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Improving Video Temporal Consistency
via Broad Learning System
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Abstract—Applying image-based processing methods to
original videos on a framewise level breaks the temporal
consistency between consecutive frames. Traditional video tempo-
ral consistency methods reconstruct an original frame containing
flickers from corresponding nonflickering frames, but the inac-
curate correspondence realized by optical flow restricts their
practical use. In this article, we propose a temporally broad
learning system (TBLS), an approach that enforces temporal con-
sistency between frames. We establish the TBLS as a flat network
comprising the input data, consisting of an original frame in an
original video, a corresponding frame in the temporally incon-
sistent video on which the image-based technique was applied,
and an output frame of the last original frame, as mapped fea-
tures in feature nodes. Then, we refine extracted features by
enhancing the mapped features as enhancement nodes with ran-
domly generated weights. We then connect all extracted features
to the output layer with a target weight vector. With the tar-
get weight vector, we can minimize the temporal information
loss between consecutive frames and the video fidelity loss in
the output videos. Finally, we remove the temporal inconsis-
tency in the processed video and output a temporally consistent
video. Besides, we propose an alternative incremental learning
algorithm based on the increment of the mapped feature nodes,
enhancement nodes, or input data to improve learning accuracy
by a broad expansion. We demonstrate the superiority of our
proposed TBLS by conducting extensive experiments.

Index Terms—Incremental learning, temporally broad learning
system (TBLS), video temporal consistency.
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I. INTRODUCTION

W ITH the constant development of computer technology,
video-related applications have received extensive

attention, and researchers have widely explored the video
processing technology. Nevertheless, the newly developed
techniques, like filters used for enhancing, restoring, edit-
ing, and analyzing static images, cannot be an appropriate
choice for videos because a video is not merely a series of
images. Therefore, processing each video frame individually
(like applying image-based processing methods) might not be
problematic in simple scenarios, such as low- and high-pass
filtering. However, in some complicated situations, it might
produce issues like cutting down the temporal consistency
between consecutive frames that often leads to severe video
quality degradation. There can be several causes behind the
temporal inconsistency in videos. For example, it might be pro-
duced because of the fall of the optimization technique into
local minima or the dependence of a filter on the statistics,
such as average color, which may not be stable for all video
frames. Without temporal consistency, flickering artifacts, such
as color change or brightness fluctuation, may occur in videos.
Because we always make a brightness constancy hypothesis
on video matching applications, temporal inconsistency will
severely impact these video matching-involved applications.
Therefore, to improve the video visual aesthetic and benefit
other computer vision applications, such as motion estima-
tion, video temporal consistency has been an increasingly hot
topic.

Many methods have been proposed to remove the
flickering artifacts in videos. Most of them formulate
the temporal consistency objective function as an energy
minimization problem [1]–[4]. However, methods proposed by
Bonneel et al. [1] and Ye et al. [2] are designed for apply-
ing image-based intrinsic decomposition methods to videos.
To address flickering artifacts in applications besides intrin-
sic video decomposition, Bonneel et al. [3] reconstructed an
original frame with flickering artifacts from its last recon-
structed nonflickering output frame. However, the method
of warping a frame from another frame by optical flow
leads to inaccuracy. Moreover, warping-based video tempo-
ral consistency is not robust when dealing with occlusion and
low-texture area. Other methods that align flickering frames
to preselected nonflickering key frames are not suitable for
the scenario being solved in this article because we intend
to maintain temporal consistency in processed videos where
nonflickering key frames are hard to choose, and aligning
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flickering frames to nonflickering frames is impractical and
infeasible.

In this article, we propose a learning-based video tem-
poral consistency approach. We resort to the inspiration
within the deep learning domain and propose a tempo-
rally broad learning system (TBLS) to reduce the flickering
artifacts generated due to applying image-based processing
methods to original videos. Our novel broad learning-based
system adopts a flat network layout with the recurrence
in time.

Before introducing our method, it is necessary to explain
our related notations. We denote the original video, which has
not been processed with the image-based processing method,
as the original video, the video processed with image-based
methods and having flickering artifacts as temporally incon-
sistent video, and the video processed with different flickering
removal methods as output video. We denote the nth frame
in the original video as an original frame In, the nth corre-
sponding frame in the temporally inconsistent video as Pn,
and the nth output frame in the output video as On. In our
technique, we first take data composed of the current original
frame In, the corresponding frame Pn, and the output frame
On−1 of last original frame In−1 as the input of the TBLS. In
the training process, which is used to solve the target weight
vector in the TBLS, the output video is generated by apply-
ing the traditional video temporal consistency methods to the
processed video. While in the testing process, we directly
use the TBLS to maintain the video temporal consistency.
Then, we transfer the input data into mapped features. Next,
we enhance the mapped features as enhancement nodes with
randomly generated weights. We can also expand the input
data, the mapped feature nodes or the enhancement nodes
with the novel incremental learning algorithms. Compared
with the deep learning architecture, we skip the retraining
phase in the proposed incremental learning algorithm when
we expand the broad learning system to boost the learning
accuracy.

Due to the lack of publicly available training video datasets,
we establish a video dataset specifically for video temporal
consistency. We first download a large number of origi-
nal nonflickering videos from the Internet, and then we
process those original videos with various image-based meth-
ods. Finally, corresponding flickering videos are obtained.
Using this novel dataset, we have successfully trained our
proposed broad learning-based video temporal consistency
network. In summary, our proposed TBLS-based video tem-
poral consistency approach makes the following three main
contributions.

