintain
high quality [47], [48]. We refer to a convolutional layer
and its following activation layer as a block, and our single
CNN has three blocks. The i-th block can be expressed as a
function f;:

f,-(xi) =Xjy] = max(W; * x; + B;, 0) (8)

where x; is the output of block i — 1 and input of block i,
W; and B; is the learned convolutional kernel and the biases
vector of block i. Finally, the networks can be expressed as:

wy = fCNN(GPafChf)
= fewn(patchl) —dp)
= f(Ha(fi(patchll —dy))) ©)

The mapping function fcyy is represented by parameters 8 =
{Wi, B1, Wa, B2, W3, B3} which are learned by minimizing
the loss between the output w, of the network F; and the
ideal filter kernel ng. The Mean Squared Error (MSE) is

Network_2 \emmk k

Input Filter Inplﬂ mmm ‘

HR Depth_1 HR Depth_2
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Iniml Filter

HR Depth_k

Coarse Stage Fine Stage

(a) Coarse to Fine Cascade Network

a
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k
Input h Filter
'Y N

(b) Single Multilayers Network

Fig. 6.  Compare cascade network and single deep network. (a) is our
proposed cascade network, (b) is the single deep network with the same layers
as (a).

used as the cost function:
2
_ GT
10 = 23 [or —f7]|

_ %Z HfCNN(parchfj —d,) — wf;'THZ (10)
p

where, n is the number of training patches.

In this paper, we first use a CNN network to learn some
larger kernels to approximate the ideal filter kernels. With
the help of larger kernels, high-resolution depth version is
obtained. Since some depth values in the marginal area
only have relationship with small local neighborhood pixels,
we learn smaller filter kernels through the network. Besides,
since the input of the fine CNN is the better resolution depth
map, the reconstructed high-resolution depth image will have
better quality than the input one. With the help of the different
small size filter kernels, the optimal SR results can be obtained
when the MSE between the input and the output is small
enough.

J(O) = 5

1 2
2 2| wh =]
n
P

1 2
= =2 | fewn patenfl —dfy — 37| ap
P

where k is the index of the neural networks, w’l‘, is the k'" filter

obtained, patchgk and dllg denote the patch and real depth
constant of the k" high-resolution depth image respectively.
As shown in Fig. 6, each network can obtain one size kernel to
construct corresponding HR depth map. Since the convolution
operator, the kernels learned are smaller and smaller while the
input image of each network is better than that of the previous
network. However, for the single deep networks with almost
the same layers, only single size kernels can be obtained from
Fig. 6(b). Besides, the model of Fig. 6(b) is more complex to
be trained than Fig. 6(a). Experimental results in Fig. 7 also
demonstrate that the network architecture is more effective.
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Fig. 7. Quantitative comparisons on the Middlebury dataset 2005 in MAD. (a), (b) and (c) are the Book scene, Laundry scene and Reindeer scene seperately.
Three upsampling factors 4x, 8x and 16x are marked in orange, blue and green, respectively. SingleDeep is the result of the single deep neural network
(see Fig. 6) for DSR. Our_CS is the result of our coarse stage, while Our_FS1, Our_FS2 and Our_FS3 are the results of fine stages. All three scenes show
that Our results are better than that of SingleDeep network, and the MAD in our fine stages are also smaller than that of coarse stage.

D. Implementation Details

In the training stage of color guidance part, a patch pair

GT
p

and all the training patch pairs selected are around depth edges.
Depth edges of the ground-truth depth images are obtained
from Canny edge detector. They are dilated by 5 pixels to
locate the depth discontinuities. The training patch pairs are
then extracted from a pixel p only when p is inside these
regions with a stride of 6 pixels. Finally, over 40,000 training
patch pairs are extracted, and three CNNs corresponding to
three different upsampling factors (4x, 8x, 16x) are trained.

