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Optic Disk and Cup Segmentation Through
Fuzzy Broad Learning System

for Glaucoma Screening
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Abstract—Glaucoma is an ocular disease that causes
permanent blindness if not cured at an early stage. Cup-to-
disk ratio (CDR), obtained by dividing the height of optic
cup (OC) with the height of optic disk (OD), is a widely
adopted metric used for glaucoma screening. Therefore,
accurately segmenting OD and OC is crucial for calculat-
ing a CDR. Most methods have employed deep learning
methods for the segmentation of OD and OC. However,
these methods are very time consuming. In this article,
we present a new fuzzy broad learning system-based tech-
nique for OD and OC segmentation with glaucoma screen-
ing. We comprehensively integrated extracting a region
of interest from RGB images, data augmentation, extract-
ing red and green channel images, and inputting them to
the two separate fuzzy broad learning system-based neu-
ral networks for segmenting the OD and OC, respectively,
and then calculated CDR. Experiments show that our fuzzy
broad learning system-based technique outperforms many
state-of-the-art methods.
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I. INTRODUCTION

G LAUCOMA is an ophthalmic disease that causes damage
to the optic disk (OD) [also called the optic nerve head

(ONH)]. It is the second prime cause of blindness worldwide
and can affect everyone from newborn babies to older peo-
ple [1]. Glaucoma is usually assessed in three ways, which are:
measuring the intraocular pressure, conducting a visual field
test, and examining ONH [2]. However, ONH assessment is
preferred and practiced widely by experts [3]. Cup-to-disk ratio
(CDR) is a clinical measurement that is commonly used by
ophthalmologists for ONH assessment [3]. CDR is calculated as
the ratio of the vertical diameter of optic cup (OC), a yellowish
brighter area at the center of OD, to the vertical diameter of
OD. Because internal structures of an eye are affected by the
increased pressure caused by glaucoma, the size of OC increases
with respect to the size of OD; a phenomenon also called
cupping [4]. Thence, usually a larger CDR indicates the presence
of glaucoma. Fig. 1 shows a significant difference in sizes of
OD and OC in a healthy and glaucomatous eye. Traditionally,
clinicians calculated CDR by manually segmenting OD and OC.
Yet, manual segmentation takes huge time and is prone to the
subjective judgment of ophthalmologists. Hence, there is a need
for automatic and fast segmentation of OD and OC for large
scale and efficient diagnosis of glaucoma.

Several works have been proposed for OD and OC seg-
mentation. Some of them use deep learning, and some em-
ploy nondeep learning-based approaches. The nondeep learning-
based methods are not much time consuming, but they usu-
ally lack in providing as promising results as deep learning
approaches do. These methods mainly consist of color and
contrast thresholding, region segmentation, and boundary detec-
tion techniques [5], [6]. Most of the modern techniques, which
rely on the features such as texture, color, and gradient, do
not perform well on the low-contrast images and the images
having pathologies [3]. The work of [7] detected and segmented
the OD from the retinal fundus image by employing a region
growing method. However, it requires high-resolution images
for providing optimal results. Conversely, deep learning systems
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Fig. 1. (a) Image of a normal eye. (b) Boundaries of OD and OC in a
normal eye. (c) Image of a glaucomatous eye. (d) Boundaries of OD and
OC in a glaucoma affected eye.

learn very complex features effectually due to their powerful
layer-by-layer feature learning abilities [8]–[10], and therefore,
they provide excellent results in image segmentation tasks.
Hence, some methods have used deep learning for OD and OC
segmentation. The technique in [11] used a fully convolutional
neural network (CNN) and transfer learning for OD segmenta-
tion. Nonetheless, this method uses a large number of parameters
for its model, hence takes a lot of time and graphics processing
unit (GPU) memory for training. The technique in [12] also
took a long time for predicting the results and was complex
and difficult to implement [13]. The works in [3] and other
recent deep learning-based methods have performed well on the
respective data sets used for their training and testing, but may
be unable to provide such accurate results when used practically
in hospitals because of the variations like the camera used for
capturing the images, quality of images, and the people being
diagnosed [14]. The task of OC segmentation is more laborious
than OD segmentation because of the existence of blood vessels
and the low-contrast boundary. Increasing the neural network
size in deep learning helps achieve better segmentation results,
but it increases the training time as well. Moreover, some of
the methods segment the OD and OC jointly within the same
network model, which may not produce splendid segmentation
of OC. Thus, a significant challenge in this field is to balance
the tradeoff of accuracy and computation cost in utilizing deep
learning approaches for OD/OC segmentation for glaucoma
detection.

