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Video Decolorization Using Visual Proximity
Coherence Optimization

Yizhang Tao, Yiyi Shen, Bin Sheng, Ping Li, and Rynson W. H. Lau

Abstract—Video decolorization is to filter out the color infor-
mation while preserving the perceivable content in the video as
much and correct as possible. Existing methods mainly apply
image decolorization strategies on videos, which may be slow
and produce incoherent results. In this paper, we propose a
video decolorization framework that considers frame coherence
and saves decolorization time by referring to the decolorized
frames. It has three main contributions. First, we define decol-
orization proximity to measure the similarity of adjacent frames.
Second, we propose three decolorization strategies for frames
with low, medium, and high proximities, to preserve the qual-
ity of these three types of frames. Third, we propose a novel
decolorization Gaussian mixture model to classify the frames
and assign appropriate decolorization strategies to them based
on their decolorization proximity. To evaluate our results, we
measure them from three aspects: 1) qualitative; 2) quantitative;
and 3) user study. We apply color contrast preserving ratio and
C2G-SSIM to evaluate the quality of single frame decolorization.
We propose a novel temporal coherence degree metric to evalu-
ate the temporal coherence of the decolorized video. Compared
with current methods, the proposed approach shows all around
better performance in time efficiency, temporal coherence, and
quality preservation.

Index Terms—Decolorization Gaussian mixture model
(DC-GMM) classifier, decolorization proximity, result
reutilization, temporal coherence, video decolorization.

I. INTRODUCTION

V IDEO decolorization is an important video editing tool
with different applications. By filtering out the chroma
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Fig. 1. Results of decolorizing two consecutive video frames, where the cor-
responding input color frames are shown on the lower left corners. (a) Results
from [1], which simply applies an image decolorization method on video
frames. (b) Results from our approach, which considers frame coherence.
Note that the luminance values of the two input frames are not changed. While
the results from [1] have very different luminance values, our approach can
preserve the luminance consistence well.

information, grayscale videos can better demonstrate the object
texture. It also makes it easier to detect object outlines, an
important research area in machine learning. Further, grayscale
videos require less memory to store by preserving only the
most important information. However, most existing works
mainly focus on image decolorization and reuse the same
strategy for video frames. They neglect the nuance between
an image and a video, which may lead to luminance inco-
herence, also called visual flickering, as shown in Fig. 1.
As video frames are decolorized separately, current meth-
ods also show high redundancy in processing adjacent frames
when their contents are similar. Such high computational cost
and visual flickering problems are drawing more and more
attention.

As video frames are a sequence of consecutive frames shar-
ing similar contents, rather than a group of unrelated images,
we propose in this paper a video decolorization framework that
considers frame coherence. It has two main steps. First, it com-
putes the decolorization proximity, measuring the similarity
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of adjacent frames. Second, the decolorization Gaussian mix-
ture model (DC-GMM) takes the proximity values as features
and learns to select a suitable decolorization strategy for each
frame. We propose three different decolorization strategies:
1) low-proximity; 2) median-proximity; and 3) high-proximity
decolorization (HPD) strategies, which have increasing com-
putational costs and decolorization qualities. Our DC-GMM
would try to select the right strategy for each input video frame
in order to optimize between overall computation time and the
output quality of the decolorized frames.

To evaluate our framework, we conduct quantitative and
qualitative experiments as well as user study on diverse
color videos. We analyze the computational complexity of
each decolorization step. We apply color contrast preserving
ratio (CCPR) and C2G-SSIM to measure the quality of the
decolorization on individual frames. We also propose a novel
temporal coherence degree (TCD) metric to measure the tem-
poral coherence of the output video frames. Conclusively, our
video decolorization framework has the following advantages.

1) Time Efficiency: By considering contents similarity of
adjacent frames with high-proximity, our decolorization
approach can effectively reduce the computation time by
reusing previous grayscale frames.

2) Quality Preservation: We modify the salience-
preserving decolorization algorithm [2] to be more
suitable for decolorizing video frames in preserving
chroma details.

3) Temporal Coherence: It makes sure the perceptual con-
tinuity across frames and avoids visual flickering in the
grayscale videos.

The rest of this paper is organized as follows. Section II
reviews related works on proximity evaluation, decolorization,
and temporal coherence. Section III introduces the proposed
decolorization framework, including proximity computation,
the DC-GMM, and the three decolorization strategies.
Section IV evaluates the proposed method on computational
complexity, quantitative, and qualitative analyses, together
with other decolorization methods. Finally, Section V briefly
concludes this paper.

II. RELATED WORK

A. Proximity Between Frames

The first step of our framework is to compute the decol-
orization proximity, i.e., the similarity degree between frames.
Various similarity evaluation methods have been proposed and
applied to different fields, such as target objects tracking and
image retrieval. Compared with target objects tracking [3],
its application on content-based image retrieval may be more
relevant to our problem.

KL-divergence between Gaussian mixtures [4] has high
computational complexity. Histogram matching [5], [6] is
more efficient, but its robustness to rotation may have negative
effects on our computed proximity scores. Beecks et al. [7]
introduced the signature quadratic form distance to measure
the distance between two Gaussian mixture models (GMMs)
of high-dimensional feature descriptors. However, it fails to
determine similarity strictly. Gooch et al. [8] used a strict

way to define the color-difference of two arbitrary pixels
of an image, by combining the luminance and chrominance
difference. However, it has a high complexity.