1) We first introduce the learning-based approach to the
field of video temporal consistency.

2) We propose a broad learning-based video temporal con-
sistency approach, where we extract the features of input
data and enhance these features in a flat network. In this
way, we skip the time-consuming retraining step that is
often used in deep learning methods.

3) We establish a big video dataset that enables the learning
for video temporal consistency.

II. RELATED WORK

To the best of our knowledge, there is no previous research
proposed specifically at addressing video temporal consistency
using learning-based methods. Nevertheless, various relative
studies, including video temporal consistency and broad learn-
ing methods, have been researched extensively in the computer
vision field. In this article, the video temporal consistency is
combined with the broad learning system. A TBLS is proposed
to improve the video temporal consistency. A broad learning
system can reduce the training time complexity on a large scale
compared to the deep learning architecture. Besides, the incre-
mental learning algorithm can be used to improve the learning
accuracy. On the basis of the analysis discussed above, the
video temporal consistency method based on a broad learning
system can effectively enhance the video temporal consistency.
Now, we will introduce related studies on the video temporal
consistency and broad learning methods.

Video Temporal Consistency: Conventional video temporal
consistency methods can be divided into two types. On the
one hand, some methods align flickering frames with non-
flickering frames to maintain the temporal consistency in the
output videos. On the other hand, some approaches formu-
late the temporal consistency objective function as an energy
minimization task.

In video temporal consistency methods [5]–[8], a set of
frames is selected according to certain predetermined mea-
sure standards. Then, other flickering frames are aligned with
these selected frames to maintain the temporal consistency
between frames. In the video temporal consistency approach
proposed by Farbman and Lischinski [5], the authors first
designated several frames as anchors and then aligned other
frames with these selected anchors according to a tonal adjust-
ment map. Because the establishment of the adjustment maps
takes advantage of video temporal coherence and the char-
acteristic of the tonal fluctuation, they can stabilize the tonal
fluctuation in the output video. Bonneel et al. [7] proposed
a frame-aligning-based color grading method. They first esti-
mated a color transform between the input video and the model
video, then they interpolated the transformation by minimizing
the curvature. Next, the frames representing the interpolation
curve are designated as key frames to refine the color grade.
Huang et al. [8] proposed a method to maintain the temporal
consistency in the video recoloring process. They first extract
key colors and then interpolate the remapped frames accord-
ing to the preselected key colors. However, these methods are
impractical in the context of this article’s problem because
they require preselected key frames from the processed video,
which, in the case of our context, contain flickers; hence, their
produced results will not be much reliable.

Some other methods keep the video temporal consistency by
minimizing the least-squares energy. HaCohen et al. [9] con-
structed an energy function composed of the color discrepancy
term and appearance consistency term to edit a collection of
photos consistently. Lang et al. [10] make a temporal smooth-
ness assumption used to constrain the ambiguities between
an objective frame and an original frame and then solve
the global optimization approximation. Kalantari et al. [11]
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and Aydin et al. [12] addressed the temporal artifacts in the
tone mapping of HDR video by formulating an energy func-
tion. Multiple motion models composed of optical flow and
patch-based method are proposed in [11] to enforce tempo-
ral consistency between consecutive frames. The optimization
framework of tone mapping in [12] consists of two parts:
1) the base layer used to compress the dynamic range and
2) the detail layer that can preserve the local contrast. Both [3]
and [4] reconstruct flickering frame with nonflickering frames,
while the difference is that [3] warps the last nonflickering out-
put frame to obtain the current output frame by optical flow,
and [4] chooses the enhancement curve of the corresponding
nonflickering frames to replace the original enhancement curve
of the flickering frame. The method in [4] is used when we
apply image-based enhancement techniques to videos, but the
work of [3] can be applied in more cases.

Broad Learning System: With the immense progress and
breakthrough made by deep learning architecture in a lot
of applications [13]–[16], many networks like convolu-
tional neural networks and deep belief networks have been
proposed [17]–[21]. Although deep learning architecture has
been proven to be useful in the field of computer vision, it
still suffers from the indispensable requirement of big data
and the time-consuming retraining process. The random vec-
tor functional link neural network (RVFLNN) is proposed to
overcome these shortcomings [22]–[24]. Though RVFLNN has
been proposed to play a vital role in lots of applications, it can-
not deal with the time-variety problems [25], [26]. To address
this shortcoming, a broad learning system is proposed, which
can update the input data or feature nodes with time [25],
[27]–[29]. Due to its effectiveness in providing competitive
results and taking significantly less training time as compared
to the deep-learning-based techniques, BLS has been used by
many researchers to solve a variety of problems [30]–[37]. In
this article, we use the BLS to create our TBLS that preserves
video temporal consistency. In order to improve the learning
accuracy in output videos, we also propose an incremental
learning algorithm to update any of the input data, mapped
feature nodes, or enhancement nodes conveniently, without the
need for retraining the whole network once again. In this way,
we reduce the time complexity on a large scale compared to
the deep learning architecture.

