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Outdoor Shadow Estimating Using Multiclass
Geometric Decomposition Based on BLS
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Abstract—Illumination is a significant component of an image,
and illumination estimation of an outdoor scene from given
images is still challenging yet it has wide applications. Most of the
traditional illumination estimating methods require prior knowl-
edge or fixed objects within the scene, which makes them often
limited by the scene of a given image. We propose an optimiza-
tion approach that integrates the multiclass cues of the image(s)
[a main input image and optional auxiliary input image(s)]. First,
Sun visibility is estimated by the efficient broad learning system.
And then for the scene with visible Sun, we classify the informa-
tion in the image by the proposed classification algorithm, which
combines the geometric information and shadow information to
make the most of the information. And we apply a respective
algorithm for every class to estimate the illumination parame-
ters. Finally, our approach integrates all of the estimating results
by the Markov random field. We make full use of the cues in the
given image instead of an extra requirement for the scene, and
the qualitative results are presented and show that our approach
outperformed other methods with similar conditions.

Index Terms—Broad learning system (BLS), illumination esti-
mating, Markov random field (MRF), multiclass integrating,
shadow synthesis.
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I. INTRODUCTION

THE SHADOW of the virtual objects in a real scene is
one of the key variables, which has to be resolved in the

process of augmented reality, image synthesis, object recog-
nition, and so on [1]–[7]. The visual sense of authenticity of
an observer to a great extent depends on the accuracy of the
shadow synthesis for the virtual object. The shadow synthe-
sis, which must be based on the illumination parameters of the
scene, could be more accurate if the illumination condition is
precisely estimated. Currently, illumination is a key variable
that has to be untangled in the image understanding, recogni-
tion, detection, and computer vision fields [8]–[13]. As more
and more works have been done in visual problems about
illumination [14]–[18], the drawbacks of the traditional illu-
mination estimating algorithms gradually restrict the range of
their applications. Many of the existing algorithms are per-
formed in the laboratory setting or indoor scene to simplify
the problem [19]. Illumination estimation of an outdoor scene
is much more difficult than an indoor scene because of the
constantly changing position of the Sun, weather conditions,
and the uncertainty of environmental elements.

In illumination estimation [20]–[22], specific objects within
the scene are required, such as mirror spheres or prior knowl-
edge. Those methods are limited because there is a little
possibility to include needed objects, which are unusual in
the real world. As the Sun is the main light source in the
outdoor scene, Sun visibility estimating is necessary before
illumination condition estimating [23]. While learning-based
methods have achieved outstanding results in the field of image
processing [24]–[30], we decided to substitute traditional com-
plex algorithms by learning-based methods to achieve part of
functions that could be more efficient by learning-based meth-
ods. To avoid the unbearable training time of deep learning, we
adopt the broad learning system (BLS) in our approach, which
is established as a flat network [31]. BLS can greatly reduce
the time required for the training process while maintaining
the accuracy of the classification. Furthermore, the retraining
process is not necessary when the nodes in the system are
increased.

Our main idea is to fully utilize the information in given
image(s) to estimate the illumination condition. Instead of
relying on a specific (or fixed) object, we pave a path for esti-
mating the illumination of an arbitrary given scene as long as a
human can. We determine the Sun visibility quickly based on
the efficient BLS, which could be expanded on width to estab-
lish more complex systems. And for the complex scene, we
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Fig. 1. Synthesis result of our approach. (a) Main input image is necessary,
where we will insert our virtual objects. (b) Optional auxiliary input images
have the same scene with (a). (c) Synthesis shadow calculated by our method
is present in the final image.

have to extract more features from the input image to improve
the estimating accuracy. Based on the incremental BLS, we
can extract more features from the input image to improve the
accuracy of the Sun visibility determination. After the Sun vis-
ibility determination, we propose an information classification
algorithm based on the geometric structure and the shadow
area [we name the algorithm information classification based
on geometry and shadow (ICGS)]. The useful information is
divided into four categories by ICGS, and the pixels in the
same class could estimate the shadow by the same algorithm
(Section IV). Finally, we improve the robustness of the shadow
synthesis algorithm by the Markov random field (MRF) model
for combining all kinds of illumination estimating results from
different information cliques (Section V). The estimating accu-
racy could be improved by optional auxiliary input images,
the information extracted in the auxiliary is converted by the
image stitching algorithm.

Generally, an optimization algorithm is proposed to inte-
grate multiple images of the same scene and multiclass
information in the images. As common sense, we assume that
the main light source in the outdoor scene is sunlight, and
the position of the Sun determines the illumination condi-
tion mostly. The synthesis result of our approach is shown
in Fig. 1. The necessary main input is shown in Fig. 1(a), and
the synthetic shadow is inserted in the necessary input image
[Fig. 1(c)]. The optional auxiliary input images [Fig. 1(b)]
have (or partly have) the same scene with Fig. 1(a) and the
number of auxiliary input images could be increased for an
accurate estimation in the complex scene. To summarize, the
three main contributions of this paper are as follows.

1) BLS is used to improve the accuracy of Sun visibility
and obtain illumination parameters from flake shadow.
We could quickly and precisely determine whether the
Sun is visible or not in the general scene by basic BLS.
Based on the special structure, incremental BLS could
be established without the retraining process quickly to
determine the Sun visibility of the complex scene. And
the flake shadow is used to estimate the illumination
parameters by BLS too.

2) Multiclass geometric decomposition makes full use of
cues in given image(s). An information classification

algorithm ICGS is proposed, which classifies the infor-
mation about the light condition in an image based on
geometric structure and shadow detection. Especially,
the shadow on the ground is classified into two kinds:
1) long shadow and 2) the others (flake shadow).

3) Optional auxiliary input images are adopted to improve
the estimating accuracy. While the illumination infor-
mation may be limited by only one input image, we
allow optional auxiliary image(s) in our framework to
improve the estimation accuracy. The illumination of
the necessary input is estimated by the information both
in the necessary input image and the optional auxiliary
image(s), that coordinate is castigated by image stitch-
ing. The cues from different images are integrated by
MRF to improve the robustness of the estimating results.