B. Decolorization Methods

A lot of efforts have been made to improve the performance
of image decolorization methods. Most color-to-gray algo-
rithms could be categorized into local and global approaches.

Local methods typically divide an image into several regions
and focus on the relationships among the pixels in one
region. Neumann et al. [9] proposed a gradient-based algo-
rithm to obtain the resultant image under Coloroid space.
Smith et al. [10] incorporated the Helmholtz–Kohlrausch color
appearance effects and adjusted the contrast by Laplacian pyra-
mid. Other researches [11]–[14] have similar ideas to properly
preserve contrast details locally. However, local methods may
lose global integrality.

Global methods regard an image as a whole and try to
establish a one-to-one mapping between each pixel and its
corresponding grayscale value. Gooch et al. [8] attempted to
minimize the chrominance and luminance differences between
the color image and the grayscale one, but the algorithm is
time-consuming. Ancuti et al. [15]–[17] proposed a new spa-
tial distribution that discriminates the illuminated areas and
color features better. However, it may not perform well on
images with abundant hues and probably lead to contrast
loss. Kim et al. [18] proposed a fast color-to-gray conver-
sion method to preserve feature discriminability and color
ordering well. However, it fails to explicitly consider fea-
tures from global contrast. Liu et al. [19] made a good
combination between RGB2GRAY and the parametric two-
order model, but did not consider temporal coherence between
adjacent images. Song et al. [1], [20] considered multiscale
contrast preservation in both spatial and range domain, and
it is efficient. Lu et al. [21], [22] proposed an algorithm
based on a new quantitative metric. Recently, Du et al. [23]
proposed to consider both local and global information in the
decolorization process. Nevertheless, all these methods do not
discuss the difference between image and video decoloriza-
tion, which inspires us to develop a novel method unique to
video decolorization.

C. Video Temporal Coherence

Maintaining temporal coherence is crucial to video edit-
ing, which has been studied in mobile applications [24],
multimedia [25], and general usage [26]. Tao et al. [27]
showed the wide applications and the significant impact of
temporal coherence on human perception in decolorization.
Ogata et al. [28] proposed a novel video editing model,
which regards a video as a sequence of 0.5 or 1 second-
long small boxes. Since the editing rule for each box is
independent, video editing is accurate and systematic but the
relationship between frames may be omitted. To improve
frame coherence, a lot of researches have been conducted.
Cuevas and Garcia [29] carried out a real-time high-quality
shot detection strategy, analyzing abrupt transitions and grad-
ual transition. Fast pixel-based analysis for abrupt transition

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 03,2021 at 12:13:01 UTC from IEEE Xplore.  Restrictions apply. 



1408 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 48, NO. 5, MAY 2018

Fig. 2. Overview of our video decolorization framework. We first compute the decolorization proximity for each frame. We then use the DC-GMM classifier
to select a specific decolorization strategy, and finally decolorize the frame into grayscale using the selected strategy.

can greatly reduce redundant time. Wang et al. [30] focused
on spatial consistency and temporal coherence problems in
complex video editing tasks, in order to make the transi-
tion between objects and background much smoother. Besides,
methods based on Markov random field (MRF), an exten-
sion of Markov chain, are applied in many approaches.
Chen and Tang [31] utilized the spatio-temporal MRF to esti-
mate likelihood from the probabilistic motion field, which
gives us a meticulous insight of the model. Other similar
methods involving MRF [32], [33] also proposed effective
solutions under different scenarios. However, we are not aware
of any video decolorization works that emphasize on temporal
coherence. In contrast, in this paper, all three decolorization
strategies attempt to preserve temporal coherence.

III. PROPOSED METHOD

A. Method Overview

The proposed approach computes the decolorization prox-
imity values of the foreground and background contents in
the laboratory color space. These proximity values are then
input to the DC-GMM as a video feature to help select
the appropriate decolorization strategy from three strategies
for each frame. Fig. 2 shows our proximity-based video
decolorization framework, using temporal coherence optimiza-
tion. After proximity calculation, each frame is classified by
DC-GMM into three types: 1) high-proximity; 2) median-
proximity; or 3) low-proximity. If the decolorization proximity
is classified as high, the frame will be processed by the
HPD strategy, which can greatly reduce computation time by
reusing the previous decolorized frame via optical flow. If the
decolorization proximity is low, the frame is regarded as a
totally new frame and be decolorized by the low-proximity

decolorization (LPD) strategy, an optimized salience C2G
method with temporal coherence to avoid visual flickering.
Otherwise, the frame is decolorized by the median-proximity
decolorization (MPD) strategy, which may reuse previous
decolorized results. To maximize both decolorization quality
and efficiency, we penalize continuous selection of the same
strategy over many consecutive frames.

For the sake of clarity, we introduce the main symbols that
we use in the subsequent paragraphs as follows.

Ii: The ith color frame.
Gi: The decolorization result of the ith color frame.
δi: The decolorization proximity value, computed

between the (i − 1)th and ith color frames. (See
Section III-B).

Di: The differential refinement of the ith grayscale frame.
(See Section III-C).

Ci: The coherence refinement of the ith grayscale frame.
(See Section III-D).

B. Decolorization Proximity

As pointed out in Section II-A, there are a lot of works
for estimating the similarity of two images. However, most
consider rotation or partial occlusion. Although there are
some strict methods, e.g., Gooch et al. [8], they are typically
computationally expensive.