III. APPROACH OVERVIEW

Fig. 1 is a general framework of our proposed TBLS-based
video temporal consistency approach. In our approach, we
denote the nth frame in the original video as an original frame
In, the nth corresponding frame in the temporally inconsistent
video as Pn, and the nth output frame in the output video as
On. We first take data composed of current original frame In,
the corresponding frame Pn, and the output frame On−1 of
last original frame In−1 as the input of the TBLS. Then, we
extract features from input data to generate the mapped feature
nodes. To compensate for the insufficiency of extracted fea-
tures, when compared with the retraining process of features in
the deep learning architecture, we enhance the mapped features
with random weights to generate enhancement nodes. Next, we

Fig. 1. Overview of our TBLS.

connect all extracted features to the output layer with a target
weight vector. Finally, we work out an optimal weight vector
to minimize an objective function. Because the sought weight
vector has an aptitude for minimizing the difference between
the original video and the output video, the fidelity of the out-
put video is guaranteed. Meanwhile, the sought weight vector
is also designed to minimize the discrepancy between the con-
secutive frames; thus, the temporal consistency in the output
video is maintained. In this way, our proposed TBLS network
predicts an output frame On. Subsequently, we combine In+1,
Pn+1 and On as the input of the (n + 1)th network to obtain
the output frame On+1 until we output a nonflickering video.
Our approach is designed for removing the flickering artifacts
by taking advantage of temporal information between consecu-
tive frames. As a result, our approach outperforms other video
temporal consistency methods without a retraining process.
Algorithm 1 summarizes our proposed approach.

IV. TEMPORALLY BROAD LEARNING SYSTEM

In this section, we introduce the details of our proposed
TBLS. First, the model constructed with a flat network is
given. We enforce temporal consistency from the perspec-
tive of both input data and the construction of the objective
function to output a frame.

A. Temporally Broad Learning System

Our proposed TBLS consists of the following steps: first,
we generate the mapped features from the input data, which is
composed of a current original frame In, a corresponding frame
in the temporally inconsistent video Pn, and an output frame
On−1 of the last original frame In−1. Second, we enhance the
extracted features with randomly generated weights to form
the enhancement features. Finally, we seek a weight vector
used to link the feature nodes with the output layers. With
the target weight vector, which can minimize the objective
function, we enforce temporal consistency in the output video.

In the proposed TBLS, we project the input data Xn,
where Xn = [In|Pn|On−1], to form the ith mapped feature
nodes Zi by a mapped function φi(XnWei + βei), where φi(·)
can be either a sigmoid function or a tangent function, Wei
and βei are randomly generated weights with proper dimen-
sions. We denote all mapped features in the nth network as
Zm

n = [Z1, . . . , Zi, . . . , Zm]. That is to say, utilizing Zm
n to

represent that there are m groups of mapped feature nodes
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Fig. 2. Illustration of TBLS.

Algorithm 1 Broad Learning-Based Video Temporal
Consistency
Require: Training samples Xn
Ensure: Weight ωn

1: for i = 1; i≤m; do
2: Random Wei,βei;
3: Calculate Zi = [φi(XnWei + βei)];
4: end for
5: Set the feature mapping group Zm

n = [Z1, ..., Zm];
6: for j = 1; j≤p; do
7: Random �hj,βhj;
8: Calculate Hj = [ξj(Zm

n Whj + βhj)];
9: end for

10: Set the enhancement nodes group HP
n = [H1, ..., Hp];

11: Set An = [Zm
n |Hp

n];
12: Formulate the temporal consistency objective with Eq. (2);
13: Formulate the video fidelity objective with Eq. (3);
14: Obtain the target weight vector ωn to minimize the tem-

poral consistency loss and the video fidelity loss in the
joint optimization Eq. (4);

in the nth TBLS. Then, we enhance all extracted mapped
features, respectively, to form the enhancement nodes. Using
ξj(Zm

n Whj +βhj), where ξj(·) can be either a sigmoid function
or a tangent function, Whj and βhj are randomly generated
weights with proper dimensions. The jth enhancement nodes
Hj can be obtained with randomly generated weights ξj, where
j is on the interval [1, p], all enhancement nodes in the nth
network can be denoted as Hp

n = [H1, . . . , Hj, . . . , Hp]. With
Hp

n, we can represent the p groups of enhancement nodes in the
nth TBLS. The values of m and p are decided through a trial-
and-error method. Each mapped function φi(·) or enhancement
function ξj(·) can be different from each other and can be
determined upon the practical case. We combine mapped fea-
tures and enhancement nodes to construct all extracted feature
nodes An = [Zm

n |Hp
n] in the nth network. Finally, we link

all extracted features An to the output layer with certain tar-
get weight vector ωn. The illustration of the TBLS is shown
in Fig. 2. Hence, the predictive output frame Yn can be

computed as

Yn = [
Zm

n |Hp
n
]
ωn

= Anωn (1)

where ωn = [Zm
n |Hp

n]+Yn, and we can easily solve it with
the ridge regression approximation of [Zm

n |Hp
n]+. The brief

illustration of our network without temporal consistency in the
constraint of weight vector ωn is shown in Fig. 3(a). However,
the ridge regression approximation does not utilize the tem-
poral consistency between consecutive frames; thus, the video
fidelity in the output video is omitted. With this in mind, we
improve the network as Fig. 3(b), where we enforce tempo-
ral consistency and video fidelity in the solution process of
ωn. To enforce temporal consistency in the output video, we
intend to minimize the temporal inconsistency cost Ct between
consecutive frames, which is computed as

Ct = ‖An · ωn − Yn−1‖2
2 (2)

where ‖·‖2
2 represents the L2 norm, An represents all extracted

features in the nth TBLS network, and ωn is a target weight
vector which connects the extracted feature nodes and the out-
put layer in the TBLS. Yn−1 is the (n − 1)th output frame in
the training set, which is used to train the (n − 1)th TBLS and
obtain the target weight vector ωn.