The key reason leading the high computation cost of a deep
learning-based system is mainly its complex structure with many
layers and a high number of parameters, as shown in Fig. 2(a).
Besides, backpropagation is used to fine-tune the network and
recalculate the weights. Additionally, the entire network needs
to be retrained when new inputs are added to the network. These
features make deep learning-based methods consume a lot of
time for their training even on the powerful computers having
sufficient GPU. In order to solve the problem of balancing the
tradeoff of accuracy and computation cost of deep learning
technique, one new learning technique called broad learning

system (BLS) with a simpler structure of the flat network [see
Fig. 2(b)] was introduced in [15]. It is usually less time con-
suming than deep learning networks because: 1) its architecture
mainly consists of three parts—mapped features, enhancement
nodes, and an output layer; 2) its trainable parameters are fewer
than deep learning and are easily computed through ridge regres-
sion. Also, retraining of the full network is not required in a BLS
if the features are to be added later in the network. So, BLS is
efficient in training the models in deep structure. Recently, many
researchers such as [16] and [17] have employed broad learning
in image recognition, image classification, and other computer
vision applications, and outperformed the deep learning-based
methods significantly in terms of training time.

While the learning accuracy of BLS surpasses the existent
deep learning methods and other similar structures [17], [18],
one significant problem of BLS is that its generality and sta-
bility may be easily degraded due to the existence of outliers
and noise in data [19], which may reduce accuracy in ONH
analysis because retinal images are sometimes noisy. In order
to solve this problem, some authors, such as [20] and [21],
have used fuzzy neural networks (FNNs), the learning models
which have the merits of both neural networks (by having the
virtues of connections and learning behavior) and fuzzy systems
(by having IF-THEN fuzzy rules-based humanlike reasoning).
According to [22], FNNs have the capability to deal with a
problem where the data are imprecise or uncertain, and the task
of identifying object boundaries in an image is fuzzy in its nature
because it involves imprecision and uncertainty. This property
is particularly useful to tiny object detection in real practice
medical images or applications such as segmentation of OC
because there is no distinct outline of where does the boundary
of OC start due to its low-contrast boundary. Recently, Feng
et al. [16] integrated BLS with fuzzy systems to propose a novel
broad learning-based fuzzy learning system called fuzzy BLS
(FBLS) which comprises fuzzy subsystems and enhancement
nodes. The training process in FBLS is significantly reduced
because of its flat network, and the output layer’s weights are
calculated using pseudoinverse. This system has the combined
advantages of both BLS and fuzzy systems.

Therefore, this article targets at finding out a practically effec-
tive and efficient glaucoma screening solution by studying the
state-of-the-art OD and OC segmentations. Due to the efficiency
and performance capability of FBLS, we propose a new method
of OD and OC segmentation, which adopts this learning model.
We comprehensively integrated extracting a region of interest
(ROI) from RGB images, data augmentation, extracting red and
green channel images, and inputting them to the two separate
FBLS-based neural networks for segmenting the OD and OC, re-
spectively, and then calculated CDR. Experiments show that our
FBLS-based technique outperforms state-of-the-art methods,
and our approach significantly accelerates the computational
time and maintains high accuracy of OD/OC segmentation and
glaucoma detection.

The contributions of our work presented in this article are the
following.

1) A novel broad learning-based FNN is proposed for effec-
tive and efficient OD and OC segmentation for glaucoma
screening, where the mapped feature nodes of the original
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Fig. 2. (a) Structure of a typical deep learning-based neural network. (b)Structure of a typical BLS.

BLS are replaced with Takagi–Sugeno fuzzy subsystems.
Each of these fuzzy subsystems processes the input data,
hence this method has the advantage of an ensemble
structure.

2) This approach extracts features more effectively from the
input image because it uses the k-means algorithm to de-
cide the count of fuzzy rules in every fuzzy subsystem and
Gaussian membership functions’ centers. The application
of the k-means technique produces different centers from
the input data for every subsystem, that assures the gen-
eration of more distinct features and thus results in the
extraction of abundant discriminative information from
the input image as compared to BLS.

3) An enhanced least square method is designed in the
proposed BLS-based fuzzy model to get the final weights
with smaller training errors. Also, an l1-norm regular-
ization is employed to prohibit the model from overfit-
ting. This makes our approach maintain high accuracy of
OD/OC segmentation and glaucoma detection.