1) Proximity Computation: Although the Euclidean dis-
tance is a strict distance function for determining the similarity
of two frames, it is computationally expensive for high reso-
lution images. Hence, we modify it to differentiate one image
from another on all pixels under the laboratory color space to
obtain the joint differential histogram, taking the whole spa-
tial information into account. We then compute the absolute
values of the pixel differences.
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Algorithm 1 Proximity Computation
Require: input consecutive frames Ii and Ii−1;
Ensure: Ii and Ii−1 are in the Lab color space;

X = Ii − Ii−1;
1: temp = histogram of (X); δ = zeros;
2: for j = 1 : length(temp) do
3: if temp( j)! = 0 then δi = δi − temp( j) ∗ log(temp( j));
4: end if
5: end for
6: [δL

i , δa
i , δb

i ] = δi under L, a, b channels;

7: δc
i =

√
((δa

i )2 + (δb
i )2)/2;

8: decolor_strategy = DC − GMM classifier (δL
i , δc

i );
9: return decolor_strategy;

In addition, as inspired by mutual information [34], which
is intricately linked to image entropy [35], we apply it in our
computation to describe the average quantity of information
in the differential histogram. Compared with the Euclidean
distance, entropy is less affected uniform luminance changes.
Although Wang et al. [36] also proposed a similarity mea-
surement to separate the luminance change from structural
information, it is computationally expensive. As a result,
entropy can represent the real difference between frames more
accurately and efficiently.

Hence, our decolorization proximity δi between frames i−1
and frame i is computed as

δi = H(|Ii − Ii−1|) (1)

where H(·) is the image entropy function defined as: H(X) =
−∑255

j=0 PX( j)×log PX( j). PX( j) is the probability distribution
of pixels with value j in image X. X is also in the Laboratory
space, computed as X = |Ii − Ii−1|.

We compute δi in each of the L, a, and b channels to obtain
proximity values δL

i , δa
i , and δb

i . These values will be con-
sidered as the input features of the DC-GMM classifier. Our
proximity computation is summarized in Algorithm 1.

2) DC-GMM Classifier: Since different types of videos
may have different amounts of change across frames
(e.g., romantic versus kung fu videos), it is difficult to set fixed
thresholds for selecting the three types of decolorization strate-
gies. We apply machine learning techniques to address such
problem. However, there are no images databases labeled with
strict proximity values. Hence, we need to use an unsupervised
learning technique. The GMM is known to be an effec-
tive unsupervised classifier, and have been applied to many
applications. For example, Nguyen and Wu [37] proposed a
new nonsymmetric mixture model for image segmentation,
and Li et al. [38] modeled the visual affection with GMMs.
Inspired by these successful GMM-based methods, we propose
a novel classifier DC-GMM for our framework. DC-GMM
can classify adjacent frame pairs into three types of proximity
based on the video intrinsic properties.

When designing DC-GMM, we have the following con-
cerns. First, we define a new function of data likelihood with
the penalty term. Compared with applying the three decol-
orization strategies uniformly, continuously using the HPD
will cause video quality loss while continuously using LPD
will lead to high computational cost. Thus, we add a penalty

term to the likelihood to avoid DC-GMM from assigning data
points to one cluster continuously. For a suitable penalty term,
we expect it to allow a small number of successive data points
to be assigned to one cluster, but impose penalty as this num-
ber reaches a certain threshold. In addition, the scope of the
penalty function should have the same magnitude order as
the Gaussian distribution probability. As such, we define the
penalty as a sigmoid function. The probability function of
DC-GMM is then

P(u ∈ cj) = exp{− 1
2 (u − μj)

T�−1
j (u − μj)}√

(2π)|�j|
− λ

1 + exp
{−ξ(mj − 5)

} , mj > 5 (2)

where u is the data point, and c is the cluster. μj and �j

are the mean and covariance of cj, respectively. ξ is the unit
penalty, and mj is the number of data points being successively
assigned to cj. λ is the penalty weight. When λ is large enough,
we would inhibit more than five successive data points being
assigned to one cluster.

Second, we separate the target frame into foreground and
background. Since the foreground moving objects usually draw
more attentions than the background, we separate them from
the frame such that we can put more emphasis on them. We
follow the method proposed by Ahn and Kim [39] to use a
probability model to extract objects from a video sequence,
even with a nonstationary background. This method is suitable
for our problem, as it is efficient and considers temporal coher-
ence in the segmentation. We then compute the decolorization
proximity values under the laboratory color space for the fore-
ground and the background separately. After that, we compute
the quadratic mean of the a and b channels, which contribute to
chrominance information. Finally, we consider the luminance
(L channel) and the chrominance proximity values (δL

i , δc
i ) as

two features that depict each data point.
Third, we adopt a strict assignment approach. For the prox-

imity features of the foreground pixels, if the probability of
a data point belonging to one cluster is larger than the sum
of those of the other two clusters, we are confident to assign
the data point to this cluster. Otherwise, we need to addition-
ally check to see if we should assign it to this cluster. We
then look at the features for the background. If these features
produce the same result, then we are confident to assign it to
this cluster. However, if the result contradicts with that of the
foreground, we assign it to the cluster with a lower proximity.