With (2), the temporal inconsistency, caused by applying
the image-based methods to original video frame by frame
between consecutive frames, can be minimized. In practice,
the output video content should agree with the temporally
inconsistent video on which image-based methods have been
applied, which we call as the video fidelity. To maintain the
video fidelity, we add a restriction that the content difference
between the output video and the temporally inconsistent video
should be minimized. We compute the video fidelity cost Cf as

Cf = ‖An · ωn − Pn‖2
2 (3)

where An is extracted features in the nth network and ωn is
the goal weight vector. Pn is the nth frame in the processed
video. With (3), we reduce the content difference between
the output video and the temporally inconsistent video. After
incorporating temporal consistency and video fidelity in the
(n − 1)th network, we illustrate the TBLS model via Fig. 3(b).
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Fig. 3. Illustration of different TBLS models. (a) We only enforce temporal
consistency at the input data level. The input data in this model is composed
of the current input frame and the output frame of the last frame. (b) We
enforce temporal consistency and video fidelity when we solve the target
weight vector ωn for the TBLS.

Algorithm 2 Alternative Broad Learning-Based Video
Temporal Consistency
Require: Training samples Xn
Ensure: Weight ωn

1: for i = 1; i≤m; do
2: Random Wei,βei;
3: Calculate Zi = [φi(XnWei + βei)];
4: Random ωhi,βhi;
5: Calculate Hi = [ξi(ZiWhi + βhi)];
6: end for
7: Set the feature mapping group Zm

n = [Z1, ..., Zm];
8: Set the enhancement nodes group Hm

n = [H1, ..., Hm];
9: Set An = [Zm

n |Hm
n ];

10: Formulate the temporal consistency objective with Eq. (2);
11: Formulate the video fidelity objective with Eq. (3);
12: Obtain the target weight vector ωn to minimize the tem-

poral consistency loss and the video fidelity loss in the
joint optimization Eq. (4);

Equation (4) shows how to incorporate the above two con-
sistencies to output a nonflickering video. We adopt a similar
elastic net to [38], which utilizes temporal consistency to
predict the number of pedestrians in a video accurately

arg min
ωn

‖Yn − An · ωn‖2
2 + λ1 · ‖ωn‖1

+ λ2 · ‖ωn‖2
2 + λt · Ct + λf · Cf (4)

where we have used the refined least squares method to
solve the optimization problem of minimizing the first term
‖Yn − An · ωn‖2

2 to generate a minimal error for the output
video. The second term and the third term are regularization
terms. λ1 and λ2 are regularization coefficients for the L1 norm
‖ωn‖1 and the L2 norm ‖ωn‖2

2, respectively. The two regular-
ization terms are used to prevent the overfitting of our TBLS
network. λt in the fourth term and λf in the last term are reg-
ularization coefficients for the temporal consistency term and
the video fidelity term, respectively. Similar to [38], we can
solve (4) by the least angle regression [39].

B. Alternative Temporally Broad Learning System

When the task required to be solved is simple, or the
desired accuracy requirement is easy to achieve, we intro-
duce another alternative TBLS (see Algorithm 2). In the
alternative TBLS, we assume that the expansion of mapped
features is relevant to the augmentation of enhancement nodes.
The process of the alternative TBLS is shown in Fig. 4.
In the alternative TBLS, after projecting the input data to
the ith mapped features Zi with random weight, we can
obtain the corresponding ith enhancement nodes Hi with
the enhancement function Hi = ξ(ZiWhi + βhi), where
i is on the interval [1, m], m is the number of enhance-
ment node groups. Next, we improve each enhancement node
with the corresponding mapped feature nodes to generate
enhancement nodes Hm

n . Then, we combine all mapped fea-
ture nodes Zm

n with corresponding enhancement nodes Hm
n to

form all extracted features An. As has been proven in [26],
the TBLS in Fig. 2 is equivalent to the alternative TBLS
in Fig. 4 if and only if that the dimension of enhance-
ment nodes is equal to that of the mapped features in the
network.

V. INCREMENTAL LEARNING ALGORITHM

Because we can reduce the flickering artifacts in our exper-
iments and achieve satisfying results with the proposed TBLS,
we have no plan for improving the learning results with
additional methods. However, we might not reach the preset
learning accuracy with existing extracted features in compli-
cated practical applications. The issue mentioned above may
be caused by the lack of extracted features that can reflect the
input data structure. To improve the broad learning system’s
accuracy, we propose an incremental learning approach to
expand the flat network at the level of input data, mapped
features, or enhancement features.