4) An extensive in-depth and thorough experimental eval-
uation is carried out to show the robustness and use-
fulness of our technique. The obtained results exhibit
that our method sufficiently outperforms state-of-the-art
algorithms in OD and OC segmentation and glaucoma
classification. Additionally, for evaluation of glaucoma,
we construct a new data set of retinal images called Shang-
hai Chinese Retinal Images Data Set (SCRID) comprising
566 retinal fundus images.

II. RELATED WORK

A. Morphological Operations and Reconstruction

Some of the earlier works use morphological operations and
reconstruction for segmenting OD and OC. Nugroho et al. [4]
introduced morphological reconstruction and convex hull for
segmenting OC, while OD is segmented by combining mor-
phological reconstruction and active contour. However, active
contour models depend on a proper initialization of OD contour
for providing optimal results [14]. In [23], the dilation opera-
tion was used to overcome the problem of the misclassifying
area around the retina after applying thresholding. They also
use opening followed by dilation to remove the irregularity of
segmented OD and to give proper disk size. For segmenting

cup, they use a closing operation to remove blood vasculature
in the green color channel. The work of [24] involved dilation
and erosion operations to eliminate blood vessels in OD, and
to smoothen the intensity around OD. Similarly, [25] also used
morphological operations for removing retinal vasculature and
other pathologies and enhancing OD for getting more accurate
segmentation.

B. K-Means Clustering, Superpixel Classification,
and Shape-Based Models

Ayub et al. [26] detected glaucoma via k-means clustering for
color-based segmentation of OD and OC after applying prepro-
cessing and extracting ROI. K is assigned the value 2 because
the entire image is divided into two regions by preprocessing.
Arumugam and Nivedha [27] also segmented OD by applying
k-means clustering after preprocessing and removing blood
vessels. Cheng et al. [2] applied the superpixel classification
technique for segmenting OD and OC. The former two methods
use a simple linear iterative clustering algorithm to combine
neighboring pixels into superpixels. The algorithms applied here
are more efficient than the conventional k-means algorithm as
the size of the search region is limited here, which results in
less number of distance calculations. In the shape-based tech-
niques, OD is modeled as an elliptical or circular object. These
methods try to segment OD by Hough transforms [28] or ellipse
fitting [29]. However, these shape-based methods are unsuitable
for images of different color intensities and containing blood
vessels.

C. Learning-Based Methods

Many methods such as [30]–[32] used machine learning tech-
niques to segment OD and OC. The work of [30] segmented OD
and OC from color fundus images of the retina using a fully
automatic regression-based technique. Initially, it applies a cir-
cular Hough transform to roughly segment OD. The preliminary
shapes of OD and OC are calculated from the approximated OD
obtained from the previous step. The method repeatedly learns
the final shape of OD and OC from the preliminary shape by a
cascaded shape regression technique. For better performance, a
data augmentation technique is employed to produce artificial
training data. Abràmoff et al. [31] used stereo color photographs
for the evaluation of automatic OD segmentation. They obtained
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a reference segmentation of the neuroretinal rim and OC by
glaucoma experts manually. Then, they evaluated stereo pairs
and corresponding reference standard by pixel feature classifi-
cation. However, these approaches rely on the extracted features,
which may help them to perform well on specific data sets but
not on others. Moreover, manual feature extraction makes these
techniques time consuming. In the recent past, many methods
have used deep learning for OD and OC segmentation because of
its promising results. Lim et al. [33] applied a CNN to segment
OD and OC. First, they roughly confine the ROI. Then the ROI is
transformed into visual features. After that, the method generates
a pixel-level probability map of retinal structures through CNN
to classify the transformed image. Finally, boundaries of OD
and OC are predicted by the segmentation of that map. The
work of [3] segmented OD and OC jointly by employing a deep
CNN called M-Net. The essential four parts of M-Net are a
multiscale input layer, a U-shaped CNN, a side-out layer, and a
multilabel loss function. An image pyramid is built by the input
layer. The U-shaped CNN is the primary structure that learns
the hierarchical features. The side-out layer works as an initial
classifier and generates local prediction maps. Lastly, the final
segmentation map is created by the multilabel loss function.
Additionally, their method applies polar transformation to con-
vert fundus images to a polar coordinate system that produces
better-quality segmentation results. Many other methods have
also utilized deep learning for the segmentation of OD and
OC. Although deep learning-based methods provide excellent
results, they take a long time to train the models.