II. RELATED WORK

A. Broad Learning System

Deep neural networks have achieved huge success in many
fields [32]–[34]. The performance of a deep neural network
is sensitive to its parameters, such as the learning rate. And
the long training time of deep neural networks is unbear-
able for users. To eliminate the drawback of deep neural
networks, the random vector functional-link neural network
(RVFLNN) is proposed. Compared with the deep neural net-
work, RVFLNN makes the hidden layers move down as
input nodes so that RVFLNN can contact the input nodes
and output nodes directly. With the growth of data size and
data dimensions, dimension reduction and feature extraction
are necessary. BLS is designed based on the inspiration of
RVFLNN. Furthermore, BLS can effectively and efficiently
update the system because the new weights could be calcu-
lated without a retraining process. BLS is established as a flat
network, and the broad expansion could be in both the feature
nodes and the enhancement nodes [31], [35], [36]. The classi-
fication experiments on popular MNIST and MORB data have
been done in [31], which shows that BLS outperforms deep
structure networks.

B. Sky Physical Model

Lalonde et al. [23], [37] estimated the position of the Sun
relative to the camera based on the sky physical model. After
assuming that the sky is clear, they disperse the parameter
space of Sun’s zenith angle and azimuth angle, and then match
the discretized parameters by the sky physical model. The sky
physical model estimates the position of the Sun based on the
brightness and position of the sky pixels. Based on the rela-
tionship between the position of the Sun and the brightness
distribution of sky pixels, the Sun’s position, which is rep-
resented by the zenith angle and the azimuth angle, can be
calculated. They take the sky pixels’ brightness and its posi-
tion into the function, and the camera parameters are estimated
from the image. From a large number of sky pixels, the phys-
ical model could estimate the position of the Sun accurately.
However, this method will be invalid if there are only a few
sky pixels (no sky pixels) in the image.
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C. Geometric Structure Estimating

Geometric structure is a significant composition of an
image, and the process of estimating the geometric structure
is still challenging. Hoiem et al. [38] predicted the geometric
information from a single image. A general geometric structure
of the given image can be obtained by [38], and the differ-
ent parts are labeled by different signs. Hoiem et al. [38] can
detect the different orientations in the image with respect to
the camera.

D. Shadow Detection

Shadow area detection is a challenging topic when the
shadow is not well-grounded or the shadow and ground are
similar. While more and more shadow detection methods are
proposed [39], the new feature found in the frequency-domain
could help to detect the shadow accurately [40] in the outdoor
scene. They calculate the spectrum ratios under various Sun
angles and further. While the existing shadow is a very impor-
tant cue for the illumination estimation, we have to accurately
detect the shadow. In [41], the problem of shadow detection
is addressed from the learning-based perspective. They recog-
nize the shadow in the grayscale nature images based on both
variant and invariant shadow information from illumination,
texture, and odd-order derivative characteristics. The challenge
of shadow detection is increased because of the lost color
cues and the complex scene in nature images. The features
mentioned above are used to train a classifier via boosting a
decision tree and for enforcing the space consistency over pix-
els; the condition random field is used in the training process.
After the shadow is recognized, the proposed Gaussian model
is used to remove the recognized shadow and the original
shadow region is recovered.

E. Markov Random Field for Illumination Estimation

Panagopoulos et al. [21] proposed a novel framework to
jointly recover the illumination condition from a single image,
and this method needs the coarse geometry information of
the given image. The described MRF illumination model esti-
mates the illumination condition by combining the low-level
shadow with high-level prior knowledge. Normally, the illumi-
nation could be estimated accurately by minimizing the MRF
energy [42], [43]. However, this method is limited by the
necessary prior knowledge.

III. APPROACH OVERVIEW

We first determine the Sun visibility of the given image
by BLS, which could be expanded on the nodes in the width
without the retraining process. Then, the useful information
in the given image is divided into four categories in order to
facilitate the follow-up prediction. The proposed information
classification algorithm relies on a rough geometric structure
and shadow area (see Section IV). These four categories are
sky pixels, vertical surface, flake shadow, and long shadow. We
use A to represent the sky pixel set. B represents the clique of
the vertical objects with similar albedos and multiangle. C is a
single object and its flake shadow. Long shadow is represented

Algorithm 1 Overview of Our Approach

Input: Input Images I1, I2, . . . , Im

Output: Final Shadow Synthetic Image
1: Determine the sun visibility by BLS;
2: Preliminary classify the useful information in every image

by our ICGS algorithm;
3: Get the final classification A, B, C, D by Reclassify the

information from all images;
4: Estimation illumination from each information class;
5: Eliminate the results of low possibility with small weight

or dramatic difference from other estimating results;
6: Energy of our MRF model E for the synthesis;
7: repeat
8: Calculate E of the possible estimating results;
9: Record minimum energy Emin and associated result;

10: until All possible results calculated
11: Obtain the final synthesis result with minimum energy;

by D. We estimate the possible Sun position from the informa-
tion clique A. The brightness of different orientation surfaces
with similar albedo indicate the possible Sun light direction.
The position relationship between the detected shadow and the
original object may show the light direction. And the direc-
tion of the detected long shadow means the direction of the
synthetic shadow. Finally, we integrate all of the estimating
results from different cliques by MRF (see Section V).

As shown in Algorithm 1, m is the number of input images.
And more images may mean more available information that
can contribute to accurate estimation. We determine the Sun
visibility at first. And, for the scene with visible Sun, all
the estimating results from different kinds of information are
compared to eliminate the estimating result with dramatic
difference from other estimating results. The remaining esti-
mating results will be integrated by MRF. We illustrate our
approach in Fig. 2. The necessary input image (the top of
the inputs) contains a lot of useful illumination cues. The
common parts of the necessary input image and the auxil-
iary input images are considered as a characteristic point,
which is used to calculate the rotation angle and displace-
ment in the process of image stitching. First, the Sun visibility
is determined by BLS, which could quickly make out the
question and easily insert input nodes if necessary. Then, we
preliminarily classify the information in each input image by
the proposed ICGS for each image with visible Sun. The
image pixels are classified into four classes: 1) sky pixels;
2) surface pixels (containing surfaces with shadows and with-
out shadows); 3) long shadow with direction; and 4) cast
shadow area with the original object. We will combine the
information in every input image to get the final classifi-
cation after rotating the angle of auxiliary input image(s).
The estimating method of each information class is presented,
and the illustration around the energy map is the informa-
tion classified by ICGS. The final estimating result of our
shadow synthesis is the possible shadow with the lowest
energy.
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Fig. 2. This is the overview of the proposed shadow synthesis approach. The common parts of the input images are thought as characteristic point, which is
necessary for calculating the rotation angle and displacement in the process of image stitching. The Sun visibility is determined by both basic and incremental
BLS. ICGS is used to classify the corresponding information for each image with visible Sun. The estimating algorithms for each class information are used
to estimate the illumination parameters. The final estimating result is obtained by MRF.