The DC-GMM classifier is summarized in Algorithm 2. It
divides the data points into three clusters, as shown in Fig. 3.
The cluster located nearest to the original point is consid-
ered as high-proximity, since their chrominance and luminance
entropies are the lowest, indicating that the two frames are
very similar. In contrast, the cluster located farthest from the
original point is regarded as low-proximity, while the mid-
dle cluster is regarded as median-proximity. In the following
sections, we introduce the three decolorization strategies for
these three clusters, the HPD strategy, the MPD strategy, and
the LPD strategy.
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(a) (b)

Fig. 3. DC-GMM classifier. (a) Distribution of the raw data, whose features
are luminance proximity and chrominance proximity. (b) DC-GMM classifier
is designed to divide the data into three clusters. Red, green, and blue color
are used to represent different clusters, in which the red dots, with higher
lumina and chroma proximity, are considered as high-proximity and will be
processed by HPD, green dots as medium-proximity by MPD, and blue dots
as low-proximity by LPD.

Algorithm 2 DC-GMM Classifier
Require: unlabeled data set u; cluster number k = 3;

1: Initial: data point ui is assigned to cluster ci by k-means++;
2: ξ is the unit penalty of successively classifying data points into

a same cluster;
3: for j = 1:k do
4: μj = mean({ui|ci == j});
5: �j = cov({ui|ci == j});
6: πj = len({ui|ci == j})/n;
7: end for
8: while True do
9: for i = 1:n do

10:
mj = the number of data points successively

assigned to cluster cj;
11: if mj ≤ 5 then

12: ci = arg
k

max
j=1

{ exp{− 1
2 (ui−μj)

T�−1
j (ui−μj)}√

(2π)|�j| };
13: else

14:
ci = arg

k
max
j=1

{
exp{− 1

2 (ui − μj)
T�−1

j (ui − μj)}√
(2π)|�j|

− λ

1 + exp {−ξ(mj − 5)} };
15: end if
16: end for
17: for j = 1:k do
18: μj = mean({ui|ci == j});
19: �j = cov({ui|ci == j});
20: πj = len({ui|ci == j})/n;
21: end for
22: L = 0;
23: for i = 1:k do

24: L+ = log πi × exp{− 1
2 (ui−μj)

T�−1
i (ui−μj)}√

(2π)|�j| ;

25: end for
26: if L reaches convergence then
27: break;
28: end if
29: end while
30: return c[n];

C. High-Proximity Decolorization Strategy

In this strategy, we assume that frame Ii is very similar to
frame Ii−1. Hence, we can reuse the grayscale output Gi−1 of
Ii−1, by adding a differential refinement frame Di to it. This
can greatly reduce the decolorization time.

Fig. 4. Optical flow algorithm tracks the pixel movements across frames.
(A darker color represents a larger pixel movement.) In these two frames, a
darker color appears around the hand, as the man waves his hand. We use
this optical flow information to compute the differential refinement frame.
(a) Frame i. (b) Optical flow. (c) Frame i + 1.

To compute Di, we consider the interframe motion com-
puted from optical flow. Optical flow attempts to match the
pixels between two frames to determine pixel movements, as
shown in Fig. 4. The differential refinement Di is computed
based on these matched pixels as follows:

Di(x) = φ
∑

k∈{a,b}

(
Ik
i (x + v) − Ik

(i−1)(x)
)

+ (1 − φ)
(

IL
i (x) − IL

(i−1)(x)
)

(3)

where v is the movement vector of pixel x, and φ is a user set
parameter to determine the weight of luminance and chroma
information in the grayscale frame. Fig. 5 shows one result.

D. Median-Proximity Decolorization Strategy

Compared with HPD, the two input color frames Ii and Ii−1
for MPD have a slightly larger difference. For the sake of effi-
ciency, while we may reuse the previous grayscale result Gi−1,
it may lead to visual inconsistency. In order to smoothen the
contents difference between Gi and Gi−1, we define a coher-
ence refinement frame Ci. The final result Gi is then a weighted
sum of Gi−1 and Ci.

The key to compute Ci is to establish a good measure-
ment for interframe motion coherence. We define Ci using
the forward flow from frame Ii−1 to frame Ii as

Mi = ‖Ii(x) − Ii−1(x − v)‖2 (4)

where ‖ ∗ ‖2 stands for L2-norm of a vector.
Inspired by the MRF model [33], assuming that each frame

only depends on its previous one, we define each node as one
pixel in the frame and each edge as the probability of optical
flow. By maximizing this transmission possibility from the
grayscale frame Gi−1 to the current frame Ii, we can obtain the
most probable grayscale result Gi for Ii considering coherence
information. Fig. 6 shows one result. The probability of Ci is
defined as

P(Ci) ∝
∏
x∈Ii

exp
{
−(Ci(x) − Gi−1(x))/σ

2
p

}

× exp

{
− 1

Mi(x)
(Ci(x) − Gi−1(x − u))/σ 2

t

}
(5)

where the first term is the expectation of the coherence refine-
ment, while the second term is the optical flow between the
two adjacent frames. σp and σt are noise variances in frame
transition. u is the movement vector of pixel x.
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Fig. 5. HPD strategy in action. (a) Input color video frame. (b) Differential refinement frame, which measures the difference between the current frame and
the previous frame. HPD combines (b) with the previous grayscale frame to obtain the (c) output frame.