For the coarse stage, the size of patch;’ is set to 31 x 31.
The size of the filter bank of the three convolutional layers are
1 x8x8x64,64x3x3x32,and 32 x2 x 2 x 1 respectively.
Due to the convolutional operation, the output feature map of
a block will be smaller than the input feature map. According
to the filter spatial support of the three blocks, the size of the
output filter kernel w, will be 21 x 21. As a result, the size
of the ground-truth filter kernel will be also 21 x 21. The
cost function is minimized using Stochastic Gradient Descent
(SGD) and the parameters 6 = {Wy, By, W», B2, W3, B3} are
updated at step ¢ as follows:

{ patch® | w } will be extracted at a selected pixel position,

aJ (9)
"0
where r is the learning rate. We set the learning rate to
0.00001 without decay in our training. The weights in each
convolutional layer ({W;, W», W3}) are initialized from a zero-
mean Gaussian distribution with standard deviation 0.01. The
biases ({Bi, By, B3}) are initialized with constant 0. For the
fine stage, the convolutional layers and the size of filter kernels
are the same as that of coarse stage. Since the output image
patches reconstructed by coarse stage are smaller than the
original input ones, smaller kernels will be learned if the input
patches are smaller. By this way, the filter kernels learned via
the fine network will be smaller and smaller so that smaller
range can be considered when filtering. The training data are
generated using Algorithm 1.

o' =01 — (12)

IV. EXPERIMENTAL RESULTS

Dataset and Parameter Setting: To evaluate the perfor-
mance of our proposed method, we conducted experiments on

Algorithm 1 Generating the Training Data

Input: Low-resolution depth image L, high-resolution color
image GG
Output: Filter Kernel w,

1: Interpolate image L to achieved initial high-resolution
depth image H;

2: Obtain the edge of image H by “Canny” descriptor and
dilate the edge by five pixels to achieve the marginal areas;

3: for each pixel in marginal area of H do

4 Extract each patch patchf centered at p from the
marginal area of image H;

5: Compute approximate depth d,, via Eq. (6) & Eq. (7);

: Subtract d,, from each pixel p of patch;

7: For each point ¢ that has the distance less than 10
from the point p in the selected patch, obtain the weight
of pixel p regarded as the ground truth kernel wa;

8: end for

9: Combine each patch pair{patchll, w§™ }
pixel position from the external dataset;

at a selected

Middlebury 2003 datasets (including 4 scenes) [49], Mid-
dlebury 2005 datasets (including 6 scenes) [50], [51], and
ToFMark databases (including 3 scenes) [37]. Each scene
contains two views (left view and right view) with a depth
image and its aligned color image in one view. The color
images in the datasets are acquired by passive RGB-D cameras
and supposed to be available in both training and testing
stages. The ideal filter kernel will be computed from the high-
resolution depth images using Eq. (2) (by setting os to +00
and og to 5) as discussed in Section III-A. The low-resolution
depth images are obtained from the collected high-resolution
depth images using nearest-neighbor downsampling. The input
of our networks will be computed using Eq. (5) and Eq. (7)
as discussed in Section III-A. We collected 60 RGBD images
from Middlebury databases (6, 21 and 33 images are from
2001, 2006 and 2014 datasets respectively)) with deviation
1.5 and threshold of 0.35 for canny detector, and the input
image patches in first network is 31 x 31 for the scale = 4,
8, 16. Other parameters can be found in Section III-D.
Baseline Methods: Our DSR method was quantitatively
and qualitatively compared with the state-of-the-art methods.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 13:36:10 UTC from IEEE Xplore. Restrictions apply.



WEN et al.: DEEP COLOR GUIDED COARSE-TO-FINE CONVOLUTIONAL NETWORK CASCADE 1001
TABLE I
QUANTITATIVE COMPARISON ON THE MIDDLEBURY DATASET 2005 IN MAD WITH THREE UPSAMPLING FACTORS
Art Book Dolls Laundry Moebius Reindeer