Fig. 3. Structure of BLS. The input layer is expressed as Mm
n , containing n

groups of feature nodes Z and m groups of enhanced nodes H. The feature
nodes Zi are the mapped feature generated from the input data X, while the
enhanced nodes H are the improved feature nodes.

IV. SUN VISIBILITY AND INFORMATION

CLASSIFICATION

As we assume that the Sun is the only light source in an
outdoor scene, the Sun visibility has to be determined before
the illumination estimating process. The appearance of the
scene with visible Sun differs from the scene without visi-
ble Sun. And the result of the Sun visibility determining will
directly affect the subsequent prediction of synthetic shadows.
Different kinds of information about an image cannot be fully
used to estimate the illumination parameters by the same algo-
rithm, so we need to divide the image pixels into different
categories. In order to reduce the error caused by the angle
transformation, we extract the information from each image
separately and then synthesize the clues through the angle
transformation algorithm. We first classify the information in
each image by our ICGS, and then we reclassify the informa-
tion coming from different images for the final classification
result.

A. Sun Visibility

1) Sun Visibility Classification Based on Basic BLS: The
sky pixels and the shadow pixels may be indispensable for

(a)

(b)

(c)

Fig. 4. Structure of incremental BLS. A group of additional enhanced
nodes Hm+1 are inserted in the original BLS, and connect the output nodes
directly, as shown in (a). The increment of a group of feature nodes Zn+1
is illustrated in (b), and the corresponding enhanced nodes Hz are inserted
here. (c) Structure of the increment of feature nodes and enhanced nodes
synchronously, where the feature nodes are increased before enhanced nodes.

determining the Sun visibility of an outdoor scene. The
brighter sky pixels mean a higher possibility of visible Sun
than the darker sky pixels. Obviously, the shadow pixels indi-
cate a visible Sun as well. However, it is complex to get an
accurate result of the Sun visibility quickly from those cues. In
this paper, we determine the Sun visibility of the input images
by basic BLS. As shown in Fig. 3, BLS is a flat network with
only input nodes and output nodes. Its input nodes are com-
posed of feature nodes and enhanced nodes. The feature nodes
are computed from the input data X. There are two nodes in
the final output layer Y, because we simply determine if there
is a visible Sun in the input image by the basic image. We
take a given outdoor image as the input data X of BLS, and
the feature nodes Zi are the mapping feature of the input data
X with the transformation function φ. The ith mapped feature
could be denoted as

Zi = φi
(
XWi + β i

)
, i = 1, . . . , n (1)
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Fig. 5. Algorithm of ICGS is shown here. For the input image, shadow area and the geometric structure are detected first. The geometric information (GD)
is masked against the shadow information (SD), and RC illustrates the image segmentation based on the GD and SD. The rough classification is obtained
by the intersection of shadow set and geometry set (ground and surface). A is the pixels in the sky area. RCG is the rough classification of useful surfaces.
RCS is the rough classification of shadow on the ground. B0 is the shadow on the surface. The picture labeled by RCG is reclassified by albedo. B1 is the
surfaces of house (with same albedo) with different angles, and B2 is the surface of the white car. The shadow on the ground is reclassified based on the
shadow classification criterion. C is the flake shadow and its object, and D is the long shadow.

where φi is the transformation of ith mapped feature, Wi and
β i are generated randomly with proper dimensions. There are
n groups of feature nodes, k nodes per group, and n×k feature
nodes in total. For determining the Sun visibility from basic
BLS, we set the number of feature nodes as 8 × 10. There
are eight groups of mapping nodes and ten nodes per group.

To improve the learning ability of the flat network, the
enhanced nodes are calculated by the mapping feature. The
enhanced nodes Hj could be seen as the substitution for the
hidden layers of the deep neural networks. The jth enhanced
nodes could be denoted as

Hj = ξj
(
[Z1, . . . ,Zn]Wj + β j

)
, j = 1, 2, . . . ,m (2)

where ξj is the transformation between jth enhanced node and
all feature nodes Zi. Similarly, Wj and β j are generated ran-
domly too. What have to be emphasized is that φi and φk could
be different if i �= k. Similarly, ξj and ξq could be different if
j �= q. There are m groups of enhanced nodes with q nodes per
group, and we set m = 1 and q = 7000 in the Sun visibility
determining process.

We represent all the input nodes with Mm
n , which con-

tains n groups of feature nodes and m groups of enhanced
nodes. The input nodes can be calculated by: Mm

n =
[Z1,Z2, . . . ,Zn|H1,H2, . . . ,Hm]. After the input nodes are
established, there is the following formulation between the
input nodes and output nodes: Y = Mm

n Wm
n . The weight

coefficient Wm
n could be calculated by the pseudoinverse in

BLS: Wm
n = (Mm

n )
+Y, and the pseudoinverse of the input

nodes (Mm
n )

+ could be calculated by: (Mm
n )

+ = limλ→0
(
λI +

Mm
n (M

m
n )

T
)−1

(Mm
n )

T . I is a unit matrix with proper dimen-
sions and λ is a regularization parameter for ridge regression
(see details in [31]) and λ is set as 10−8 here. Because the

weight coefficient could be calculated instead of the time-
consuming iterative process, the system could be established
quickly. We manually label 1300 images with V̂ = 1 (with
visible Sun) or V̂ = 0 (without visible Sun) as the training
samples. And then, we take 600 tapped images as the test
samples. The training set and test set are split carefully to
avoid the scene overlap. After the system is established, we
test it by test samples. The test classification accuracy is 98.6%
in our system. For the complex scene with overcast sky, the
basic BLS cannot determine whether the Sun is visible based
on the obvious shadow or cloudy sky. And the Sun visibility
is supposed to be classified into more categories to express in
detail. In this case, much more features are needed to classify
the Sun visibility. The incremental BLS will be established to
solve this complex condition.