D. Fuzzy Logic

The authors of [24] employ fuzzy c-means and morphological
operations to segment OD and OC but lack in providing excep-
tional results as compared to state-of-the-art approaches. Some
authors, such as [34] and [35], have obtained competent results in
regression and classification by using FNNs. Nonetheless, FNNs
consume much time in training the parameters of fuzzy rules
because FNNs are trained like usual neural networks, which
take a lot of time for training. Some researchers have proposed
improved algorithms to overcome the problems present in FNNs.
The work of [36] proposes a hierarchical hybrid FNN in which a
few fuzzy subsystems randomly combine various input features
to form an intermediary output, and then a neural network
handles these intermediate outputs and the remaining input
attributes together to decrease the number of fuzzy rules and
input dimension. An online sequential fuzzy extreme learning
machine is proposed in [37], where membership functions are
assigned the antecedent parameters randomly, and then corre-
sponding subsequent parameters are determined, which reduces
the learning time of the algorithm. Sun et al. [38] have developed
a fuzzy learning system that aggregates the data throughk-means
clustering and derives the membership functions in every fuzzy
rule by using an extreme learning machine.

Recently, Feng et al. [16] have proposed FBLS, which com-
prises fuzzy subsystems and enhancement nodes. In this ap-
proach, every fuzzy subsystem processes the incoming data, and
the features of input data are preserved because the output of

total fuzzy subsystems is dispatched to enhancement nodes to
be transformed nonlinearly. Finally, the weights connecting the
coefficients of every fuzzy subsystem and output of enhance-
ment nodes with the final output layer are computed through
pseudoinverse. The training process in FBLS is significantly
reduced because of its flat network. Keeping the need for fast
computation and accuracy in mind, we propose a method of
OD and OC segmentation, which is less time consuming and
provides decent results.

III. PROPOSED METHOD

Fig. 3 shows an overview of our proposed method of glaucoma
detection using OD and OC segmentation. The steps involved
are discussed below.

A. Extracting the ROI

As shown in Fig. 3, the first step of our segmentation approach
is the extraction of an ROI from the original RGB fundus
image. We have used the technique of [39] to get the ROI. In
addition to the OD area, the ROI also contains some background
information to help the network discriminate the OD from the
background.

B. Data Augmentation

Machine learning and deep learning methods need to be
trained on the large data sets for providing optimal performance.
However, most of the specialized tasks, such as medical image
classifications or segmentation tasks, have insufficient data.
Most of the retinal data sets also contain only a few hundred
images. The models trained with small data sets do not general-
ize well and are less accurate in the testing. Research such as [40]
demonstrated that data augmentation could prevent this problem.
Hence, we have also applied data augmentation in our method to
increase the training data size artificially. Our data augmentation
consists of flipping left-to-right, flipping top-to-bottom, rotating
90◦ anticlockwise, and adding noise (consisting of Gaussian
noise, and salt and pepper noise). Data augmentation has helped
us achieve better results. Fig. 4 shows a sample segmentation
without data augmentation, which lacks in providing promising
results. Similarly, results without data augmentation are also
shown in Fig. 6, 7, 10, and 11.

C. Extracting the Red and Green Channel Images

Compared to other channels, the red channel of an RGB
fundus image is less influenced by blood vessels and shows
more differences between the OD area and background (non-OD
area). Hence, it is a suitable choice for OD segmentation. Like-
wise, the green channel is more appropriate for OC segmentation
as the brightness and contrast of OC pixels is very high in this
channel. Therefore, we have split the RGB image and fed the
red channel and green channel images into two separate FBLSs
for segmenting OD and OC, respectively. Before inputting the
red and green channel images to the FBLSs, the mean intensity
value is subtracted from the original intensity value of each of
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Fig. 3. Overview of our proposed approach of OD and OC segmentation for glaucoma detection using FBLS.

Fig. 4. Sample of segmentation results without applying data
augmentation.

the channel images, which exposes the OD and OC areas more
clearly for better segmentation.

D. OD and OC Segmentation

Here, we input the red/green channel images obtained from
the previous step to FBLS and receive the segmented OD/OC
as an output. Let n denotes the quantity of fuzzy subsystems in
FBLS andm represents the enhancement nodes in FBLS. So, the
input data are represented as X = (x1, x2, . . . , xn)

T ∈ Rn×m.
Initially, the input xq = (xq1, xq2, . . . , xqm), q = 1, 2, . . . , n is
mapped to the ith fuzzy system by using the first-order Takagi–
Sugeno fuzzy model. xqt denotes a first-order polynomial in
the Takagi–Sugeno fuzzy model, t = 1, 2, . . . ,m. It can be
calculated as

ziqk =

m∑
t=1

αi
ktxqt (1)

where αi
kt is the coefficient and k = 1, 2, . . . ,Ki denotes the

fuzzy rule’s number in the ith fuzzy model. We have chosen the
Gaussian function as the membership function, which can be
defined as shown