A. Increment of Enhancement Nodes and Mapped Features

When the task to be solved is complicated, or we intend
to improve the broad learning system’s accuracy, we can
increase the enhancement nodes. As we propose two TBLS
models, we introduce all our following incremental learning
approaches with the TBLS model. As shown in Fig. 5, when
we add b enhancement nodes to original enhancement nodes
Hp

n, we can represent the additional b enhancement nodes
as Hp+1 by using Hp+1 = ξe(Zm

n Whp+1 + βhp+1), where
Hp+1 ∈ Rb and ξe ∈ Rb. Whp+1 and βhp+1 are randomly gen-
erated. With the augmentation of enhancement nodes Hp+1,
all extracted feature nodes An = [Zm

n |Hp
n] can be rewritten as

An = [Zm
n |Hp

n|Hp+1].
After reaching a specific point, the results start saturating

with the increase in the number of enhancement nodes in
the network and our broad learning system’s accuracy cannot
be further enhanced. In this situation, increasing the number
of enhancement nodes does not change the convergence of
output video. It can be noted that the fixed convergence of
output video is caused by the insufficiency of the mapped fea-
tures. Therefore, in our incremental mapped features learning
approach, with the corresponding illustration in Fig. 6, we add

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 11:48:25 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 4. Illustration of alternative TBLS.

Fig. 5. Illustration of incremental enhancement nodes.

Fig. 6. Illustration of incremental mapped features.

a mapped features, which can be denoted by Zm+1 as a whole,
to the TBLS in Fig. 5. The additional a mapped features can
be obtained through Zm+1 = φm+1(XnWem+1+βem+1), where
Zm+1 ∈ Ra and φm+1 ∈ Ra, Wem+1 and βem+1 are randomly
generated. Similar to calculating the number of original/initial
mapped feature nodes m and enhancement nodes p, we com-
pute the number of additional mapped features a through
trial-and-error to maintain the balance in the training time and
accuracy of the results. After increasing the number of mapped
feature nodes, we can rewrite the mapped feature nodes as
Zm

n = [Zm
n |Zm+1]. The corresponding enhancement nodes of

the a additional mapped features Zm+1 can be denoted as
Hm+1, which can be computed as Hm+1 = ξm+1(Z

m
n Whm+1+

βhm+1). Similar to Zm+1 and φm+1, Hm+1 ∈ Ra and ξm+1 ∈
Ra. Corresponding weight vectors Whm+1 and βhm+1 are ran-
domly generated. With the augmentation of mapped features,
we can rewrite the feature An = [Zm

n |Hp
n|Hp+1] in Fig. 5 as

An = [Zm
n |Hp

n|Hp+1|Zm+1|Hm+1] in Fig. 6.

B. Increment of Input Data

In the models mentioned above, the input data only consists
of original frame In, corresponding frame Pn in temporally
inconsistent video, and output frame On−1 of last original
frame, so we only take the temporal consistency between
consecutive frames In and In−1 into account. In this work,
for an original frame In, we suppose the previous frames
of In have already been processed. However, the method of
enforcing temporal consistency between consecutive frames
is not always feasible. For instance, when there are drastic
appearance variation or brightness changes between consec-
utive frames, only combining features from adjacent frames
is inaccurate. There is a similar drawback in the solution
process of target weight vector ωn. To get rid of the inac-
curacy caused by reconstructing an output frame from only an
adjacent frame, some traditional video temporal consistency
methods, such as the methods proposed by Dong et al. [4] and
Bonneel et al. [7], take no less than one frame into account.
With a similar method, we propose an incremental input data
learning approach and increase the input data by finding the
matching frames of In besides its adjacent frames.

Here, we introduce our proposed approach to find the
matching frames of In. First, we adopt SIFT flow [40] to
find the dense correspondence between consecutive frames and
then link the dense corresponding pixels to form the motion
path. Any two pixels having the same motion path are seen
as corresponding pixels. Next, we compute the number of
corresponding pixels denoted as c in other frames. Finally,
corresponding frames for In can be determined according to
the value of c. For instance, we intend to find the correspond-
ing frames of In, compute the number of corresponding pixels
between In−1 and In, which can be denoted as c(In−1, In). After
computing c(Im, In), m is on the interval [1, (n−1)], the frames
with highest c(Im, In) can be denoted as corresponding frames
of In. The corresponding output frame Om of Im can be added
into our proposed BLS system; then, we extract the feature of
Om to refine the extracted features in the nth network. Finally,
we utilize the incremental learning algorithm of input data to
improve the learning accuracy.

Denoting Xc as the newly increasing input data, we
can formulate the corresponding mapped features as
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Fig. 7. Illustration of incremental input data.

Fig. 8. Comparison results of running time and temporal consistency between
MTC and STC.

Zc = φc(XcWec + βec), where Wec and βec are randomly
generated. The corresponding enhancement nodes can be
denoted as Hc = ξc(ZcWhc + βhc), where Whc and βhc are
randomly generated, then all extracted features in Fig. 7 can
be rewritten as An = [Zm

n |Hp
n|Hp+1|Zm+1|Hm+1|Zc|Hc].

To see the performance of multiple frames-based video
temporal consistency method and single frame-based video
temporal consistency method, we make comparison experi-
ments on our established dataset. The result of comparison
experiments is shown in Fig. 8, where MTC and STC represent
“multiframe-based temporal consistency method” and “single-
frame-based temporal consistency method,” respectively. RT/s
in Fig. 8 describes the running times (comprising training
time + inference time) of different video temporal consistency
methods. TCM in Fig. 8 represents the temporal consistency
metric proposed by Yao et al. [41], and the values of TCM
can be applied to describe the quality of video temporal con-
sistency. From Fig. 8, it can be noted that the running time of
multiframe-based video temporal consistency method (MTC)
is slower than the single-frame-based video temporal consis-
tency method (STC). However, the TCM value of MTC is

higher than the TCM value of STC. Since we need more time
to detect the temporally corresponding frames when the task
is easy and prefer the time complexity rather than the quality,
using one previous frame can meet the requirements of remov-
ing flickering artifacts. However, if we intend to improve the
videos’ temporal consistency, the incremental model of input
data can meet the requirement and produce nonflickering out-
put videos. In this way, whether we choose MTC or STC
depends on the practical application to be solved.