Fig. 6. MPD strategy in action. (a) Input color video frame. (b) Coherence refinement frame. It is used to help smoothen the output video. Compared with the
differential refinement frame shown in Fig. 5(b), it contains more temporal details. MPD combines (b) with previous grayscale frame to obtain the (c) output
frame.

Fig. 7. Convergence of the energy function. The green curve is the energy
function formulated by Gooch et al. [8], while the blue curve is the energy
function optimized by our method with an additional time term. We observe
that our optimized energy function achieves convergence with fewer iterations.
In addition, ours achieves a lower energy, meaning that our decolorized videos
are much closer to the input videos.

We use gradient ascent to find the maximum of P(Ci).
Given an appropriate step length α and initial value of Ci,
which is set as Ii, we can iteratively update Ci, i.e., Ci =
Ci + α · (∂/∂Ci(x))P(Ci), until P(Ci) reaches convergence.
This process can be terminated at around ten iterations in our
experiments.

E. Low-Proximity Decolorization Strategy

Since we assume that the contents of the two input frames
are not very similar, we regard frame Ii as a completely new
frame. Inspired by Gooch et al. [8], we propose an opti-
mized salience decolorization algorithm here as our LPD,
which is more suitable for video frames. Fig. 8 compares
our approach with [8]. Our algorithm preserves the contrast

Fig. 8. LPD strategy in action. (a) Input color frames. (b) Results produced
by Gooch et al. [8]. We can see that some of the colors are converted to
the same grayscale value. (c) Results produced by our LPD. Compared with
the results by Gooch et al. [8], our grayscale frames preserve better contrast
details. In other words, different colors are represented discriminably in our
output frames.

of both neighboring pixels in one frame and pixels in the
adjacent frames. Coherence refinement is again considered for
smoothening between the two adjacent frames.
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TABLE I
ENERGY COMPARISON

TABLE II
TIME OF EACH STEP

TABLE III
PROPORTION OF THREE METHODS

Fig. 9. Line charts for the decolorization time. The green curve shows the
decolorization time per frame by Song et al. [1], while the blue curve shows
the decolorization time per frame by our method, through applying the high,
median, and low proximity decolorization strategies. Benefitted from the high
efficiency of the high and median decolorization strategies, our framework
requires much less time compared with Song et al. [1].

Unlike images, videos have a time order. Hence, we add a
time term to the energy function so that the grayscale frames
are able to contain both spatial and time information, result-
ing in a smoother and more consistent grayscale video. Fig. 7
shows the convergence of the energy function. From Table I,
we can see that our approach is able to achieve a lower energy
compared with other methods, which means that our output
grayscale videos are perceptively much closer to the input
color videos. In addition, scenery videos can be better decol-
orized using our approach, as their contents are relatively
static across frames. Action movies have higher convergent
energy because of the relatively higher dynamic contents. The
optimized energy function is as follows:

Es =
∑

(x,y)∈I

((Gi(x) − Gi(y)) − ηi(x, y))2 (6)

Et =
∑
x∈I

((Gi(x) − Gi−1(x)) − (Ii(x) − Ii−1(x)))
2 (7)

E = (1 − β)Es + βEt (8)

Fig. 10. (a) Images from the Cadik standard dataset decolorized by
(b) Song et al. [1], (c) Kim et al. [18], (d) Lu et al. [22], and (e) Liu et al. [19].
Comparatively, (f) our results show best performance in terms of contrast
preservation and discrimination for different colors in the origin images.

Fig. 11. (a) Input. Comparison between the results proposed by
(b) Song et al. [1], (c) Kim et al. [18], (d) Lu et al. [22], (e) Liu et al. [19], and
(f) our decolorization. In Song’s results [1], the same color in different frames
is wrongly converted into different grayscale values, resulting in color incon-
sistence. Kim’s results [18] and the last frame in Liu’s results [19] both show
poor performance in maintaining chroma and luminance contrasts. Finally,
some frames in Lu’s results [22] and Liu’s results [19] partially lost contrast
details, converting different colors into less discriminable or even the same
grayscale value. Comparatively, our results shows the best performance both
in contrast preservation (i.e., different colors can be discriminated clearly)
and temporal coherence (i.e., the same color is shown consistently through
different frames in our decolorized outputs).

where ηi(x, y) is the difference between two arbitrary pixels
x, y in Ii. Es is the energy of Ii, while Et is the time energy
between the input frames Ii and Ii−1. The final energy E is by
combining Es and Et with weight β.

To minimize the energy function, the conjugate gradient
method (CGM) is applied, which is regarded as the best
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Fig. 12. (a) Input frame. Comparison between the edges of objects in magnified areas. The luminance transition of circle edges needs to be preserved when
it is converted into grayscale. The luminance difference between the circle and the background also needs to be preserved as well. (b) In Song’s result [1],
the green circle is decolorized too dark. (c) In Kim’s result [18], the size of blue circle is smaller than the input one, and the boundary of the green circle is
too concrete. (d) Lu’s result [22] shows a larger blue circle and low luminance for the green circle. (e) Finally, in Liu’s result [19], the blue circle is smaller
and darker and the tiny blue facula neighboring the green circle is hard to discern. Through the comparison, (f) our result shows most similar margin, size,
and luminance details compared to the original input video frame, meaning that our video decolorization preserves the detailed features better.