4x 8% 16 x 4x 8x 16x 4x 8x 16x 4x 8% 16x 4x 8% 16x 4x 8% 16 x
Bicubic 10.58 19.59 35.15 | 3.80 8.15 1641 | 473 9.60 1949 | 742 14.82 26.77 | 452 938 1851 | 520 9.88 19.13
CLMEFO [54] 7.57 1672 3332 | 3.17 7.25 1693 | 397 9.65 1836 | 6.11 12.57 2535 | 403 840 17.60 | 460 9.71 18.26
CLMF1 [54] 8.12 17.28 33.25 | 327 725 16.09 | 404 876 1832 | 550 12.67 2540 | 4.13 842 17.27 | 465 996 1834
TGV [37] 5.14 1051 2137 | 248 4.65 1120 | 445 11.12 4554 | 6.99 16.32 53.61 | 3.68 6.84 14.09 | 4.67 11.22 4348
Guided [18] 9.97 1553 2843 | 3.68 6.52 13.07 | 446 7.63 1587 | 6.33 1190 20.26 | 478 7.88 14.84 | 5.16 8.11 1571
JBF [22] 336 873 21.69 | 405 10.18 19.94 | 398 1286 29.72 | 239 5.64 13.72 | 3.19 743 1578 | 3.89 13.94 27.15
Edge [41] 6.82 1349 2590 | 3.35 850 1932 | 290 6.84 1797 | 2.82 546 1357 | 372 736 14.05 | 2.67 6.22 16.80
JGF [53] 325 739 1431 | 2.14 541 1205 | 323 729 1587 | 2.60 454 8.69 336 645 1233 | 227 5.17 11.84
AR [52] 4.13 558 21.67 | 1.88 4.16 9.25 407 6.62 1150 | 3.51 5.19 11.12 | 2.14 557 1087 | 3.64 576 9.40
Tree [25] 396 524 9.74 577 722 1148 | 460 636 13.02 | 227 394 8.87 352 490 8.67 397 576 277
KSVD [34] 346 5.18 8.39 2.13 397 8.76 453 6.18 1298 | 2.19 3.89 879 2.08 486 8.97 2.19 576 12.67
CDLLC [55] 286 459 1753 1.34 3.67 8.12 461 594 1264 | 2.08 3.77 825 198 459 7.89 2.09 539 1149
JSRD [56] 257 435 6.79 1.27 3.16 793 278 5.67 12.19 | 198 298 798 1.87 432 7.64 203 439 9.83
Xie [26] 248 331 5.88 123 3.09 7.58 272 559 1206 | 1.62 2.86 7.87 1.88 429 17.63 197 431 927
PB [57] 312 6.18 1234 | 1.39 334 8.12 399 622 1286 | 2.68 562 11.76 | 1.95 4.12 8.32 6.04 12.17 21.35
SRCNN [7] 7.61 1454 23.65 | 2.88 798 1524 | 393 834 16.13 | 6.25 13.63 24.84 | 3.63 7.28 1453 | 3.84 798 14.78
ATGV-Net [42] | 3.78 3.78 9.68 548 7.16 1032 | 455 6.27 12.64 | 207 3.78 8.69 347 481 856 382 568 263
Song [43] 239 328 5.82 1.21 298 748 259 547 11.78 | 1.56 275 7.64 1.86 4.15 7.52 1.86 3.92 8.67
Wang [35] 7.83 1521 3132 | 3.19 852 1673 | 474 953 1937 | 6.19 12.86 2296 | 3.89 823 1658 | 3.59 7.23 14.12
MSG-Net [44] 231 431 8.78 1.21 324 17.85 239 486 9.94 1.68 278 7.62 1.79 4.05 7.48 1.73 293 7.63
Our_CS 228 427 8.61 1.35 351 8.04 2.01 453 1090 | 1.55 271 7.56 225 398 741 1.59 284 742
Our_FS 223 359 728 1.19 3.07 732 198 449 9.84 1.39 249 1735 218 391 741 1.51 279 6.58

TABLE 11
QUANTITATIVE COMPARISON ON THE MIDDLEBURY DATASET 2005 IN PE WITH THREE UPSAMPLING FACTORS
Art Book Dolls Laundry Moebius Reindeer