VI. EXPERIMENTAL RESULTS

In this section, we introduce the experimental details,
including the dataset used to train our proposed TBLS and the
setting of training parameters in our proposed system. Then, to
prove the effectiveness of TBLS, we will compare the flicker-
removing results of our approach with the existing mainstream
methods on the novel established video temporal consistency
dataset. All experiments are tested on a laptop equipped with
a 2.4-GHz Intel Core i3-3110M CPU and 8-GB memory.

A. Dataset

We have trained the proposed TBLS in our experiments with
the training data comprising original videos, corresponding
temporally inconsistent videos, and output videos. We catego-
rize the videos obtained by applying the image-based methods
to original videos as temporally inconsistent videos and the
videos obtained from applying the flickering-removing meth-
ods to the temporally inconsistent videos as output videos.
Because flickering artifacts mentioned in this article can
be generated from applying random image-based processing
methods to videos, we apply various image-based methods to
original videos in a frame-by-frame manner. In this way, we
can improve the generalization ability of our proposed TBLS
system.
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Fig. 9. Experimental results of the interview video. The top row is the 52nd frame, and the bottom row is the 58th frame. (a) Original frames are temporally
consistent. (b) After processing the original frames with the image-based color grading method, there are temporal artifacts in the processed frames (please
see the color change on the man’s face). (c) There are residual temporal artifacts in the results of Bonneel et al. [3] (please see the blurring artifacts on the
face of the man). (d) In the results of Lang et al. [10], there are the same residual temporal artifacts as with the results of Bonneel et al. [3]. (e) Temporal
artifacts are reduced in the results of our proposed TBLS.

Now, we introduce our dataset comprehensively. First of all,
we collect about 1000 nonflickering videos from the Internet
and refer to them as the original videos. We have divided our
dataset consisted of 1000 short videos into six classes: 1) male;
2) female; 3) concert; 4) building; 5) landscape; and 6) animal.
The number of videos in each video class is selected arbitrar-
ily and is as follows: 243, 182, 75, 198, 147, 155. Moreover,
the average length of videos in our established dataset is 200
frames. In our experiments, we first establish a video dataset.
Then, with inspiration from the work of Chen and Liu [27], we
select 400 videos from the whole videos set as original videos
in the training set, with the remaining 600 videos being the
original videos in the testing set. The image-based methods
used to process original videos in both the training set and the
testing set include color grading, color constancy, spatial white
balancing, style transfer, intrinsic image decomposing, color
harmonization, and HDR compression. Applying the image-
based methods mentioned above to the original videos in both
the training and testing sets can generate corresponding tempo-
rally inconsistent videos. After utilizing one traditional video
temporal consistency method [3] to the processed videos in
the training set, corresponding output videos are obtained.
We combine the original videos, the corresponding tempo-
rally inconsistent videos, and the training set’s output videos
to train our TBLS system.

B. Parameter Settings

According to our objective function in (4), we need to deter-
mine the four regularization parameters, namely: 1) λ1; 2) λ2;
3) λt; and 4) λf . In our experiment, we adopt a grid search to
find the most befitting parameters. The determined parameters
can make good performance in the leave-one-out (LOO) cross-
validation. In the LOO cross-validation, one video is removed
from the training set and the remaining videos are utilized to
train the models. The range of λ1, λt, and λf is from 0 to 1

with the step 0.1, 0–0.2 with the step 0.05, and 0–0.1 with the
step 0.0005, respectively. And the range of λ2 is determined
by LARS automatically. In addition, with a similar method of
generating random weights to [27], the randomly generated
weights Wei and βei, Whi and βhi, and others in our experi-
ments are obtained from the standard normal distribution on
the interval [−1, 1]. Transformation functions φi(·) and ξj(·)
in our experiment are set as the nonlinear sigmoid functions.

Next, we present both objective results (consisting of
qualitative and quantitative results) and subjective results
(comprising user study).

C. Qualitative Results

To evaluate the generalization ability of our temporally
broad learning network, experiments over a number of
videos have been performed. To verify the flickering-removal
performance of our proposed TBLS, we also make a compar-
ison with the traditional video temporal consistency methods,
including [3] and [10]. The experimental results are shown
from Figs. 9–15. In Fig. 9, which corresponds to interview
video, we utilized the image-based color grading method to
the original video [Fig. 9(a)], and then the temporally incon-
sistent video is obtained [Fig. 9(b)]. Then, we use the method
of Bonneel et al. [3] to output the temporally consistent video
[Fig. 9(c)]. Next, we combine the original interview video,
temporally inconsistent video, and the output video to train our
TBLS system. We demonstrate the effectiveness of the output
video generated from our TBLS [Fig. 9(e)]. Our method elim-
inates the residual temporal inconsistency that is present in the
results of Bonneel et al. [3] [Fig. 9(c)] and Lang et al. [10]
[Fig. 9(d)].