Fig. 13. Object details preservation. There are two monkeys in the (a) input frame. However, in the result produced by (b) Song et al. [1], the edges of
the monkey are blur, especially for the monkey on the left. It is hard to discriminate the monkey from the background. (c) In our result, the edges in the
highlighted area is preserved very well as the edges of the monkey exist in the original color frame.

and most time efficient iterative algorithm to solve uncon-
strained optimization problems, such as energy minimization.
Thus, it can be used to find the optimal grayscale value
convergent to the initial color difference ηi(x, y). However,
CGM greatly relies on the initial values and may fall into
a local minimum. We have two refinements to address these
limitations.

1) To start with a better initial value, we add weighted RGB
information of the color image into the initial grayscale
value, instead of simply using the luminance channel.
The weight is set to average at first, and will be updated
during iterations.

2) To avoid falling into a local minimum, we define an
evaluation for the iteration results. In view of the proba-
bility theory, the energy function infers that the grayscale
difference Gi(x) − Gi(y) between pixel pair (x, y) [rep-
resented by g(x, y)] follows a Gaussian distribution with
mean signed distance scalar ηi(x, y) in the perceptually
uniform laboratory color space. σ determines the degree
of distribution concentration

G
(
η(x, y), σ 2

)
∝ exp

{
−|g(x, y) − η(x, y)|2

2σ 2

}
. (9)

We repeat the CGM with different initial weights until
the value of (9) is large enough. Hence, the iterative
algorithm will produce a comparatively better result than
the local minimum.

IV. EXPERIMENTAL RESULTS

We have conducted the experiments on MATLAB, using
the Cadik standard image dataset and test videos downloaded

by ourselves. The rest of this section is organized as follows.
Section IV-A evaluates our method in cutting down redun-
dant decolorization time based on computational complexity
analysis. Section IV-B demonstrates qualitative performance
of our method compared with the results in other papers. On
the other aspects, Section IV-C uses quantitative metrics to
evaluate the detail preservation and temporal coherence of our
method and other methods. Finally, Section IV-D presents the
user study conducted on decolorization performance to com-
pare our method with existing methods, in terms of preference
and accuracy.

A. Computation Time

First, we discuss the computation complexity about each
step and show it in Table II. Let n be the number of pixels in
one frame. The running time of the proximity calculation is
O(n), which on average costs less than 0.1 s. The DC-GMM
classifier applies EM algorithm to converge and on average
costs less than 0.1 s. Among the three decolorization strate-
gies, HPD method is the most efficient, whose running time
is O(n). MPD method iterates by gradient ascent method and
LPD method iterates by CGM to converge. HPD, MPD, and
LPD on average take 1, 3, and 5 s, respectively. The bottleneck
to this problem is the overall time of the decolorization algo-
rithm. If the algorithm chooses MPD or LPD, a large amount
of time will be consumed in the iteration though we have done
optimization to it. On the contrary, the HPD can save a lot of
time through bypassing the most time-consuming part. That
is why we designed DC-GMM to choose the proper decol-
orization strategies. Accelerating the proposed decolorization
strategies using GPUs would be our future work.
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Fig. 14. Coherence preservation. These are three different videos. For each video, we convert two adjacent color frames into grayscale. The results produced
by (a) Song et al. [1] displayed visual flickering effects, which means that the original adjacent color frames are almost the same while the decolorized frames
show obvious differences, especially in global and local luminance values. Compared with Song et al. [1], (b) our results preserve luminance coherence better.

TABLE IV
CCPR RESULTS OF ACTION AND SCENERY VIDEOS BY DIFFERENT DECOLORIZATION METHODS

Second, we apply our algorithm to various videos, including
action movies, cartoons, and scenery, Table III records time
cost and proportion of the three decolorization strategies, HPD,
MPD, and LPD, on average of different kinds of videos. One
frame in action movies requires 3.12 s to decolorize on aver-
age by our method, more time efficient than 5.07 s processed
by current frame-by-frame decolorization methods. Scenery
videos have more static and less changeable contents than
action movies and cartoons. Thus, the proportion of frames
decolored by HPD and MPD is much larger, and each frame
only costs 2.39 s on average by our method. In the conclusion,
our framework can save about 40% redundant time in video
decolorization.

To give a clearer demonstration, we record the decoloriza-
tion time of a video in a line-chart (shown in Fig. 9). The
line-chart also shows our algorithm’s effective use of the three
decolorization strategies to balance the time efficiency and
quality.

B. Qualitative Evaluation

To have a direct demonstration of our well-preserved video
quality, we make comparisons between results of our approach
and other existing methods under the Cadik standard dataset
(Fig. 10) and various types of videos. Whatever the contents
of videos are, scenery, figures, or cartoons, our framework
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(a)

(b)

(c)

Fig. 15. Temporal coherence evaluation. (a) Eight key points numbered from
1 to 8 obtained by SIFT. Grayscale values of these key points along 30 frames
decolorized by (b) our method and (c) results by Liu et al. [19]. Since the color
videos are coherent between frames, preserving the coherence in the decol-
orized videos is very necessary for good visual experience. Comparatively
our fitted curves are much smoother, which means that we better preserve the
temporal coherence and consistency of the same pixels, even for the contents
of the videos. The singular points in the curves of Liu et al. [19] show that
the same contents may be decolorized to different ones as some pixels have
inconsistent grayscale values.