4% 8% 16 x 4x 8% 16 x 4x 8% 16x 4x 8x 16x 4x 8x 16x 4x 8% 16x
Bicubic 097 185 359 | 029 059 1.15 | 036 066 1.18 | 054 1.04 195 | 030 059 1.13 | 055 099 1.88
CLMFO [54] 074 137 295 | 028 051 1.06 | 034 066 1.02 | 050 082 1.66 | 029 0.52 1.01 | 0.51 0.84 1.51
CLMFI1 [54] 076 1.44 287 | 028 051 1.02 | 034 060 1.01 | 050 080 1.67 | 029 051 097 | 051 0.84 1.55
TGV [37] 0.65 1.17 230 | 027 042 0.82 | 033 070 220 | 055 122 337 | 029 049 090 | 049 1.03 3.05
Guided [18] 096 1.57 3.05 | 035 058 1.06 | 036 056 1.01 | 0.51 089 1.65 | 034 055 1.00 | 054 0.83 1.64
JBF [22] 055 1.08 226 | 038 071 140 | 041 082 1.80 | 033 061 133 | 033 068 144 | 045 090 1.77
Edge [41] 0.65 103 211 | 030 056 103 | 031 056 1.05 | 032 054 1.14 | 029 051 1.10 | 037 0.63 1.28
JGF [53] 047 078 154 | 024 043 081 | 033 059 1.06 | 036 064 120 | 025 046 0.80 | 038 0.64 1.09
AR [52] 049 064 201 | 022 037 0.77 | 0.34 050 0.82 | 034 053 1.12 | 020 040 0.79 | 040 0.58 1.00
Tree [25] 067 084 149 | 046 055 0.84 | 048 058 094 | 041 056 095 | 040 049 0.82 | 048 0.62 1.04
KSVD [34] 0.64 081 147 | 023 052 0.76 | 034 056 0.82 | 035 052 1.08 | 028 048 0.81 | 047 0.57 0.99
CDLLC [55] 053 076 141 | 0.19 046 0.75 | 031 053 0.79 | 030 048 096 | 027 046 0.79 | 043 0.55 0.98
JSRD [56] 051 070 137 | 0.17 039 0.72 | 029 051 0.76 | 029 047 094 | 024 043 0.76 | 039 0.53 0.96
Xie [26] 048 071 135 | 0.15 036 0.70 | 027 049 0.74 | 028 045 092 | 023 042 0.75 | 036 0.51 0.95
PB [57] 093 079 198 | 0.16 043 0.79 | 0.83 053 099 | 1.13 189 2.87 | 0.17 047 0.82 | 056 097 1.89
SRCNN [7] 063 121 234 | 025 052 097 | 029 058 1.03 | 040 087 174 | 025 043 0.87 | 035 0.75 147
ATGV-Net [42] | 065 081 142 | 043 051 0.79 | 041 056 052 | 089 037 094 | 038 045 0.80 | 041 0.58 1.01
Song [43] 047 070 138 | 0.17 038 0.72 | 026 048 0.76 | 027 044 093 | 024 045 0.75 | 034 0.50 0.96
Wang [35] 073 156 3.03 | 028 061 131 | 032 065 145 | 045 098 201 | 031 059 126 | 042 084 1.73
MSG-Net [44] 046 076 153 | 015 041 0.76 | 0.25 051 0.87 | 030 046 1.12 | 021 043 0.76 | 031 0.52 0.99
Our_CS 045 074 155 | 022 039 074 | 027 046 0.82 | 026 044 094 | 025 041 0.74 | 031 048 0.97
Our_FS 043 072 150 | 0.17 036 0.69 | 0.25 046 0.75 | 0.24 041 0.71 | 023 039 0.73 | 0.29 046 0.95

These methods can be separated into two categories: (/) color PB [57], SRCNN [7], MSG-Net [44], ATGV-Net [42],

assisted depth SR methods: JBF [22], Tree [25], AutoRe-
gressive (AR) [52], Guided [18], TGV [37], Joint Geodesic
Filtering (JGF) [53], Edge [41], Cross-based Local Multi-
point Filtering (CLMF) [54], Coupled Dictionary Learning
with Local Constraints (CDLLC) [55], Joint Super Resolution
and Denoising (JSRD) [56], MSG-Net [44], Xie et al. [26];
(2) single depth image upsampling methods: bicubic interpo-
lation method, Patch Based method (PB) [57], SRCNN [7],
Huang et al. [58], Super-Resolution via Sparse coding
(ScSR) [33], Wang et al. [35]. Most of the results from
these state-of-the-art methods are generated using the source
code provided by the authors. For the training-based methods

Song et al. [43] and Wang et al. [35], we adopt the released
model trained by the authors.