2) Sun Visibility Classification Based on Incremental BLS:
In the process of the classification by BLS, the nodes could
be increased when the accuracy is not satisfied. While a
time-consuming retraining process is followed by the incre-
mental layers of deep learning structure, the new weight
coefficient could be calculated by the original weight. Bluntly,
based on the special architecture of BLS, the weights can
be calculated without the retraining process. The enhanced
node H, feature node Z, and the dimensions of the input
data X can be increased individually or together in BLS. As
shown in Fig. 4(a), a group of enhanced nodes Hm+1 with
q nodes is inserted. The additional nodes can be denoted
as: Hm+1 = ξm+1([Z1, . . . ,Zn]Wm+1 + βm+1), and then the
updated input nodes Mm+1

n are denoted as

Mm+1
n = [

Z1,Z2, . . . ,Zn|H1,H2, . . . ,Hm+1
]

≡ [
Mm

n |Hm+1
]
. (3)
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Then, the pseudoinverse of the new input nodes (Mm+1
n )+

can be calculated by

(
Mm+1

n

)+ =
[(

Mm
n

)+ − (
Mm

n

)+Hm+1NT

NT

]
(4)

where N can be calculated by Hm+1, Mm
n (see details in [31]).

Obviously, the weight Wm+1
n could be calculated by

Wm+1
n =

[
Wm

n − (
Mm

n

)+Hm+1NTY
NTY

]
. (5)

The increment of feature nodes is necessary sometimes,
because insufficient mapped feature may not extract enough
underlying factors from the input data. As shown in Fig. 4(b),
the corresponding enhanced nodes Hz increased after the
additional (n + 1)th feature node group inserted. Similarly,
the weights of the updated structure Wm

n+1 can be calcu-
lated by Wm

n , Zn+1, Hz, Y, and Mm
n . The increment of

both the feature nodes and enhanced nodes is shown in
Fig. 4(c). The additional enhanced nodes after the incremen-
tal feature nodes H(m+1) are different from Hm+1, where
H(m+1) = ξ(m+1)([Z1, . . . ,Zn+1]W(m+1) + β(m+1)). Then, the
new weights Wm+1

n+1 can be calculated by twice the matrix con-
version. While the increment molds mentioned above do not
work well, the dimension of input data will be increased. The
structure after the increment of X is similar to the original
BLS structure, yet the dimensions of all matrices are changed.
As before, the weights xWm

n can be obtained by the original
weight Wm

n .
For determining the Sun visibility of the input images, the

classification result of basic BLS is accurate enough in our
framework. The input image is classified into two classes:
V̂ =1 or V̂ = 0. Generally, the Sun visibility could not be sim-
ply classified into two different categories in nature images.
The incremental BLS is used to classify the Sun visibility into
more categories that can help to describe the illumination con-
dition accurately. In follow-up work, we may need to judge
the intensity of the illumination condition. The input images
will be classified into 11 distinct categories: V̂ = 0; V̂ = 0.1;
V̂ = 0.2; V̂ = 0.3; V̂ = 0.4; V̂ = 0.5; V̂ = 0.6; V̂ = 0.7;
V̂ = 0.8; V̂ = 0.9; and V̂ = 1. The incremental BLS may be
necessary for the satisfied classification accuracy.

B. Information Classification Based on
Geometry and Shadow

We proposed an information classification algorithm that is
based on geometric structure and shadow area. ICGS divides
the information into four categories. We detect the geomet-
ric structure by the rough geometry estimating algorithm [38],
which can precisely divide the sky pixels, ground pixels, and
geometry pixels from the image, and detect the orientation of
the vertical surfaces. We first tap the image pixels with the
label containing sky, ground, and vertical objects, represented
as L1 after the geometric estimation. At the same time, we
extract the shadow area using the method proposed in [40].
This method detects the shadow in a single outdoor image by
checking the pixels around the edge. If the pixels satisfy the
proposed three criteria, they are considered to be the shadow.

Algorithm 2 ICGS
Input: Image I, Lable1 L1, Lable2 L2
Output: Useful Information Cliques A, B, C, D

1: Detect the geometry and tab each pixel with Lable1 L1;
2: Detect the shadow and tab each pixel with Lable2 L2;
3: for Each image pixel p do
4: Check L1 and L2
5: L1 is Sky and L2 is non-shadow: pi ∈ A;
6: if L1 is ground and L2 is shadow then
7: The shadow type satisfies Eq. (7): pi ∈ D;
8: There is a single object around the shadow: p ∈ C;
9: end if

10: if L1 is vertical object and L2 is shadow then
11: p ∈ B0;
12: end if
13: if L1 is vertical object and L2 is non-shadow then
14: The pixel with albedo αi, i ∈ [1, 2, · · · ] belongs

to the clique Bi;
15: Mark Bi with three angles, as Bk

i , k ∈ {1, 2, 3};
16: end if
17: end for

The criteria have been derived by them from the new features
they have just found. And we tap the picture with labels con-
taining shadow and nonshadow, represented as L2 for each
pixel. Then, we combine the two label results L1 and L2 to
reclassify the information for making the best of the cues in the
image. Algorithm 2 shows the details of algorithm ICGS. We
divide the information into four classes by ICGS: 1) sky pixel
clique (A); 2) clique of vertical surface with similar albedos
or the surface with obvious shadow (B); 3) regions contain-
ing a single object with its shadow (C); and 4) long shadow
clique (D). The process of ICGS is illustrated in Fig. 5. As we
can see, the shadow area and geometric structure are detected
from the input image first. Four different categories are clas-
sified based on the geometry and shadow, which is explained
in detail in the following sections.

1) Categories of A and B: For estimating the illumination
parameters, the distribution of the sky pixels in the image is
very important. A different brightness distribution may indi-
cate different position of the Sun. We extract the sky pixels
and name the clique A in our approach. The clique A con-
tains the brightness distribution of the sky pixels. The shadow
detection of the outdoor scene image is extremely difficult
because of the uncertain geometric structure, shadow-like
objects, and changed weather conditions. Inaccurate shadow
detection result will bring a confused estimation of the illu-
mination, so the accurate shadow detection algorithm of the
outdoor scene is necessary. We choose the shadow detection
algorithm proposed in [40], which can accurately detect the
shadow from a single image of the outdoor scene. Through the
canny iterative calculations and checking the shadow features,
the determined shadow region is more precise. This method
ensures that the detected shadow is not the possible noise, such
as the zebra crossing or the grass border area. After getting the
shadow detection result, we will get the information class B.
The shadow on the vertical object’s surface may mislead the
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(a) (b)

Fig. 6. In a nature scene, the possible angle of vertical objects can be divided
into three classes, showing in (a). Thus, we assume that there are just three
possible angles of vertical objects in the given image, which is shown in (b).

classification of different angle surfaces, and cause errors in
the estimating result. By contraries, the surface with shadow
means that it is impossible for the Sun to be in the opposite
direction of the surface normal vector. Thus, we take the verti-
cal surface with shadow as B0. For the surface without shadow,
we classify them based on different albedos. For surface with
a particular albedo, we represent it as Bi, and i ∈ [1, 2, . . . ].