μi
kt(xqt) = e

−
(

xi
qt

−ci
kt

σi
kt

)2

(2)

where cikt andσi
kt represent, respectively, width and center of the

Gaussian membership function. We have applied the k-means
technique to get Ki clustering centers. Because of the k-means
method’s randomness in the initial conditions, distinct centers
are selected from the input in every fuzzy subsystem that helps
extract more features due to the working of all fuzzy subsys-
tems in this ensemble manner. After that, each rule’s weighted

activation level can be calculated as

ωi
qk =

∏m
t=1 μ

i
kt(xqt)∑Ki

k=1

∏m
t=1 μ

i
kt(xqt)

(3)

where
∏m

t=1 μ
i
kt(xqt) denotes fire strength of ith fuzzy subsys-

tem’s kth fuzzy rule. After that, the intermediary output of qth
training sample in the ith fuzzy subsystem is defined as

Zqi =
(
ωi
q1z

i
q1, ω

i
q2z

i
q2, . . . , ω

i
qKi

ziqKi

)
. (4)

The output vector for the total training samples in an ith fuzzy
subsystem is shown as

Zi = (Z1i, Z2i, . . . , Zni), i = 1, . . . , r. (5)

The intermediate output matrix for r fuzzy subsystems is
shown as

Zr = (Z1, Z2, . . . , Zr) ∈ Rn×(K1+K2+···+Kr). (6)

After that, for preserving the characteristics of inputs, Zr is
nonlinearly transformed by the enhancement nodes, which is
represented as

Hj = Ψ(Zrωj + βj) , j = 1, . . . , s (7)

where Hj denotes the enhancement nodes transformed from
Zr, ωj , and βj are, respectively, weights and bias terms that
connect the fuzzy subsystems’ outputs to their correspondent
enhancement layers and are selected randomly between values
from 0 to 1, Ψ(.) is Sigmoid activation function. The groups of
all the enhancement nodes are computed as

Hs = (H1, H2, . . . , Hs) . (8)

The output obtained from each fuzzy subsystem is transmitted
to the top layer, along with the output of enhancement nodes.
Every fuzzy subsystem will be a multioutput model because
the training target Y ∈ RN×C consists of C components. The
output vector for ith fuzzy subsystem in qth training sample is
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calculated as

Fqi =

(
Ki∑
k=1

λi
k1
ωi
qkz

i
qk, . . . ,

Ki∑
k=1

λi
kC

ωi
qkz

i
qk

)

=

(
Ki∑
k=1

λi
k1
ωi
qk

(
m∑
t=1

αi
kt
xqt

))
, . . . ,

(
Ki∑
k=1

λi
k1
ωi
qk

(
m∑
t=1

αi
kC

xqt

))

=

m∑
t=1

αi
ktxqt

(
ωi
q1, . . . , ω

i
qKi

)
⎛
⎜⎜⎝

λi
11 . . . λi

1C
...

...

λi
Ki1 . . . λi

KiC

⎞
⎟⎟⎠ .

(9)

The output vector for ith fuzzy subsystem’s total training
samples is shown as

Fi = (F1i, F2i, . . . , Fni) = DΩiλi (10)

where D = diag
∑m

t=1 α
i
ktx1t, . . . ,

∑m
t=1 α

i
ktxnt, and

Ωi =

⎛
⎜⎜⎝
ωi

11 . . . ωi
1Ki

...
...

ωi
n1 . . . ωi

nKi

⎞
⎟⎟⎠, λi =

⎛
⎜⎜⎝

λi
11 . . . λi

1C
...

...

λi
Ki1 . . . λi

KiC

⎞
⎟⎟⎠.

The aggregate output of r fuzzy subsystems is calculated as
shown

F r =

r∑
t=1

Fi =

r∑
t=1

DΩiλi = D
(
Ω1, . . . ,Ωr

)
⎛
⎜⎜⎝

λ1

...

λp

⎞
⎟⎟⎠ = DΩΓ

(11)
where Ω = (Ω1, . . . ,Ωr) is the matrix containing the fire
strengths ωi

qk and Γ = ((λ1)T , . . . , (λr)T )T is composed of the
parameters to be computed subsequently.

In the end, we connect the output F r of all fuzzy subsystems
andHs of the enhancement nodes to the output of FBLS denoted
as Y , which is defined as

Y = F rWf +HsWh

= DΩΓ +HsWh

= (DΩ, Hs)

(
Γ

Wh

)

= PW

(12)

where Wf and Wh, respectively, are the weights of F r and Hs,
and their value is set to 1. P = (DΩ, Hs) and W denote the
parameter matrix of fuzzy BLS which is composed of Γ and
Wh and can be calculated through the training targets Y : W =
P+Y .