A. Quantitative Evaluation

For quantitative evaluation of cascade networks, we first
evaluate our results on Middlebury 2005 databases [50], [51]
with factors of 4, 8 and 16, respectively. To obtain LR
depth images, we firstly smooth and downsample ground truth
images. The evaluation metrics are two popular disparity error
measurement metrics: percentage of error pixels (PE) and
mean absolute difference (MAD). For both metrics, the smaller
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TABLE III
QUANTITATIVE COMPARISON ON THE MIDDLEBURY DATASET 2003 IN MAD WITH THREE UPSAMPLING FACTORS

Tsukuba Venus Teddy Cones

2% 4x 8% 2% 4x 8% 2% 4% 8% 2% 4% 8%
Edge [41] 235 444 695 | 044 090 265 | 3.12 627 13.73 | 3.26 7.18 14.38
TGV [37] 1.79 3.08 531 | 041 0.60 176 | 231 372 1751 2.54 434 8.17
ScSR [33] 327 6.5 9.17 | 071 143 342 | 376 7779 1586 | 443 933 17.35
KSVD [34] 248 430 678 | 059 122 3.5 | 297 517 893 397 645 1251
SRCNN [7] 299 552 864 | 071 130 323 | 398 692 14.12 | 499 8.64 16.18
CDLLC [55] 241 415 659 | 071 1.18 3.08 | 299 472 9.13 368 579 11.23
Huang er al. [58] | 3.53 6.20 932 | 0.67 145 361 | 388 7.37 1524 | 452 844 1538
PB [57] 1.57 252 3.69 | 039 0.66 183 | 413 803 1790 | 435 9.73 17.69
JSRD [56] 14 237 352|038 059 169 | 1.71 313 623 196 323 6.53
Xie [26] 1.27 236 350 | 037 054 162 | 1.61 3.11 6.18 .72 3.09 6.27
ATGV-Net [42] 1.52 241 359 | 040 063 176 | 535 537 7.62 4.63 574 7.36
Song [43] 125 223 349 | 039 053 160 | 1.63 3.10 452 1.71 3.05 437
Wang [35] 312 324 568 | 0.68 121 287 | 392 427 567 483 872 935
MSG-Net [44] 122 221 344 | 035 051 158 | 1.59 3.07 3.69 1.68 298 3.73
Our_CS 124 223 346 | 034 053 1.62 | 1.59 3.07 3.67 .71 292 371
Our_FS 1.16 2.18 342 | 033 051 156 | 1.58 298 3.58 1.64 289 3.70

TABLE IV

QUANTITATIVE COMPARISON ON THE MIDDLEBURY DATASET 2003 IN PE WITH THREE UPSAMPLING FACTORS

Tsukuba Venus Teddy Cones

2% 4% 8% 2% 4x 8 2X 4% 8% 2% 4x 8
Edge [41] 061 077 132 | 023 029 056 | 078 1.08 2.13 | 1.03 152 298
TGV [37] 053 071 1.18 | 0.17 024 043 | 0.75 083 1.62 | 0.83 1.13 223
ScSR [33] 0.64 082 1.62 | 029 038 0.64 | 090 1.18 231 | 1.15 145 284
KSVD [34] 0.51 066 1.09 | 023 030 059 | 0.70 092 2.07 | 091 1.15 228
SRCNN [7] 0.64 079 143 | 028 034 061 | 0.88 1.10 235 | 1.12 141 291
CDLLC [55] 048 061 098 | 021 027 053 | 0.67 0.85 159 | 085 1.07 2.12
Huang er al. [58] | 0.66 087 173 | 029 039 069 | 090 123 268 | 1.15 148 2.88
PB [57] 0.62 08 1.71 | 030 038 062 | 0.89 126 273 | 1.18 1.56 3.11
JSRD [56] 047 071 121 | 0.18 029 051 | 0.64 097 156 | 0.81 124 232
Xie [26] 045 067 1.09 | 0.19 029 049 | 063 095 151 | 0.76 1.16 2.14
ATGV-Net [42] 046 072 088 | 023 031 052 | 0.69 103 1.6 0.83 1.27 242
Song [43] 043 066 0.89 | 0.17 037 056 | 0.68 091 172 | 0.75 1.12 2.3
Wang [35] 0.65 068 0.83 | 026 034 0.69 | 0.75 124 3.01 1.856 1.35 4.86
MSG-Net [44] 041 062 075 | 0.14 034 057 | 0.65 082 276 | 0.73 1.06 222
Our_CS 043 065 073 | 0.14 026 044 | 0.63 0.80 1.67 | 093 1.08 231
Our_FS 039 061 0.71 | 0.12 025 044 | 061 0.79 142 | 0.71 1.05 2.09