For the surfaces with the same albedo in a different direc-
tion, the surface with higher brightness shows that the Sun
light direction is parallel to its normal direction. Actually, the
albedo of different surfaces in the same object is often similar.
We use a popular object detection method [44] to determine
which surfaces belong to the same object. For the surfaces
of the houses, different surfaces of the same house may usu-
ally have the same albedo, and different houses in the same
street may also have the same albedo. The surfaces of differ-
ent houses in the given are divided into the same group Bi

in this paper. Of course, before this step, the surfaces with
shadow have already been divided into B0. After selecting the
brightness for each surface in Bi, we have to set an angle
label for every surface and get a more detailed classification
Bk

i , k ∈ {1, 2, 3}, which contains objects with similar albedo
and particular orientation. In this paper, we assume that sur-
faces have just three kinds of orientations in the image and the
others are needed to be classified into the nearest orientations.
Fig. 6 shows how each angle is respective to the camera. We
apply the numbers 1–3 to represent the angles 0◦, 90◦, and
−90◦. The three directions can be detected by the geometry
detection algorithm.

Theoretically, the brightness of the surfaces with the same
orientation and similar albedo should be the same (or similar),
but there are some exceptions to the reality. The pixels of
the glass on the window are different from the pixels of the
wall surface; we call them special pixels, which should be
eliminated. For the special pixels in Bk

i , we eliminate them
by simply counting the number of different brightnesses, as
shown in Fig. 7. The line of the same color represents the same
surface, most of the pixel brightness within the same surface is
in the vicinity of the same value, but a few are scattered in the
vicinity of two to three values. We retain the brightness around
the mode as the surface brightness and abandon the pixels
with a significant difference from the representation (special
pixels).

Fig. 7. For the surface without shadow, we classify them according to the
different albedo. The original images are shown at the top row, there are four
kinds of surface in the input images. We take the pixels of house as “SWALL,”
and illustrate the value of pixels using gray lines. We take pixels of car as
“SCAR,” and illustrate the value of pixels using red lines. We take pixels of
parapet as “SPARAPET,” and illustrate the value of pixels using blue lines.
The group number i of Bi is three here. We illustrate the pixels from different
angle using different line types.

2) Categories of C and D: The difficulties in the process of
making full use of the shadows include the shadow detection
and the information extraction from the detected shadow. After
detecting the shadow in the image by [40], we have to classify
shadows on the ground to make the best of the shadows in
the image. The shadow cast by a vertical object (such as a
trunk, telegraph pole, etc.) infers a reasonable direction of the
synthetic shadow. Thus, we want to pick this kind of shadow.
From statistics of the world, long shadows are more likely to
be cast by a vertical object. But the shadow cast by an object
that is parallel to the ground (such as a roof or a wire) could
be a long shadow too, and it may mislead the illumination
estimation.

We first obtain a shadow on the ground by simply checking
the pixel label. If the pixel’s L2 is shadow and L1 is ground, the
pixel will be defined as the shadow on the ground. We take the
shadow pixels that are linked together as a shadow li according
to the principle of continuity. Statistics of the world show that
the longer shadow is more likely to be a desirous shadow than
a shorter one. Thus, we confirm whether the shadow li belongs
to the long shadow by

P(li ∈ D) = h1 ·
(

exp
f (li)∑
p∈li p

− 1

)

+ h2 · H(g, li) (6)

where h1 is a positive weight coefficient (similar to hi, i ∈
[2, 9] below). For determining whether the shadow li could
be divided into the long shadow clique D or not, we take
the shadow shape feature, the strength of the shadow, and the
geometry around the shadow into consideration in the formula.
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(a) (b)

Fig. 8. Shadow on the ground in the input image is classified into two
classes, represented as C and D. As shown in the right images, the set C
contains cast shadow (red box) and the original object (yellow box), while
set D contains long shadow (red line).

The function f counts the pixel numbers in one direction of
the shadow li, and the results of the fraction between f and the
pixel number of li may indicate if the shape of shadow li is a
rectangle or square. As shown in (7), the function f represents
the length of the shadow li, and it is calculated by counting
the pixel in different directions and choosing the maximum
number as the length of li. Spontaneously, the longest edge’s
direction βi is taken as the direction of this shadow. If the
shadow length is longer than the threshold l̃, we perform to
take it into consideration. Otherwise, we would like to set f (li)
as 0. We take l̃ as 96 in our experiments

f (li) =
{

max
(∑dir1

p∈li p,
∑dir2

p∈li p
)

if f (l) ≥ l̃

0 if f (l) ≤ l̃.
(7)

In this situation, the main interference is the shadow cast
by the object, which is parallel to the ground (such as a roof).
If there is a vertical object around the shadow, the shadow
is more likely to be in D. And for the function H(g, l), it
may be defined as 0.5 if there is a vertical object around this
shadow (li ∩ g �= ∅). Otherwise, it may be defined as 0 if
li ∩ g = ∅. And g is defined as the vertical objects set which
can be obtained by the geometry detection algorithm. All of
those conditions are considered measures of whether a shadow
li can be classified into D. But even though a shadow li /∈ D,
it may be useful too. For example, a shadow of a motorcycle,
to a great extent, does not belong to the long straight clique.
But if the surrounding is not very complex, we can still use
it by way of the BLS (see the details in Section V). The final
shadow classification result is illustrated in Fig. 8 and the long
shadow is classified into D while the flake shadow is classi-
fied into C. Finally, we divide the information into four classes
by ICGS: A, B, C, and D, representing the sky pixel clique,
clique of vertical surface (having multiangle) with similar
albedos or the surface with obvious shadow, regions contain-
ing a single object with its shadow, and long shadow clique,
respectively.

Fig. 9. We utilize the sky pixel set A to estimate the possible Sun position.
First, we stitch the input images, we then extract all of sky pixel brightness
and corresponding position as input of the sky model. Finally, we show the
possible Sun position.