The vector P+ can be computed by

P+ = argmin
W

‖PW − Y ‖2
2 + λ ‖W‖1 . (13)

An enhanced least square method is used here to get W with
smaller errors, and λ represents the additional restraints on the
summation of squares of weights in [15]. The former part is

Fig. 5. Top and bottom rows show the segmentation results without
and with the area opening operation, respectively.

an l2-norm regularization and shows the training errors. The
latter part is an l1-norm regularization. The use of l1-norm
regularization makes the proposed model robust against out-
liers [19] and averts our network from overfitting. The FBLS
learns the discriminative features of images and distinguishes
OD/OC from the background of retinal images and generates
the segmentation maps.

E. Area Opening and Morphological Closing

In a few images, the segmentation result generated by FBLS
contains small pixels outside OD and OC regions, which degrade
the segmentation accuracy when the morphological closing op-
eration is performed on these images. Therefore, we first perform
the area opening operation on the segmented result obtained
from the FBLS to remove those small objects outside the actual
OD and OC area and then perform the morphological closing
operation. We have used the closing operation to fill the holes
in the segmented OD caused by the presence of blood vessels in
that region. Fig. 5 shows the closed OD images with and without
performing an area opening operation.

IV. EXPERIMENTAL RESULTS

A. Data Sets

We have performed experiments on one publicly available
data set RIM-ONE-r3 [41] and one data set (SCRID) from the
Shanghai Sixth People’s Hospital. We could not get the ORIGA
data set (used by [3] and [14]) due to the clinical policies of
its owner. The RIM-ONE-r3 data set consists of 159 fundus
images having a resolution of 2144 × 1424 pixels. The SCRID
data set contains 566 images of 2048 × 1536 pixels resolution.
We divided the images in training and testing set with a ratio of
80% and 20%, respectively, and applied the data augmentation
on only the training images. So, the number of training images
became 635 and 2265 for the RIM-ONE-r3 and the SCRID
data set, respectively.
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TABLE I
TRAINING TIME OF OUR METHOD COMPARED WITH SOME OF THE

STATE-OF-THE-ART METHODS (N/A: NOT AVAILABLE)

The †, ‡, ¶ symbols represent ORIGA, DRIONS-DB, and RIM-ONE-r3 data sets,
respectively. The * symbol represents the SCRID data set.

B. Training Time

One of the significant contributions of our method is the
efficient training of the network model. Table I shows the training
time of our proposed method, along with the training times of
the state-of-the-art methods [3], [11]–[14]. We reran the methods
of [3] and [13] with the same division of training and testing of
80% and 20%, respectively, and present the consumed time in
Table I. The reported times of other methods are taken from
the respective papers as we could not get the codes of other
methods to run them on our machine. Some methods have not
provided their setting information. Hence, we have put “N/A:
Not Available” in place of their computing mode. It can be
observed that our method outperforms state-of-the-art methods
by a significant margin in terms of training time. We ran our
method on a workstation having Intel Xeon E5-2630 v4 CPU
with NVIDIA Tesla K80 GPU. The training times of our method
were 127.113 and 231.164 s for the RIM-ONE-r3 and the SCRID
data sets, respectively.

C. Quantitative Results

We evaluated the segmentation performance of our technique
using the Dice coefficient (F1 score), which is used by popular
methods such as [42] and [43]. Dice coefficient, represented here
as DC, is calculated using

DC =
2|A ∩B|
|A|+ |B| (14)

where A is the predicted segmentation map, and B is the ground
truth segmentation map.

Fig. 6 and 7 show the comparison of OD and OC segmentation
results of our method with other works in the literature. The
comparison consists of the DC scores. As discussed earlier, we
reran the codes of [3] and [13]. The data for other methods are
taken from [13], [14], and [32]. The DC score of our method
for OD segmentation for the RIM-ONE-r3 data set is 0.973. In
addition to this, our proposed method achieves good results on
OC segmentation as we have employed an entire FBLS-based
neural network to segment OC. As shown in Fig. 6, the DC
score of our approach for OC segmentation for the RIM-ONE-r3
data set is 0.882. Some methods have not reported the DC scores
for OC segmentation in their papers; that is why DC scores
for OC segmentation are not shown at some places in Fig. 6.
The DC scores of our method for OD and OC segmentation

Fig. 6. DC scores of our method, [11], [13], [3], [12], [14], and [32] for
OD and OC segmentation on the RIM-ONE-r3.