Fig. 16. Results of the preference experiment. Each time, the participants
are asked to choose one result video from two grayscale videos, one from our
approach and the other from one of the other four methods [1], [18], [19],
and [22]. The error bars are at 95% confidential level.

has impressive performance in details restoration, clear objects
margin, and temporal coherence.

In a wide comparison shown in Fig. 11, we decolorize
a video with several squares of different colors, which will

Fig. 17. Results of the accuracy experiment. Each time, participants are
asked to choose one grayscale video that represents the original color video
best, from five candidate grayscale videos, one from our approach and others
from the four methods [1], [18], [19], and [22]. The error bars are at 95%
confidential level.

disappear one by one. With the disappearance of squares, the
color and luminance will change and thus cause problems
during decolorization. The results of Song et al. [1] lose the
contrast details and the last frame even has wrong chrominance
and luminance relationship. The results of Kim et al. [18]
completely lose the contrast details, and the initial color
and luminance are difficult to distinguish. The results of
Lu et al. [22] also have some trouble in retaining contrast
details. The last frame of Liu et al. [19] showed very poor
performance in maintaining chroma and luminance contrasts.
In additional, their results seem to demonstrate visually flicker-
ing defects due to lack considerations for temporal coherence.
Our approach comparatively avoids the above problems and
has better perceptive visual quality.

To show our edges preservation, we give out a magni-
fied detailed comparison in Fig. 12, where Song et al. [1]
and Lu et al. [22] failed to preserve the contrasts between
the center and border of the facula. Kim et al. [18] lost the
gradual fuzzy near the facular edges. Compared with their
methods, our approach can better preserve the details in the
decolorized videos. When objects move fast, grayscale frames
without smooth transition will seem fuzzy and dim. As shown
in Fig. 13, our results preserve distinct edges of the monkeys,
while Song et al. [1] is blurring their outline.

In addition, our framework takes temporal coherence into
consideration to avoid visual flickering effects. In Fig. 14,
with the contents luminance unchanged in the input color
frames, our approach better maintains the luminance coher-
ence. However, the results of Song et al. [1] show serious
visual artifacts because of decoloring the videos frame by
frame, which also appears in many related methods.

Furthermore, to prove the robustness of our approach, we
have tested various videos for comparison, and our results
perform better all around in the cases tested. An instance
of movie “The Avengers” is shown in Figs. 18–20, in which
we compare our results with Kim et al. [18], Lu et al. [22],
and Song et al. [1]. Compared with Kim et al. [18] (shown
in Fig. 18), our results show better coherence between adja-
cent frames and preserve discriminative contrast of neighbor-
ing colors better. Besides, Lu et al. [22] (Fig. 19) showed
poor performance in discriminating the red color from the
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Fig. 18. Comparison with the methods proposed by Kim et al. [18]. (a) First column shows the input color frames. (b) Second column shows the results
produced by Kim et al. [18], which lose color contrast and cannot discriminate the silver and blue colors in the original color frames. In addition, although the
same color should be kept constant across frames, the grayscale values for red and blue are visually interchanged, which is a temporal chroma inconsistence
problem. (c) Third column shows the results by our method, where the consistence of colors is well preserved.

neighboring black color. Song et al. [1] (Fig. 20) worked not
very well when the content is dark, and there are messy stripes
in the background and anamorphosis in the character’s face.
Compared with these three methods [1], [18], and [22], our
decolorization avoids these problems and performs better.

C. Quantitative Evaluation

1) Color Contrast Preserving Ratio: Though we focus
on video decolorization, we still need to deal with images,
which are the basic components of a video. To quantitatively
evaluate the performance of each frame decolorization, we
apply the CCPR [40] via computing the percentage of dis-
tinct pixels in input color frames, which remain distinctive
after decolorization. CCPR is defined as follows:

CCPR = #{(x, y)|(x, y) ∈ , |G(x) − G(y)| > γ }
|||| (10)

where (x, y) is a pair of random pixels in the frame, and
|G(x) − G(y)| is the grayscale difference between this pixel
pair.  is the set containing all neighboring pixel pairs, while
|||| is the total number of pixel pairs in . γ is a thresh-
old indicating whether the color/grayscale difference is smaller
enough. #{·} refers to the number of pixel pairs with grayscale
difference higher than γ .

We have tested two types of videos, action and scenery, and
collected the frames in color videos of both kinds. We vary
γ from 1 to 15 in the experiments and record the average
CCPR values for each video genre in Table IV. It can be
clearly seen from Table IV that our method has the highest
CCPR values under most conditions, which means we can
better preserve the color contrast of input color video frames.
Also, all proposed methods do better in scenery videos since
the contents of scenery videos are usually simple and consist
of big color lumps.

2) C2G-SSIM: To make a more all around and objec-
tive single frame decolorization evaluation, we apply C2G-
SSIM [41] to automatically predict the perceived luminance,
contrast and structure performance of C2G converted frames.

We also test on the two kinds of videos, action and scenery,
and collect 100 frames in color videos of both video types. We
record the average C2G-SSIM values for each video genre in
Table V. It can be clearly seen from Table V that our approach
has the highest C2G-SSIM in both video genres, which means
our decolorization can better preserve the luminance, contrast
and structure of input color video frames. Also, all the tested
methods perform better in scenery videos since the contents
of scenery videos are comparatively static.

