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Illumination-Invariant Video Cut-Out Using
Octagon Sensitive Optimization

Zhihua Chen, Jingye Wang, Bin Sheng , Ping Li , and David Dagan Feng , Fellow, IEEE

Abstract— This paper presents an effective video cut-out
approach, which can be utilized to segment the moving object in
video shots. We first introduce the Octagon-Sensitive-Filtering
(OSF) and its illumination invariant feature (IIF), which is
computed on each pixel of the image via adding contributions
from neighboring pixels. We integrate our IIF into the variational
model and obtain the seeds during preprocessing to help address
large displacement and illumination changes. An effective seed
update method based on tracking-then-refinement based on IIF
is presented to compensate for location ambiguities, and the
strategy is effective to deal with illumination variances and
objects deformation. Furthermore, we apply the IIF-based graph-
cut to deal with fuzzy boundaries. Multiple experiments on
quantitative challenging datasets have shown the robustness,
high-quality video cut-out and efficiency of our approach to acute
variances of illumination and complex motion.

Index Terms— Video cut-out, illumination-invariant, local fea-
tures, seeds update, graph-cut.

I. INTRODUCTION

V IDEO cut-out is one of the most active research topics
in computer vision, also known as segmentating moving

foreground objects from video frames. It is an essential task
for further video editing applications such as video compo-
sition. However, there still remains many challenges in the
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area, including illumination change, complex motion, back-
ground variations and object occlusion. In general, the video
cut-out tasks have been attempted by many methods includ-
ing supervised and unsupervised approaches. For supervised
approaches, training dataset is required such as video shots
which are segmented manually in advance [1], [2]. The semi-
supervised approaches require the user to annotate the pres-
ence of foreground objects in certain frames. The foreground
segmentation accuracy depends on the labels indicated by the
user, hence complicated post-processing such as random deci-
sion forest training [3] is required to enhance the correctness
of the outputs. Therefore, both supervised and semi-supervised
methods are labor-intensive and not applicable to automatic
video cut-out applications.

Most existing popular methods in video cut-out incorporate
computing optical flow between subsequent frames. Papa-
zoglou and Ferrari [4] ropose a motion boundaries based
method to make use of the appearances and location model to
refine the labels. Zhang et al. [5] takes advantage of multiscale
spatiotemporal cues to optimize the foreground extraction in
video cut-out. Methods based on local motion trajectories
and shapes prediction on the assumption that the objects are
spatially cohesive [6], [7]. Supervoxel features based over-
segmentation [8], [9], or computing incorporating saliency
with spatial edges and temporal motion [10] are also used
in some applications. These methods are typically based on
objects motion and spatiotemporal cues, which utilize diverse
models under the assumption that the object appearance
changes smoothly over time. However, these existing methods
we have introduced are not applicable for addressing video
cut-out for sequences with significant illumination change.

In this paper, we present a new video cut-out approach,
which is effective to deal with illumination change and
significant object displacement. A novel Octagon Sensitive
Filtering (OSF) is proposed, which is computed based on each
pixel and contribution of the neighborhood pixels from eight
directions. The Illumination Invariant Feature (IIF) based on it
is also proposed to facilitate our video cut-out approach. The
proposed feature can be applied to describe the similarity
between image blocks. In preprocessing video sequences,
we first integrate our IIF as local descriptor into a variational
model, so that foreground and background seeds can be
generated which will be further utilized for later segmen-
tation. We formulate the problem of processing the rest of
the video frames as a unified framework, which integrates
tracking and segmentation techniques. We utilize the OSF
to track the foreground object and then update the window
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Fig. 1. Illustration for our video cut-out method. (a) The input frame of
car sequence. (b) The visualizing result of optical flow field when estimating
object region. (c) The background and foreground seeds are marked in green
color and blue color, respectively. (d) The example of object cut-out result.

location. The location of seeds is firstly updated based on
tracking displacement, and then correct it using our IIF to
adapt the seeds to proper scales or pose changes. On the
basis of the seeds, the objects are finally segmented through
our IIF-based graph-cut approach. We integrate the proposed
IIF into visual tracking and segmentation. Experiments show
that the improved methods can effectively deal with illumi-
nation change and can be combined into the tracking-and-
segmentation framework. Our approach has the following three
main contributions:

• A novel OSF and its corresponding illumination-
invariant features. We introduce a novel feature OSF
and its corresponding illumination invariant feature. The
OSF describes local spatial components and has low
computational complexity, which can be utilized as a
local feature to measure similarities.