Fig. 7. DC scores of our method, [13], and [3] for OD and OC segmen-
tation on the SCRID data set.

Fig. 8. Segmentation results of our method compared with [3] and [13],
and the ground truth images of the RIM-ONE-r3 data set.

for the SCRID data set are 0.976 and 0.883, respectively, as
presented in Fig. 7. It is evident from these results that our
method outperforms state-of-the-art methods in OD and OC
segmentation.

D. Qualitative Results

Fig. 8 and 9 show the segmentation results of our method
in comparison to [3] and [13] on RIM-ONE-r3 and SCRID
data sets, respectively. The first column contains the original
ROI images; the second column shows the images segmented
by our method, the third column shows the result of Fu et al. [3],
the fourth column contains the segmentation result of [13], and
the fifth column shows the ground truth images. These results
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Fig. 9. Segmentation results of our method compared with [3] and [13],
and the ground truth images of the SCRID data set.

Fig. 10. ROC curves with AUC scores for glaucoma diagnosis on the
RIM-ONE-r3 data set.

exhibit that our method provides better results of OD and OC
segmentation when compared to the other two techniques.

E. Glaucoma Screening

We also performed a binary classification on images as being
healthy or glaucoma affected with the help of computed CDRs
because CDR is an important clinical indicator of glaucoma pro-
gression. CDR = V Dcup/V Ddisk where, V Dcup and V Ddisk

respectively, represent the vertical diameters of OC and OD.
Due to better segmentation of OC, we calculate the CDR more
accurately, and therefore, achieve better results of glaucoma
screening. We compared our classification results with the ex-
perts’ evaluation results provided with the data sets and com-
puted the accuracy of our method. Fig. 10 and 11 show the
glaucoma diagnosis performance of our method by reporting the
receiver operating characteristic (ROC) curve with AUC scores
for the RIM-ONE-r3 and the SCRID data sets, respectively.
Our method achieves the best AUC scores of 0.906 and 0.923
for glaucoma screening on the RIM-ONE-r3 and the SCRID
data sets, respectively.

We also present the classification errors (calculated as incor-
rect predictions / total predictions) in the Table II. It is obvious
that our method has lesser errors, 0.093 and 0.061 for the
RIM-ONE-r3 and the SCRID data sets, respectively, than the
other methods and, hence, outperforms them here as well.

Fig. 11. ROC curves with AUC scores for glaucoma diagnosis on the
SCRID data set.

TABLE II
CLASSIFICATION ERRORS ON RIM-ONE-R3 AND SCRID

F. Significance Test

To show the statistical significance in the calculated CDRs,
we have conducted a nonparametric statistical test, called the
Friedman test [44] with α = 0.05, on the CDRs calculated by
M-Net+PT [3], modified U-Net [13], and our proposed method
FBLS. We applied the Friedman test on the test set images, which
are 20% of each data set. Hence, the number of values becomes
32 from the RIM-ONE-r3 and 113 from the SCRID data set. Our
method FBLS achieved significantly better results by reporting
p = 0.009 on the RIM-ONE-r3 data set.

However, the Friedman test only tells that CDRs are sta-
tistically different, but it does not tell which group is exactly
different. Hence, to see where the difference exists, we need to
perform a post hoc test. We performed a post hoc test by running
the Wilcoxon signed-rank test [45]. The Wilcoxon signed-rank
test is a nonparametric test that finds the difference between
two groups of data. So, we performed this test on different
combinations of CDRs computed by these three methods as: 1)
FBLS to M-Net+PT; 2) FBLS to modified U-Net; 3) M-Net+PT
to modified U-Net, to find which one of them is significantly
different. Nevertheless, before looking at the results of Wilcoxon
signed-rank, we need to consider one more thing. As we are
performing multiple tests for comparison, some of these tests
will give a p-value less than 0.05 by chance [46]. To overcome
this, we need to apply a Bonferroni adjustment to the results
obtained from the Wilcoxon tests. The Bonferroni adjustment
is computed by dividing the initial significance level (0.05) by
the number of tests performed. In our case, the new significance
level is obtained as 0.05/3 = 0.017 because we are performing
three comparison tests. When our method is compared with M-
Net+PT, the Wilcoxon signed-rank test gave p = 0.006, which is
less than 0.017. Similarly, p = 0.003 is obtained when we com-
pare our method with modified U-Net. The comparison results of
M-Net+PT and modified U-Net were not statistically significant
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TABLE III
DC AND AUC SCORES OF CROSS-TRAINING

because p = 0.66 was achieved when these two methods were
compared.