C. Coordinating Multiple Images Unity

Multiple images of the same scene may have many use-
ful illumination cues. A single image may contain only one
or two information classes of our four useful kinds. Under
special circumstances, there may be no illumination cue in
a single image. Even if a single image contains some illu-
mination cues, the credibility of the estimating result may be
reduced because of the incompleteness of the information. For
the complex scene, the estimated result from a single image is
not reliable because of the limited information. Thus, we take
multiple images from different perspectives as the auxiliary
inputs. While multiple images contain much more information
for an accurate estimating result, the coordinate unification is
the main problem of using multiple input image(s). In order to
integrate the information of multiple images, we need to trans-
form the coordinates of two pictures into the same coordinate
system. The camera of the necessary input image is consistent
with the world coordinate systems. In this paper, we use the
method in [45] to achieve this goal.

Although the two images contain more information about
illumination, the noises may be produced in the process if
the coordinate of the two images are rotated first so we use
the ICGS classification algorithm to process each input image
first. We only obtain the corresponding pixel coordinates from
the stitching result and, for the pixels in the gap between the
images, we abandon them. After the coordinate unification,
we reclassify all of the information classes. The sky pixels in
the two images are more likely than the sky pixels in a single
image. As shown in Fig. 9, we will take all of the sky pixels
in the multi-images (after the coordinates are converted) as the
final collection A. And for the cliques B, C, and D, we just sim-
ply convert the coordinate for the next prediction algorithms.

V. ESTIMATION ALGORITHMS AND OPTIMIZATION

A. Estimation Algorithm of A

According to the physical sky model [46], there is a cer-
tain correlation between the solar position and the sky pixels’
brightness. And when the position of the Sun is known, the
sky model gives the formula that can calculate the relative
brightness of each position in the sky. The position of the Sun
is represented by the Sun’s zenith angle (θs) and the azimuth
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angle (φs) with respect to the camera. In this paper, we rep-
resent the position of the Sun by using ds instead of θs and
φs. You can see ds as a point in the sky, which could be
constituted by all the nodes of a unit geodesic sphere. If we
make discretization of zenith angle and azimuth angle, and
we represent the number of ς as N(ς). The number of ds is
N(ds) = N(θs) · N(φs). We utilize the difference between the
brightness of the sky pixels at different positions, which can
be known from the image, to determine the position of the
Sun. First, we have to check the clique A, the sky pixels set in
the image to determine whether the physical model is suitable
or not. If the sky is clouded or overexposed, j is set to 0. And
it means that the sky pixels are abandoned. Otherwise, j = 1.
The position of the Sun can be calculated by

max(ds)jexp

⎛

⎝
∑

ai∈A

(ai − h3 · G(ds,
c))
2

⎞

⎠ (8)

where ai is the brightness of the sky pixel in a particular posi-
tion, and the function G is the sky model function for solving
the relative brightness of the sky pixel. The maximum like-
lihood solar position is obtained by a satisfied ds. 
c is the
parameter set, containing the coordinates of pixel and camera,
which can be calculated from the image. Obviously, a par-
ticular solar position corresponds to a specific light direction,
and we will directly use the light direction dl̂ to indicate the
illumination in the following section.

Every sky pixel is checked whether it conforms to the Perez
model [46] or not, because there may be overexposure and sky
pixels rarely not suitable for judging the illumination condi-
tion. If the sky pixels do not comply with the position of the
Sun, we give up the clique A.

B. Estimation Algorithm of B

According to the ICGS classification algorithm, the clique B
contains vertical surfaces with different angles and similar
albedo. In order to simplify the algorithm, we divide the
direction of the surface by its normal vector into three cate-
gories, and the others are divided into the nearest orientation.
Bk

i , k ∈ [1, 3] contain the brightness of surface pixels with a
particular angle. For the surfaces Bi with only one orientation
(k = 1), we will abandon them because there is no compari-
son to show which orientation is much brighter. We define the
similarity between the direction of the surface’s normal (γ j

i )
and the direction of the light source (dl̂)

S
(
γ k

i , dl̂

)
= 1

1 + e

(
−h4·∑bj∈B

j
i

bj+h5

) (9)

where bj is the brightness of a particular pixel and h3 and h4

are no less than 0. Brighter pixels in Bj
i mean that its nor-

mal direction is similar to the direction of the light source.
Thus, we compare S(γ 1

i , dl̂) with S(γ 2
i , dl̂) and S(γ 3

i , dl̂),
and choose the smallest one as the basis to calculate the rate
of the other two to basis. For instance, if the S(γ 1

i , dl̂) is
the smallest one, the rate of S(i)21 = S(γ 2

i , dl̂)/S(γ 1
i , dl̂) and

S(i)31 = S(γ 3
i , dl̂)/S(γ 1

i , dl̂) is calculated. And for all of i,
we calculate the summary of S(i)21 and S(i)21 to integrate the

Fig. 10. Structure of BLS. The input layer is expressed as Mm
n , containing n

groups of feature nodes Zi and m groups of enhanced nodes Hj. The feature
nodes Zi are the mapped feature generated from the input data X, while the
enhanced nodes H are the improved feature nodes. There are eight nodes in the
final output layer Y, because we are supposed to divide the input images into
eight categories, and each type means the possible shadow direction within a
range of 45◦.

Fig. 11. Estimating result of information class C is shown in the lower-right
corner. The detected object and its cast shadow is shown in the middle of the
input images (upper-left). The red arrows show the orientation from object to
shadow.

surface with different albedos. Finally,
∑

i S(i)21 is compared
with

∑
i S(i)21 to determine the illumination direction.

C. Estimation Algorithm of C

After the classification algorithm ICGS, we get a kind of
information containing an object and its shadow. From the
object position corresponding to the cast shadow area, the pos-
sible light direction could be estimated. We apply the BLS to
estimate the possible angle of the synthetic shadow from clique
C. As shown in Fig. 10, the structure is similar to Fig. 3 but the
number of input nodes Mm

n and output nodes Y are increased.
Because of the uncertain shadow shape and the complex geo-
metric structure of the clique C, it is difficult to estimate an
accurate shadow direction. If the object is on the left of the cast
shadow area, the light direction may be on the left side, left
front, or left rear. We divide the possible synthetic shadow
direction 360◦ (from −180◦ to 180◦) into eight copies and
each part contains a range of 45◦. As shown in Fig. 11, the
indicated direction (red arrowhead) from the position of the
object and its cast shadow is shown at the upper-left. We clas-
sify the image into one of the eight different classes by the
BLS.