• Illumination-aware foreground region estimation. We
propose a variational-based optical flow approach using
our IIF, which is robust to dramatic illumination change
and large displacement of objects. We further estimate
the foreground region and generate the foreground &
background seeds.

• IIF based Seeds-update and segmentation. We propose
a tracking-and-segmentation framework for video seg-
mentation. We apply our IIF into multi-region tracking
to update the object location, and an incremental seed
update scheme, which can reduce the tracking errors
when there is illumination or object deformation. More-
over, we integrate our IIF into a graph-cut-based image
segmentation, and the segmentation accuracy is enhanced
in fuzzy boundaries.

The remaining parts of the paper are organized as follows.
In Section II, we review the related work on local features,
video object segmentation and image segmentation. We also
show the approach briefly in Fig. 1. We first present our OSF
in Section III, and further introduce our approach through

preprocessing the frames to estimate the initial foreground
region for cutting out the following frames. Section IV
presents the experiments and evaluations in comparison with
existing methods. Finally, we conclude the paper with possible
further work in Section V.

II. RELATED WORK

Video cutting-out refers to segmenting foreground object in
video shots, and motion segmentation is highly related to our
work. In this paper, we also propose OSF (Octagon-Sensitive-
Filtering) which can be used for similarity measuring. In this
section, we introduce previous work including similarity mea-
surement, video object segmentation and image segmentation.

A. Local Features and Similarity Measurement

Local features are spatially extended which refers to taking
into account the contributions of neighborhood pixels typi-
cally. A good feature ought to possess properties distinctive-
ness, robustness and time efficiency at the same time. Liu
et al. [11] propose a global and local structure preservation
framework for feature selection integrating both pairwise
sample similarity and local geometric data. SURF (Speeded
Up Robust Features) [12] can be regarded as the incremental
SIFT using Haar wavelet instead of magnitude and relying
on integral images for convolutions. It reaches similar robust-
ness and accuracy but 5 to 7 times faster compared with
SIFT. Yang and Cheng [13] propose local difference binary
by computing a binary string on the base of intensity and
gradient difference, where the distinct pattern of patch is
captured using the grid strategy. DAISY [14] is another HOG
based dense descriptor which takes advantage of Gaussian
convolution for HOG convergence in order to extract the image
features densely. ASIFT (Affine SIFT) extracts the features by
simulating all imaging perspectives, which is robust to large
viewing-angle change [15]. Simonyan et al. [16] propose a
local sparse feature for viewpoint invariant matching which is
formulated as a convex optimization problem using sparsity.
He et al. [17], [18] propose the locality sensitive histogram for
visual tracking, which considers contribution of each pixel in
an image. To conclude, existing local descriptors are not robust
enough to dramatic illumination change, and time efficiency
is still a challenge for most local dense descriptors.

B. Video Foreground Objects Segmentation

Supervised and semi-supervised foreground object segmen-
tation methods require the user to annotate the object region at
some key frames. Wang et al. [19] present a semi-supervised
video cutout method by combining appearance and dynamic
models and propagating user annotation to determine the
labels in the uncertain region. Most unsupervised methods
are based on optical flow and use temporal or spatial cues
to optimize. Papazoglou and Ferrari [4] present an object
segmentation method, in which they propose inside-outside
map to estimate initial foreground then refine foreground
labels with smoothness, appearance model and location model.
Lim et al. [20] propose an on-line foreground segmenta-
tion algorithm in videos captured by a moving camera.
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Fig. 2. The flowchart of our approach. OSF and IIF are Octagon-Sensitive-Filtering and Illumination Invariant Features. In the key-frames, we use the
optimized variational model to generate the foreground and background seed points. When dealing with each frame, we first use our OSF based tracker to
update the location of object and each seed point. We further use the refined graph-cut to obtain the result segmented frames.

Wang et al. [10] handle drastic appearance and pose variations
by integrating intraframe saliency and interframe consistency.
Wang et al. [10] introduce spatial edges and temporal motion
boundaries to segment salient video object. Zhang et al. [5]
present a layered directed acyclic graph based object model for
optimized video segmentation to extract primary video objects.
Ma and Latecki [21] addresses the video object segmentation
problem as a problem of finding maximum weight clique in a
weighted region graph, which is expected to have high object-
ness score and share similar appearance. Wang et al. [22]
offers a strong object-level cue for unsupervised video segmen-
tation in a sequence. Shen et al. [23] propose super-pixel seg-
mentation using density-based clustering with noise algorithm.
Both object models and temporal-spatial cues are based on the
assumption of smooth object appearance changing, therefore
the mentioned methods cannot always deal with tempestuous
variance of illumination well. Apart from these, trajectories
can also be utilized in object segmentation. Shen et al. [24]
propose to use submodular optimization for better motion
segmentation in videos based on trajectory clustering.