TABLE V

QUANTITATIVE COMPARISON ON THE TOFMARK DATABASES [37] USING MAD METRIC WITH 4 x UPSAMPLING FACTOR

Tree [25] PB[57] SRCNN|[7] GF[18] JBF([22] TGV [37] KSVD[34] CDLLC[55] Xie[26] ATGV-Net[42] Song[43] Wang[35] MSG-Net[44] Our CS Our FS
Books 534 391 359 3.50 338 3.19 31l 2.86 274 283 2.64 3.62 261 254 251
Devil 15.07 344 259 241 285 244 232 221 222 2.16 218 263 211 207 201
Shark 1372 537 448 457 395 407 398 37 346 353 337 4.67 32 329 326
Average 1138 424 356 351 339 323 313 297 279 2.86 2.69 3.64 266 2.63 2.60

the better. Fig. 7 shows the comparison of our approach
with different numbers of fine network with three factors,
Fig. 7(a)-Fig. 7(c) show that different scenes have the similar
tendency. From Fig. 7, we can see that: (1) Comparing the
SingleDeep and Our_FS1 in Fig. 7, we can conclude that our
cascade architecture has better performance than the single
deep neural network (see Fig. 6) for DSR; (2) Comparing
the Our_CS and Our_FS1 to Our_FS3, the values of the
fine stage are smaller than that of the coarse stage. This
phenomenon proves that the cascade structure is effective;
(3) Comparing the Our_FS1, Our_FS2 and Our_FS3, we can

see that both indicators get better with the number of networks
increases. However, when the number of fine networks is
three, the performance gains are small while time-consuming
increases too large. Thus, considering the balance between
performance and time, we use only two networks at the fine
stage in practice.

In Table I and Table II, our proposed method is compared
with other 17 kinds of the state-of-the-art depth image super-
resolution methods on Middlebury dataset 2005. According to
Table III and Table IV, our results are compared with other
methods on Middlebury dataset 2003. If the disparity error of
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Edge preserving quality. Visual comparison with popular edge-preserving filtering based upsampling methods [18], [22], [25] were conducted.

(a) presents the high-resolution color image and the ground-truth disparity map. (b) and (c) are close-ups from (a). (d)-(g) are the close-ups of the disparity
maps upsampled using different methods and the corresponding disparity error maps (obtained with error threshold 1). Note that although edge-preserving
filters can all effectively maintain the edges, the accuracy is quite different. As can be seen from the binary error maps, the proposed method achieves the

best accuracy around depth discontinuities.
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Fig. 9. Visual comparison of upsampling images on Middlebury database (scaling factor = 4), the upsampling pixel errors are marked with red. (a) Color
image. (b) Ground truth. (c) Our Proposed. (d) AR [52]. (e) Bicubic. (f) CLMFO [54]. (g) CLMF1 [54]. (h) Edge [41]. (i) Guided [18]. (j) JBF [22].

(k) JGF [53]. (1) TGV [37]. (m) Tree [25]. (n) ATGV-Net [42]. (o) Song [43].

a pixel is larger than 1, it is treated as an error pixel. The
best performance in all the tables is marked in bold. From the
four tables, we can see that the proposed method almost out-
performs all the others on Middlebury datasets with all three
upsampling factors. MAD in Table I and Table III measures
mainly focus on average absolute error between reconstructed

HR depth maps and ground truth ones. As the result shows,
our approach is almost superior to other methods, including
both traditional filtering-based methods and learning-based
methods. Firstly, our color guidance manner can help to
maintain the edge of depth. Secondly, the filter we learned is
closest to the ideal filter for upsampling. Only very few values
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Fig. 10.  Visual comparison of upsampling images on Middlebury database (scaling factor = 8), the upsampling pixel errors are marked with red. (a) Color
image. (b) Ground truth. (c) Our Proposed. (d) AR [52]. (e) Bicubic. (f) CLMFO [54]. (g) CLMFI1 [54]. (h) Edge [41]. (i) Guided [18]. (j) JBF [22].