3) Temporal Coherence: Video decolorization, being dif-
ferent from single image decolorization, considers the
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Fig. 19. Comparison with Lu et al. [22]. Note that in the marked regions, the red color should be discriminated from the neighboring black color. However,
in the result produced [22], it converts red and neighboring black into the same grayscale value, which makes it difficult to distinguish the two colors. (a) Input
frame. (b) Lu’s result [22]. (c) Our result.

Fig. 20. Comparison with Song et al. [1]. (a) First column shows the input color frames. (b) In the results produced by Song et al. [1], we find anamorphosis
in the character’s face and messy stripes in the background. (c) In our results, such defects do not exist.

TABLE V
C2G-SSIM RESULTS OF DIFFERENT DECOLORIZATION METHODS

consistency and coherence between adjacent frames. In other
words, the grayscale values of one same object, even one
same pixel, should change smoothly along with the frames so
that the decolorized videos will look coherent with no visual
flickering effect.

To quantitatively evaluate the temporal coherence among
frames, we apply SIFT to obtain the key points of the first
frame and track these key points along the time line of the
videos. We then record all the key points’ values in the video
decolorized by our method and other methods, and then fit
them to the curves. Comparisons under action and scenery
videos are shown in Fig. 15. To make it clear, we only mark
eight top key points in the graph and record the grayscale
values of key points in 30 successive frames. It is obvious
that our curves are smooth, indicating our resulting videos

are perceptually temporal coherent. Comparatively, the curves
of Liu et al. [19] have several abrupt salient points and pit
points. That means, their method loses the coherence of same
pixels between frames and will cause the same object to look
different and inconsistent in the decolorized videos.

We also define a function to evaluate the TCD statistically
by measuring how smooth the grayscale value curves are

TCD =
|Kp|∑
i=1

wi

n∑
j=1

∣∣∣ f
′′
i ( j)

∣∣∣ (11)

where, Kp is the set of key points found by SIFT, and |Kp| is
the number of elements in it. fi(·) is the function of grayscale
value curve of key point i obtained by proposed methods and j
represents the jth frame in all n frames. wi weights the impor-
tance of specific key points, which depends on its stableness
measured by Harris corner detector using SIFT.

The second order derivatives of grayscale value curves show
the smooth degree of the curves on specific points. We add
them up with corresponding weight and get the TCD values
to evaluate temporal coherence preservation performance of
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TABLE VI
TCD COMPARISON

our method in comparison with other methods. The results
are shown in Table VI (with all values normalized to 0–1),
and our method has the smallest TCD value, pointing out that
our decolorized videos preserve the temporal coherence best.
In addition, because each method (HPD, MPD, and LPD) is
proposed to preserve the coherence between the current frame
and the previous one, the temporal coherence is still pre-
served even though the three methods are applied alternatively
according to the decolorization proximity computed.

D. User Study

As there are no specific standard metrics to quantitatively
measure the quality of the videos decolorized using differ-
ent methods, we have conducted a user study to evaluate
our method with others. We randomly selected a total of ten
videos, covering animation, action movie, documentary, etc.
Three hundred participants were invited to watch the grayscale
videos decolorized by our approach and by other existing
methods [1], [18], [19] and [22], in random order.

The user study consists of two parts, namely, the preference
and the accuracy experiments. In the preference experiment,
the participants were asked to watch two grayscale videos, one
produced by our approach and another by a random method
from [1], [18], [19], and [22]. They were then asked to choose
the one that they prefer most. In the accuracy experiment,
the participants were shown with six videos, including the
input color video and five grayscale videos produced by all
methods [1], [18], [19], [22], and our method. The participants
were then asked to choose one video out of the five grayscale
videos that they consider representing the color video best.
Results of the user study are shown in Figs. 16 and 17. We
can see that our proposed method performs the best in both
the two experiments. The error bars show that our method
consistently outperforms the other methods.

V. CONCLUSION

This paper proposes a method to address the video decol-
orization problem. It is based on computing the proximity of
two consecutive frames, which is then used to select a suitable
decolorization strategy to decolorize the input video frame.
Specifically, each input video frame is classified to one of
the three different clusters by the DC-GMM classifier, accord-
ing to the luminance and chrominance proximity between this
frame and its previous frame. We propose three decolorization
strategies to decolorize the three clusters of frames. First, we
propose the time efficient HPD strategy to decolorize the color
frames assigned to the high-proximity cluster, which have very
similar contents with their previous frames. Second, we pro-
pose the LPD strategy to decolorize the color frames assigned
to the low-proximity cluster, which have dissimilar contents
with their previous frames. Although LPD can better preserve

the details in the color frames, it has a high computation-
ally cost. Finally the color frames assigned to the remaining
cluster are processed by the MPD strategy. All three proposed
strategies consider temporal coherence between frames as they
decolorize the input video frames.

To evaluate the proposed method, we have compared it with
other methods on different types of frames and videos. We
have also conducted quantitative evaluations, CCPR, C2G-
SSIM, and TCD, to statistically measure the decolorization
quality and ability to preserve temporal coherence of our
method. Finally, we have conducted a user study that include
the preference and accuracy experiments, to comprehensively
evaluate our method. To sum up, our approach produces
the best decolorization performance, in terms of computation
efficiency, decolorization quality, and preservation of tempo-
ral coherence. As a future work, we would be interested in
accelerating the proposed decolorization framework via GPUs.
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