C. Image Segmentation

Semi-supervised image segmentation algorithms are highly
related to our work, where annotated foreground and back-
ground labels are required as input. Shen et al. [25] address
the problem by solving the cost function of Laplacian graph
energy in interactive segmentation. The image segmentation
algorithm of Arbelaez et al. [26] consists of generic machinery
for transforming the output of contour detector into hierarchi-
cal region tree. Zhang et al. [27] propose a weakly-supervised

image segmentation approach by learning distribution of struc-
tural superpixel sets. Gao et al. [28] propose a contour method
combining Expectation-Maximization algorithm to segment
complicated images. Grady [29] presents random walks for
image segmentation, where users are involved to give seeds.
Dong et al. [30] propose an incremental random walk with
added auxiliary nodes using sub-Markov. Shen et al. [31]
combines random walks and superpixel segmentation with the
commute time and the texture measurement. Yang et al. [32]
embed Markov random field into conventional energy func-
tion, and take use of algebraic multigrid and sparse field
method to decrease computing domain. Li et al. [33] pro-
pose lazy snapping, which is based on graph-cut revised by
preprocessing using clusters and contours. Gong et al. [34]
formulate the fine-structured object segmentation as a label
propagation problem on an affinity graph. In the recent years,
deep learning methods are introduced into segmentation tasks,
most of which focus on capturing the spatial and temporal
saliency or consistency [35], [36]. In general, graph-cut based
methods outperform other semi-supervised methods like ran-
dom walks [29]–[31] in time efficiency.

III. ILLUMINATION-INVARIANT VIDEO CUT-OUT

A. Approach Overview

We present a new video cut-out approach, and we show
it in Fig. 2. Preliminary theory of our algorithm is the OSF
and the corresponding illumination invariant features (IIF)
we propose, which takes into account contributions of all
pixels from eight directions. We rely on the combination
of two tasks that extracts foreground object: tracking and
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semi-supervised image segmentation. Algorithm 1 gives the
processing steps for a subsequence of frames. The foreground
region is segmented using the proposed unified framework,
which integrates IIF based multi-region tracking and segmen-
tation techniques. The input video is divided into several
subsequences. The input consists of input image sequence
I, the number of seeds T , iteration number of dilation and
erode σ1 and σ2 as well as the border length of the search
region ω. In the first step, the foreground region is estimated
by computing optical flow between the first two frames and
then the seeds. The next step contains seeds update and image
segmentation, where we update the seed location based on
tracking, and later we integrate OSF into graph-cut to segment
foreground object. Finally, the foreground region O is obtained
in each frame.

Algorithm 1 Illumination-Invariant Video Cut-Out Algorithm
Input: Image sequence I, the number of seeds T , the iteration

number of dilation and erode σ1 and σ2, the number of
frames to process in a subsequence ε, border length of the
seeds search region ω

Output: Segmented foreground region O
1: Compute the OSF component using Eq. (4);
2: Compute the IIF of all frames using Eq. (5) in the pre-

processing step;
3: Estimate foreground object region in the first frame of I

using Eq. (11);
4: Generate foreground and background seeds S;
5: for each i = 2 . . . ε do
6: Use the multi-region based IIF to track the object;
7: Refine the seeds location using Eq. (14);
8: Segment foreground object and assign the result to Oi ;
9: end for

10: Return O = (Oi )
ε
i=1;

B. Octagon Sensitive Optimization

The traditional histogram is a 1D array, and each of its value
represents the frequency of occurrence of intensity values. Let
I denote a grayscale image, and W is the number of pixels in
image I. The image histogram H of image I is a B dimensional
vector which can be defined as:

H(b) =
W∑

q=1

Q(Iq , b) (1)

where b is an integer between 1 and B , B is the number of
bins, Q(Iq , b) is equal to 1 when the intensity value Iq of pixel
q belongs to bin b, otherwise it is 0. A local histogram, on the
other hand, is a 2D array which records statistics within a
local region and is computed at each pixel location [17], [18].
The computational complexity of local histograms can be
reduced using integral histograms [17], [37]. Let HI

p denote
the integral histogram computed at the pixel p in image I,
then we have HI

p(b) = ∑p
q=1 Q(Iq , b). For simplicity, let I

denote a 1D image. It can be computed on the basis of the
previous integral histogram computed at pixel p − 1 to reduce