(k) JGF [53]. (I) TGV [37]. (m) Tree [25]. (n) ATGV-Net [42]. (0) Song [43].

Fig. 11.

Visual comparison of upsampling images on Middlebury database (scaling factor =

4“3‘»‘
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@ @ ©

o) (k)

16), the upsampling pixel errors are marked with red. (a) Color

image. (b) Ground truth. (c) Our Proposed. (d) AR [52]. (e) Bicubic. (f) CLMFO [54]. (2) CLMF1 [54]. (h) Edge [41]. (i) Guided [18]. (j) JBF [22].

(k) JGF [53]. (1) TGV [37]. (m) Tree [25]. (n) ATGV-Net [42]. (o) Song [43].

are not optimal for individual smooth area, that is because
that the training patches are mostly selected around depth
discontinuities areas, and our method is especially effective
for edge discontinuous regions.

PE in Table II and Table IV measures the percentage of
error pixels and thus all the inliers should be very accurate.
As the result shows, the performance of the classical filter-
based methods like Bicubic interpolation method will be not
very good, especially around depth edges. That is because
these filter-based methods cannot preserve the edges very well.
The performance of the proposed method is almost better than
other methods, including 4 x and 8 x. Only very few values are
slightly lower than the MSG-Net with the factor of 16x. The
reason is that our training data contains relatively little smooth
area information. Table V shows a quantitative comparison on

the ToFMark dataset [37] in MAD under 4 upsampling factors.
As shown in the table, our approach has the best performance
on all the three scenes of ToFMark dataset [37]. It also proves
that our approach always outperforms on all three datasets
comparing with other methods.

B. Qualitative Evaluation

Fig. 8 visually compares edge-preserving quality on sev-
eral popular edge-preserving filtering based DSR methods
[18], [22], [25] using the Art database. Fig. 8(a) presents reg-
istered color image and ground-truth high-resolution disparity
image. Fig. 8(b)-Fig. 8(c) present the color and ground-truth
disparity values of a close-up region where the color and depth
edges are not consistent. Fig. 8(d)-Fig. 8(g) are the disparity
values (of the close-up) upsampled using different methods
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and the corresponding disparity errors (obtained with error
threshold 1). The methods [18], [22], [25] mainly relies on
the color edges in the registered high-resolution color image
to preserve the depth edges. The accuracy drops when the color
edges are not always aligned well with the depth edges. The
proposed method uses CNN to learn a data-driven combination
of the color and depth information and thus is more accurate
around depth discontinuities. Fig. 9, Fig. 10 and Fig. 11 show
the comparison with a great many popular super-resolution
methods. To make the comparison clearer, we use red color
to mark the super-resolution error pixel. The less red dots,
the better. Among the figures, Fig. 9, Fig. 10 and Fig. 11
all show that the quality of our reconstructed super-resolution
depth image is better than that of other methods on the Middle-
bury dataset. We also can see that our approach generates more
visually appealing results than the previous ones, Especially,
in edge areas, our reconstruction effects are better. Besides,
our method not only has better reconstruction effect than
most current methods, but also has comparable running speed.
If just single scale CNN is used, the average running speed of
dataset Middlebury 2003 is 1.24 second. As cascading more
CNN, the reconstruction quality will improve at the expense
of running time. But the increased running time is acceptable
since we use a three-layer lightweight CNN.

V. CONCLUSION

In this paper, we propose to solve the depth super-resolution
problem via a cascade coarse-to-fine convolutional neural net-
work. First, we propose the concept of the ideal filter and use
the deep network to approach it. Through the coarse network,
large edge-preserving filters are learned to approximate the
ideal filters to obtain a rough depth map. Then, smaller
filtering kernels are learned to optimize results so that better
high-resolution depth image can be achieved progressively.
Besides, we use an additional registered high-resolution color
image as guidance to modify the uncertain interpolated depth
value so that it can achieve a better combination of the high-
resolution color and the low-resolution depth information.
Numerous experiments on different databases have demon-
strated the effectiveness of our proposed approach. In the
future, we will work on more challenging tasks such as super-
resolution problems with noisy depth inputs, we will also study
better color guidance for even high-quality effects generation.
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