In the same manner, we performed the Friedman test on the
SCRID data set. Here, also, our method obtained statistically
significant results by reporting p = 0.001. Besides, we also
conducted a post hoc test with the Wilcoxon signed-rank test
with a Bonferroni adjustment applied. There was no significant
difference between M-Net+PT and modified U-Net p = 0.761.
Nevertheless, there was significant difference in the results of
FBLS to M-Net+PT p = 0.002 and FBLS to modified U-Net
p = 0.003.

G. Using SCRID for Training and RIM-ONE-r3 for Testing

To further testify the robustness of our technique, we also
experimented the cross-training by using the SCRID data set for
training and the RIM-ONE-r3 data set for testing. The obtained
results are shown in Table III. In these cross-training results,
our approach has gotten the best DC score of 0.856 for OC
segmentation, along with the second-best DC score for OD
segmentation and the second-best AUC score of 0.953 and
0.860, respectively. By looking at these results, we can claim
that our method provides competent results on unseen images
when compared with the other state-of-the-art methods.

H. Results on the REFUGE and
the DRISHTI-GS1 Data Sets

We also performed the experiments on the REFUGE [42]
and DRISHTI-GS1 [43] data sets to show the strength and
potential of our method. The REFUGE data set consists of 1200
images equally divided into three parts: training set, validation
set, and test set (each of the three parts contains 400 images). The
resolution of training set images is 2124 × 2056 pixels, and the
validation and test images are of the 1634× 1634 pixels size. We
trained our technique on the training set and evaluated it on the
test set images. Then, we compared our results with the results of
the top three teams from the REFUGE challenge [42] organized
in conjunction with MICCAI 2018. The DC scores compared
with the best three methods in terms of OD and OC segmentation
are reported in Table IV. Our method obtained the best DC
scores of 0.9743 and 0.8845 for OD and OC segmentation,
respectively.

We also compared the AUC scores of our method with the top
three methods in terms of the best AUC scores. Those results
are presented in Table V. Here, our approach obtained the third-
best AUC score of 0.9721. These results also demonstrate a

TABLE IV
COMPARISON OF DC SCORES ON THE REFUGE

TABLE V
AUC SCORES ON THE REFUGE DATA SET

TABLE VI
COMPARISON OF OUR METHOD’S DC AND AUC SCORES WITH
STATE-OF-THE-ART METHODS ON THE DRISHTI-GS1 DATA SET

Fig. 12. Sample of the performance on a noisy image.

satisfactory performance of our method on the REFUGE data set
when compared with state-of-the-art algorithms.

The DRISHTI-GS1 data set comprises 101 images having
a resolution of 2896 × 1944 pixels. The data set is split into
training and test set containing 50 and 51 images, respectively.
The DC scores for OD and OC segmentation and AUC score of
our approach compared with [3], [13], and [32] are shown in
Table VI. As seen from the results in Table VI, our method has
achieved the best DC scores of 0.968 and 0.880 for segmenting
OD and OC, respectively. Moreover, our technique has also
gotten the best AUC score of 0.887. These results also show that
our method performs better than some of the best algorithms on
the DRISHTI-GS1 data set.

I. Segmentation in Noisy Images

The presence of noise in the retinal images makes it hard
to perform an accurate segmentation of OD/OC. We tested the
performance of our technique on noisy images, and one sample
segmentation is shown in Fig. 12. These results also indicate
that our approach generates decent results on noisy images.
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J. Limitation

One of the limitations of our method is that it requires prepro-
cessing and postprocessing for providing optimal results. An-
other limitation may be the need to extract individual channels
to perform the segmentation (red channel for OD and green
channel for OC segmentation), which is unlike some of the other
methods which directly work on RGB fundus images.

V. CONCLUSION

In this article, we had presented a novel technique of OD and
OC segmentation, which adopted the FBLS. The proposed ap-
proach outperformed the state-of-the-art techniques in terms of
network training time, OD and OC segmentation, and glaucoma
screening results. The main advantage of our method was the
efficient training process due to which it can be trained even on
machines without having a GPU. Because of the fast training,
our proposed work used an entire FBLS-based neural network
for OC segmentation, which helped it attain more accurate
OC segmentation results. The experiments performed on the
RIM-ONE-r3 and the SCRID data sets showed promising results
of OD and OC segmentation. Additionally, CDR was calculated
with the help of the segmented OD and OC. With the help of
the calculated CDR, our method provided better performance
on glaucoma diagnosis as compared to many contemporary
glaucoma screening algorithms.
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