Fig. 3. Computing OSF component F1
p in direction 1. (a) The original image,

where the red rectangle represents the local region, and the yellow circular is
the pixel at which OSF is computed. (b) The local region which shows how
to compute OSF from 8 directions. (c) Select a single line in direction 1 from
the input image as a 1D image. The orange semicircle represents the OSF
component computed at pixel p − 1, the blue semicircle is F1

p at pixel p in
direction 1 which can be computed with the previous part F1

p−1 times by α,
and the magenta circular is the summing OSF vector at p in Eq. (5).

computational complexity [37], and it is calculated as:

HI
p(b) = Q(Iq , b)+ HI

p−1(b) (2)

In Eq. (2), the computational complexity of HI
p is O(B) at

each pixel location. HI
p contains contributions of itself and all

previous pixels from pixel 1 to pixel p − 1.
In this paper, we propose the Octagon Sensitive Filtering

(OSF), which is a 2D array considering both spatial and color
information of pixels. The OSF at each pixel location is a 1D
vector which is the sum of 8 vectors computed from different
directions. For the sake of simplicity, we show how to compute
the OSF component in one direction. Let I be a 1D image,
which is selected from a single line of the original 2D image
in the direction θ , and θ is an integer between 1 and 8 which
represent directions including left, top-left, up, top-right, right,
bottom-right, down and bottom-left as Fig. 3(b) shows. Note
that the selected line ends to the pixel where we compute the
OSF component.

Denote the integral value of pixel contribution at pixel p in
the direction θ on I as:

Fθp(b) =
p∑

q=1

α|p−q| · Q(Iq , b) (3)

where α ∈ (0, 1) is a parameter controlling the decreasing
factor from pixel p to q , |p−q| is the distance of pixel location
between pixel p and q . Similar to the integral histogram
computed in Eq. (2), we can compute Fθp based on the result
computed at the previous pixel:

Fθp(b) = Q(Ip, b)+ α · Fθp−1(b) (4)

Fθp(b) is α attenuation of their previous value added by 1
if intensity value of p is in the bin b, and the initial value
of them are set to 0. In this way, only B multiplication and
addition operation steps are required at each pixel, and the
computational complexity of Fθp is O(B) per pixel. Similar
to the local histogram, Fθp can be regarded as the integral
value of contributions of all pixels in the 1D image I as
described in Fig. 3(c) and the weight of contribution decreases
exponentially with respect to the distance between pixels.

We select the line from 8 different directions to obtain the
1D image as shown in Fig. 3(b), so that contributions of pixels
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are synthesized. We define the OSF Fp in bin b as:

Fp(b) =
8∑
θ=1

Fθp(b)− 7 · Q(Ip, b) (5)

In Eq. (5), the summation of vectors combines contribution of
pixels in 8 directions. Because each OSF component takes into
account the contribution of pixel p itself, the integrated OSF
in bin b should be the summation value minus 7 · Q(Ip, b).
On the basis of Eq. (4), the computational complexity of Fp

is O(B). Hence, the total computational complexity of OSF
is O(P B) for all pixels in the input 2D image.

We introduce how to compute OSF based on intensity values
of an image. However, most input images are color images and
we need to preprocess the images before computing OSF. It is
feasible to convert the input image to grayscale image and then
computing OSF on it, but this strategy is not distinctive enough
for some vision tasks [18]. To exploit color images, we first
quantize the colors to 12 values in each channel. In a real world
image, only a small portion of color space is used. On the basis
of the discovery, we choose the most frequently occurring 64
colors from the quantized colors, and the remaining colors are
replaced by one of the chosen colors with the least L2-Norm
distance to it. This method is effective enough to cover over
80% the region of an image even in a complex scene. Though
only 64 bins are utilized to represent an image, the strategy
is still robust enough for most real world cases, and using
quantized colors is more distinctive than using intensity to
compute OSF.

Histograms are normalized in most cases in practice. It is
necessary to do summation operation over all bins for obtain-
ing the normalization factor in the normalization step. Denote
n p as the normalization factor at pixel p:

n p =
B∑

b=1

Fp(b) =
P∑

q=1

α|p−q| ·
B∑

b=1

Q(Iq , b) =
P∑

q=1

α|p−q|

(6)

A brute-force implementation of n p is O(B). Nevertheless,
we compute n p recursively like Eq. (4) and Eq. (5). The
normalization factor component in direction θ is nθp = 1 +
α · nθp−1, and n p = ∑8

θ=1 nθp − 7. Thus, n p can be computed
in O(1).