The image pixels in the purple box at the upper right are
taken as the input data X. We set the number of feature nodes
Zn as 100 and set the number of enhanced nodes Hm as
11 000. We manually label 3600 images with Dl̂ as the training
samples, and the training samples are shown in Fig. 12. Dl̂
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Fig. 12. Training samples.

represents the most likely light direction in the input images.
We take 800 labeled images as test samples. Dl̂ ∈ 1, 2, . . . , 8
means a different angle of the synthetic shadow

dl̂ ∈
[
(Y − 1) · π

4
,
(Y − 1) · π

4

]
(10)

where dl̂ is the direction of light and Y is the output with max-
imum possibility. The objects in the training images contain
pedestrians, cars, bicycles, motorcycles, and so on. The accu-
racy is up to 96.7%. Of course, this estimation algorithm will
be useless if there is no class C in all input images. Finally,
the input image is classified into one of the eight classes with
particular orientation.

D. Estimation Algorithm of D

We judge whether a shadow could be used to determine the
synthesis’ shadow direction of the virtual object by (6). For
the li ∈ D, we pretend to take the direction βi of li or βi + π

as the light direction

F(βi, dl̂

) = min

((
βi − dl̂

)2

π
,

(
(βi + π)− dl̂

)2

π

)

. (11)

In this equation, we determine the synthetic shadow direction
by determining the minimal angle difference to the possible
light direction, which could be determined by (10).

It is precise because this method can directly obtain the
direction of the shadow. If the false direction β is exiting
in the input data, the result is fatal. Before determining the
possible synthetic shadow direction, we eliminate the possible
noise by voting of all the shadow li. If the shadow is cast by
a clothesline pole (or a rope across the air), it may cause a
detected false direction. But the voting process will eliminate
the error caused by this shadow because most of the shad-
ows li in D are cast by vertical objects. This method may be
misleading. For example, the shadow of an object might be
casted on a wall, and the wall is actually built in the vertical
direction which could be detected. This condition will lead to
the direction of the shadow rotation. Therefore, the direction
of the shadow in this paper still holds that there is a certain
possibility of the shadow direction.

E. Information Results Integrated by MRF

After getting rough estimating results from four different
weak clues, we will combine them by MRF. We will assume

the surfaces in the scene exhibit Lambertian reflectance, which
is a commonly used assumption. The outgoing radiance at a
particular pixel p is given by

I(p) = αp
(
V0 + V

(
p, dl̂

)
max

{
dl̂ · np, 0

})+ ω (12)

where I(p) is the brightness of the pixel p and αp is the
albedo of this pixel. If the ray from the point p along the
light direction dl̂ intersects the geometric structure, V(p, dl̂)

will be defined as 0. Otherwise, V(p, dl̂) will be defined as 1.
V0 is the ambient intensity of the scene and ω is the possible
noise. Although the point p is not occlusive by the geome-
try structure, it still could not be lighted. If the multiplication
of light direction dl̂ and the normal of point np is less than
0, p cannot be lighted. For the pixels in the shadow area, the
brightness Is(p) can be expressed by the ambient intensity V0.
And Is(p) is the rough approximation of the synthetic shadow.
Because the pixel Is(p) could be obtained in the input image,
the brightness could be roughly determined by V0.

In this paper, the final estimating result is obtained by sam-
pling in a large probability range. The probability range could
be obtained based on the estimating result from the four kinds
of information. We minimize the energy of the synthesized
object for the final estimating result. The energy of our model
consisting of pixel nodes and light nodes is defined as

E
(
x̂
) =

∑

i∈Sl̂

φs
(
x̂i
)+ φl̂

(
x̂l̂

)+
∑

(i,j)∈�
ψ�

(
x̂i, x̂j

)+
∑

i∈P

ψp
(
x̂i, x̂l̂

)

(13)

where φs(x̂i) and φl̂(x̂l̂) are the singleton potentials for pixel
nodes and light nodes, ψ�(x̂i, x̂j) and ψp(x̂i, x̂l̂) are the pair-
wise potential defined on two pixels and associating light node
with a pixel x̂i, respectively. The pixel set Sl̂ represents the pix-
els contained in the synthetic shadow, P is the pixel set of all
the pixels in the image, and x̂i is the brightness of pixel i.

The singleton potential φp(x̂i) is the difference between the
synthetic pixel and the value of shadow pixel in given image

φs
(
x̂i
) = h6 · min

(∣∣x̂i − Is(i)
∣
∣, t̃p

)
(14)

where the upper bound t̃p is the cost term for avoiding
over-penalizing outliers. The singleton potential φ�(x̂l̂) is the
difference between the gradient angle of synthetic shadow
edge τs(i) and the gradient angle of original shadow edge τr(i)

φ�
(
x̂l̂

) = h7 · 1
∣∣∣�Sl̂

(
x̂l̂

)∣∣∣

∑

i∈D

h8 · |τr(i)− τs(i)|
2π

(15)

where �Sl̂
(x̂l̂) is the edge set of the shadow cast by the light

node x̂l̂. Let τs(i) ∈ [0, 2π) be similar to τr(i) ∈ [0, 2π) to
favor the similarity of the direction of the synthetic shadow
and the original shadow. The relation between pixel node x̂i

and light node x̂l̂ is defined as

ψp
(
x̂i, x̂l̂

) = h9
(
αx̂i

(
V0 + V

(
x̂i, dl̂

)
max

{
dl̂ · nx̂i , 0

})− x̂i
)2 + t̃c

(16)

where an upper bound t̃c is set to avoid overfitting and dl̂ is the
light direction of the light node x̂l̂. We minimize the energy to
determine the final result from the possible light direction dl̂,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 12:03:49 UTC from IEEE Xplore.  Restrictions apply. 



2162 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 5, MAY 2020

Fig. 13. For the input image, the estimating result of each class information
is shown here, and the result by integrating four classes of information is
illustrated at last.

(a) (b) (c) (d)

Fig. 14. Estimating result of single image is shown in (a)–(c), and the final
result of all input images (the cues in necessary input image (a) and the
auxiliary images (b) and (c) are integrated) is shown in (d).

which could be obtained by different information classes of
the input images. The final estimating result depends on the
similarity of the pixel brightness and the original image.