The temporally inconsistent videos used to train our TBLS
can not only be generated from applying the image-based
color grading method to the original video but can also be
obtained from transferring other image-based methods, such
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Fig. 10. Experimental results of the zina video. The top row is the 26th frame, and the bottom row is the 27th frame. (a) Original frames are temporally
consistent. (b) After applying image-based color constancy to original frames, there is temporal inconsistency in the processed frames (please see the tonal
variation on the girl’s face). (c) Erratic color on the girl’s left eyes in the results of Bonneel et al. [3] shows the temporal artifacts. (d) Blurring artifacts on
the girl’s face expose the drawbacks of the flickering-remove method of Lang et al. [10]. (e) Results of our TBLS are temporally consistent.

Fig. 11. Experimental results of the concert video. The top row is the 4th frame, and the bottom row is the 5th frame. (a) Original frames are temporally
consistent. (b) After applying the image-based spatial white balancing method to the original frames, there are obvious color changes with the disappearance
of the green color in the processed frames. (c) There are residual temporal artifacts in the results of Bonneel et al. [3]. (d) There exists residual temporal
inconsistency in the results of Lang et al. [10] (please see the color variation on the arms of the people emphasized with the red box). (e) Temporal artifacts
are reduced in the results of our proposed TBLS.

as color constancy, spatial white balancing, and style transfer
to original videos. In Fig. 10, we use the temporally incon-
sistent video, obtained from applying the image-based color
constancy method to the zina video, to train our TBLS system.
Compared with the output videos generated from applying the
temporal consistency method of Bonneel et al. [3] [Fig. 10(c)]
and Lang et al. [10] [Fig. 10(d)], our TBLS reduces the
temporal inconsistency [Fig. 10(e)].

In Fig. 11, we apply the image-based spatial white balancing
method to the concert video. There are tonal variations in the
temporally inconsistent video [Fig. 11(b)]. After applying the
temporally consistent results of Bonneel et al. [3], there are
residual temporal artifacts in the output videos [Fig. 11(c)].
The method of Lang et al. [10] can eliminate the temporal
inconsistency and the tonal variation but fail to achieve the
goal of spatial white balancing [Fig. 11(d)]. Our output video

obtained from TBLS is temporally consistent and preserves the
content of spatial white balancing in the processed video. In
Fig. 12, we utilize the image-based style transferring method
to the old man video. In Fig. 13, the temporally inconsis-
tent video is obtained from applying the image-based intrinsic
image decomposing method to the house video. In Fig. 14,
the image-based color harmonization method is applied to the
lily video. In Fig. 15, we apply the image-based HDR tone
mapping method to the checking e-mail video. Experimental
results demonstrate the effectiveness of our proposed TBLS.

D. Quantitative Results

To evaluate the flickering-removal performance of the
proposed TBLS approach from an objective perspective, we
provide quantitative results of peak signal-noise ratio (PSNR).
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Fig. 12. Experimental results of the old man video. The top row is the 11th frame, and the bottom row is the 12th frame. (a) Original frames are temporally
consistent. (b) After applying the image-based style transfer method to original frames, the discrepant variation of the shadow area behind the right ear of
the older man shows the temporal inconsistency. (c) Applying the method of Bonneel et al. [3] cannot eliminate the temporal inconsistency (please see the
variation of the area behind the right ear on the close-up view). (d) Results of Lang et al. [10] share the residual temporal inconsistency with the result of
Bonneel et al. [3]. (e) Results of our proposed TBLS.

TABLE I
PSNR ON ENTIRE DATASETS

The inputs to calculate PSNR are the corresponding tempo-
rally inconsistent video and output video. Since the value of
PSNR can measure the loss of fidelity when we remove the
flickering artifacts in the temporally inconsistent video, and a
high value of PSNR can indicate that more dynamic scenes
have been retained from the temporally inconsistent video to
the output video, it can be used to evaluate the fidelity of the
output video. We first show the PSNR results on seven selected
videos in Fig. 16. Then, we use our dataset consisting of 1000
short videos divided into six classes: 1) Male; 2) Female;
3) Concert; 4) Building; 5) Landscape; and 6) Animal. The
results of PSNR on the entire test set are shown in Table I,
where the best result is written in bold for the reader’s ease.
The number of videos in each video class is also shown in
Table I. From the result in Fig. 16 and Table I, it is evident
that the output video obtained from our proposed TBLS has
the highest PSNR value. Because we can weigh the quality
of a video by the value of PSNR, the quality of output video
obtained from our TBLS outperforms the flickering-removal
methods of both Lang et al. [10] and Bonneel et al. [3].

We have also applied the value of structural similarity
(SSIM) to measure the performance of output videos obtained
from applying the video temporal consistency methods, includ-
ing Bonneel et al. [3], Lang et al. [10], and our proposed

technique, in removing the flickering artifacts. The higher val-
ues of SSIM indicate that the results of the output video are
better. In the results of SSIM shown in Fig. 17, it can be
noted that our proposed video temporal consistency method
outperforms the methods proposed by Bonneel et al. [3] and
Lang et al. [10]. To evaluate the flickering-removal effec-
tiveness, we compute the root mean-square error (RMSE)
between consecutive frames. From the result shown in Table II,
when compared with either of the traditional methods of
Lang et al. [10] or Bonneel et al. [3], the lowest RMSE value
and the fastest runtime are obtained by our proposed TBLS.
However, when comparing our TBLS with the popular deep
learning system (DLS), we can realize similar RMSE values
and attribute the approximate result to a similar technique of
extracting features. Nonetheless, due to the retraining steps in
the DLS, the runtime of our TBLS is quite faster than DLS.
The value of RMSE and runtime in Table II demonstrate the
effectiveness of our TBLS.

E. User Study

To further evaluate the performance of our proposed TBLS-
based flickering removal approach, we invited 15 students
(seven males and eight females) to participate in our user study
to compare our method with traditional video temporal consis-
tency methods, including the methods of Lang et al. [10] and
Bonneel et al. [3]. All participants were aged from 16 to 22. To
the best of our knowledge, they knew nothing about our video
temporal consistency research. Since volunteers barely under-
stood the flickering artifacts and nonflickering artifacts, we
first displayed the original nonflickering videos that were not
processed with any image-based methods. Then, we showed
them the temporally inconsistent video and pointed out cor-
responding flickering artifacts. After the initial two steps, we
intended to make volunteers aware of the distinctions between
flickering artifacts and nonflickering artifacts. Moreover, we
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TABLE II
RMSE AND RUNTIME IN SECONDS

Fig. 13. Experimental results of the house video. The top row is the 10th frame, and the bottom row is the 35th frame. (a) Original frames are temporally
consistent. (b) After applying the intrinsic decomposition method to original frames, there are temporal inconsistencies in the processed frames (see the
brightness variation of the building). (c) There are temporal artifacts on the path to the building (please see the variation of gray blocks emphasized with
red box) in the results of Bonneel et al. [3]. (d) There are similar temporal artifacts in the results of Lang et al. [10]. (e) Results of our proposed TBLS are
temporally consistent.

Fig. 14. Experimental results of the lily video. The top row is the 202nd frame, and the bottom row is the 203rd frame. (a) Original frames are temporally
consistent. (b) Processed frames are temporally inconsistent, which can be seen from the change of the shining blocks on the wall (please see the fluctuation
on the corresponding close-up view). (c) There are temporal artifacts in the results of Bonneel et al. [3] (please see the blurring blocks on the hair of the
girl). (d) There are different blurring artifacts in the results of Lang et al. [10]. (e) Results of our proposed TBLS are temporally consistent.

intended to point out the visual effects obtained from corre-
sponding image-based methods. Next, we showed the three
output videos processed with different video temporal consis-
tency methods (Lang et al. [10], Bonneel et al. [3], and ours).

We asked the 15 volunteers to select one output video from
the three output videos such that the selected output video
should be nonflickering and possessed image-based process-
ing effects, such as style transfer or spatial white balancing. To
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Fig. 15. Experimental results of the checking e-mail video. The top row is the 98th frame, and the bottom row is the 99th frame. (a) Original frames are
temporally consistent. (b) After applying the method of HDR tone mapping to the original frames, there is texture variation of the ground in the processed
frames (please see corresponding close-up views). (c) There are temporal artifacts in the results of Bonneel et al. [3] (please see the blurring artifacts on the
left arm of the man). (d) Phenomenon of blurring artifacts similar to (c) appears in the results of Lang et al. [10]. (e) Temporally consistent results using our
proposed TBLS.

Fig. 16. Results of PSNR on seven selected videos.

make it easier to choose, volunteers were allowed to replay the
videos repeatedly (whether the nonflickering original videos,
the temporally inconsistent videos, or the output videos). There
were seven output videos including the interview videos, zina
videos, concert videos, old man videos, house videos, lily
videos, and checking e-mail videos. Each output video had
three copies and was obtained from different video temporal
consistency methods. Each volunteer could select one output
video from the three copies and select seven output videos in
total. The user study result is shown in Fig. 18, where the
vertical axis N represents the number of favorable people and
the horizontal axis describes the seven selected videos includ-
ing interview video, zina video, concert video, old man video,
house video, lily video, and checking e-mail video. It can be
noted from Fig. 18 that our method outperforms the methods
of Bonneel et al. [3] and Lang et al. [10].

VII. CONCLUSION

In this article, we proposed a novel broad learning system-
based video temporal consistency approach and construct a
TBLS. To train our proposed system, we have established a
big video temporal consistency dataset. In the TBLS, we first
combine the original frame, the corresponding frame in the
temporally inconsistent video, and an output frame of the last

Fig. 17. Results of SSIM on seven selected videos.

Fig. 18. Results of user study. N represents the number of favorable people,
and the selected videos include interview, zina, concert, oldman, house, lily,
and checking e-mail.

original frame as the input data. Then, we map the input data
as feature nodes with randomly generated weights. After that,
we improve the mapped feature nodes as enhancement nodes
with randomly generated weights as well. Finally, we connect
the enhancement nodes and mapped features to the output
layer with the target weight vector. In the solution process
for the target weight vector, we enforce temporal consistency
between consecutive frames in the output video. In this way,
we replace the retraining process in the DLS with the broad
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learning system. Additional incremental learning algorithms
are also proposed in this article to address the learning inac-
curacy caused by the insufficient input data, mapped features,
or enhancement nodes. We demonstrated the superiority of our
proposed network on a large number of videos. In future work,
we intend to preprocess our input data and reduce the features’
dimension to accelerate the speed of our approach. We also
plan to combine the spirit of both deep learning architecture
and the broad learning system.
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