For illustrating the result of integration, we show the result
obtained by each information class and the integration of those
results by minimizing the energy. As shown in Fig. 13, the
result of each information class is not reliable. The sky pixels
in the input image are not enough for the prediction of an
accurate Sun position. There are surfaces with two different
orientations of houses in the image, so the estimated direction
of B is the normal of the brighter surface. The long shad-
ows indicate two possible directions. The final result is more
accurate than the results obtained by each information class.

VI. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our framework in two
different ways. First, we show our experimental results and
compare with the previous methods, which are done in simi-
lar conditions. All of the experiments are tested on a MATLAB
software platform on a laptop equipped with Intel-i5 2.4GHz
CPU, 16GB memory. The information contained in a single
image containing outdoor scenes is not accurate in most cases.
At that time, we predicted the illumination conditions. We
use auxiliary input images (including the same parts of the

(a) (b)

Fig. 15. Shadow detection result comparison between our approach and
Lalonde et al. [23]. The shadow detection and the synthetic shadow of
Lalonde et al. [23] are shown in (a), and the result of ours is shown in (b).

Fig. 16. Orientation deviation of the long shadow by our approach and
Lalonde et al. [23] method.

necessary input images and the same scenes) to improve the
prediction results, as shown in Fig. 14.

A. Comparison With State-of-the-Art

While the exiting shadow plays an important role in the
illumination estimating process, the accuracy of the shadow
detection and the shadow exploitation directly impacts the pre-
diction result. As shown in Fig. 15, Lalonde et al. [23] may
mistake the objects on the road mistake as shades, and the
estimated result of the scene without visible Sun is based on
the angle of the zebra crossing as in Fig. 15(a). And because
of the inaccurate shadow detection, the illumination estimating
result is wrong. Since we chose the long shadow based on the
shadow shape and the geometry structure, the long shadow is
cast by vertical trees to a great extent and the illumination esti-
mating result is more accurate. The deviation of the estimated
results based on the orientation of long shadow is shown in
Fig. 16; the proportion estimated with low deviation is higher
than Lalonde et al. [23]. As shown in Fig. 17, our results (sec-
ond row) is more accurate than others (top row). Fig. 17(a) is
the result comparison with Lalonde et al. [23]. Fig. 17(b) is
the result comparison with Lalonde et al. [37]. Fig. 17(c) is
the result comparison with Panagopoulos et al. [21].
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TABLE I
PARAMETERS CALCULATED BY [47]. SE IS THE ELEVATION OF SUN, SA

IS THE AZIMUTH OF SUN, CE IS THE CAMERA ELEVATION, AND

VF IS THE VERTICAL FIELD OF VIEW

(a) (b) (c)

Fig. 17. Estimated result comparison with [21], [23], and [37]. Top row
consists of the estimated result of [23] (left), [37] (middle), and [21] (right).
The second row is the result of ours from single input image.

Recently, Hold-Geoffroy et al. [47] proposed a learning-
based illumination estimation method. They train the CNN
with large set of 360◦ panoramas from the SUN360 panorama
dataset [48]. And we compare our estimation result with [47]
on both image in 360◦ panorama (Fig. 18) and nature image
(Fig. 19). As shown in Fig. 18, the estimating result of our
approach is shown in Fig. 18(a), and the estimation result
of [47] is shown in Fig. 18(b). The estimating result of [47] is
drawn by the parameters (the elevation of the Sun, the azimuth
of the Sun, the camera elevation, and vertical field of view)
calculated by [47]. The values of these parameters are shown
in Table I, and “Image1” represents Fig. 18(b), “Image2” rep-
resents Fig. 19(b), and “Image3” represents Fig. 19(c); the
parameters of “Image3” have not been illustrated in the image.
We can see clearly from Fig. 18 that our estimated result tends
to differ very little from the estimated result of [47] on the
image from the SUN360 panorama dataset [48].

For the nature image with complex geometry, [47]
erroneously estimated the illumination condition totally
[Fig. 19(b)]. The azimuth of the Sun is −0.295 (radians). The
Sun is on the left of the image while the Sun should be on
the right in real life. Compared with [47], our results based
on a single image [Fig. 19(a)] is closer to the real illumi-
nation condition. If we could get Fig. 19(c) as an auxiliary
input image, the illumination estimation result of our method
[Fig. 19(d)] is more reasonable. As we can see in Table I, the
azimuth of the Sun estimated from Fig. 19(c) is similar to the
real illumination condition but the accurate estimating result
could not help to refine the estimating result [Fig. 19(b)]. The
accuracy and training time comparison with others are shown
in Table II, “SV” means Sun visibility and “DC” means the
direction classification. As shown in Table II, the accuracy of

TABLE II
SUN VISIBILITY COMPARISON

Fig. 18. Comparison with [47] on 360◦ panorama (left) from the SUN360
panorama dataset [48]. Our estimating result is shown in (a) and the result
of [47] is shown in (b).

(a) (b)

(c) (d)

Fig. 19. Comparison between our approach and [47] on nature image. The
illumination estimation result of our approach from a single image is shown
in (a). (b) is drawn based on the parameters from [47]. (d) Estimating result
of our approach, which integrates the information of necessary input image
(a) and the auxiliary input image (c).

BLS is similar to other deep learning systems but the training
time is much quicker than others.

VII. CONCLUSION

We have demonstrated a complete framework for the illumi-
nation estimation using the corresponding information existing
in a given outdoor image. Our approach determines the Sun
visibility by BLS, which can be expanded quickly to determine
the Sun visibility of a complex scene. Then, we divide the use-
ful information by the proposed classification method, which
is based on the geometric structure and the shadow area. The
information classification algorithm can help make full use of
the information in the next steps. After the classification, we
estimate the illumination from every category of information
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by respective algorithms. Finally, for an effective estimating
result, we combine the intermediate estimating results obtained
by MRF. Experimental results show that our approach pre-
dicts the illumination conditions accurately on a wide range of
images. We compare our results with other methods in similar
conditions and the comparison results show that our approach
has a more effective prediction ability. Furthermore, we com-
pare the learning-based illumination estimating method, which
shows our estimating result is better than the learning-based
method by the auxiliary input image(s). As for future work, we
plan to utilize the relationship between pixels and the illumina-
tion condition in the image, such as the shadow area without
certain directions and adjacent vertical objects, so that our
method can solve a wider range of images.
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