An image block can be matched against another block
based on the Earth Mover Distance (Wasserstein metric),
which is the L-1 distance between their cumulative normalized
histograms [38]. The OSF we propose can be normalized with
the normalized factor n p , and we define the OSF difference
between pixel p and q as the summation of cumulative
normalized histogram difference in all bins. The two local
regions which are centered at pixel p and q respectively can
be computed as:

D(p, q) =
B∑

b=1

|Cp(b)− Cq(b)| (7)

In Eq. (7), Cp and Cq are cumulative histograms of normalized
OSF Fp and Fq , which is defined as: C(b) = ∑B

1 Fp(b).

Fig. 4. Comparison of [17] and OSF on describing local components. (a) The
contribution of pixels in the local region by LSH [17] distance. (b) The
contribution of pixels by OSF distance of Eq. (5).

We adapt the fragment-based method [39] to represent the
image block with multiple overlapping regions and use them to
compute the difference between image blocks. The regions are
used for region-to-region matching where the spatial relation-
ship of the regions is fixed [17]. A region is weighted based on
its location to the block center based on a weighting kernel.
Thereafter, a vote map can be obtained after the matching
scores of all regions within the block are computed, and we
accumulate all the votes using least-median-squares estimator
as the distance between two image blocks. As Fig. 4 shows,
the proposed feature takes into account more factors of central
pixels rather than locality sensitive histogram [17].

Decomposition of intrinsic images can be utilized to obtain
illumination invariant component. However, it is an ill-posed
problem which has two unknowns. The problem can be solved
by specifying constrained cues including constant reflectance
and illumination with the assumption of local reflectance
consistency in [40]. We extract dense illumination-invariant
feature based on OSF, which is a transform to convert an
image into a new one where pixel value is invariable when
illumination changes. Denote Ip and I�

p as the pixel intensity
value before and after an affine illumination transformation,
we have:

I�
p = Ap(Ip) = a p

1 Ip + a p
2 (8)

where a p
1 and a p

2 are two parameters of affine transformation
Ap . Let bp denote the bin corresponding to Ip . The sum
of values of Fp which reside in [bp − rp, bp + rp] is the
illumination invariant feature:

Lp =
bp+rp∑

b=bp−rp

Fp(b) (9)

where rp controls the interval of integration value Lp . If rp

scales linearly with illumination, the new interval parameter
r �

p = a p
1 · rp . Similar to Eq. (9), the integrated value L�

p in
the new illumination condition is equal to the sum of values
of the new OSF F�

p which reside in [b�
p − r �

p, b�
p + r �

p] =
[a p

1 bp + a p
2 − a p

1 rp, a p
1 bp + a p

2 + a p
1 rp] = [a p

1 (bp − rp) +
a p

2 , a p
1 (bp + rp) + a p

2 ] = [Ap(bp − rp),Ap(bp + rp)]. With
additional assumption that the illumination change is locally
smooth so that the transform is the same for the pixels in
the local region. In this case, L�

p is equal to Lp if ignoring
quantization error because OSF records the weighted sum of
occurrence of pixel colors in different bins. This means Lp

is independent of affine illumination change and can be used
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as illumination invariant features. The invariance still holds if
integrating from bin 1 to B in Eq. (9). Nevertheless, to reduce
quantization error, we use a soft interval, and refine Eq. (9)
as:

Lp =
B∑

b=1

exp(− (b − bp)
2

2 max (0.1, rp)
2 ) · Fp(b) (10)

where we let rp = 0.1 · |Fp(b) − ∑B
b=1 Fp(b) · b|. The

integrated value in Eq. (10) changes within a small range
even under dramatic illumination change. The new feature Lp

inherit the advantage of n p , and further optimize n p by adding
illumination invariant features. Therefore, the illumination
invariant features in Eq. (10) are used as inputs for seed points
location update and segmentation task in Section III-C and
Section III-D instead of n p computed in Eq. (6).

C. Initial Object Regions Estimation

We first estimate the foreground object regions using the
IIF-based optical flow computing, and cut out the frames with
the unified framework of seed updating and segmentation.
To deal with the large displacement of object and avoid
incorrect estimation when object appearance changes dramat-
ically due to illumination, we introduce IIF into variational
motion estimation [44], [45] as matching terms to combine
both advantages of the illumination invariant features of IIF
with accurate dense motion estimation and large displacement
correspondence of the variational model. The local spatial
information is maintained well by using IIF, while many other
descriptors will estimate incorrectly.

Let w denote the optical flow field, and � be the image
domain. So that the optical flow field can be the function:
w : � → R2. We follow the approach [44] and define a
variational model for optical flow field, which is the weighted
sum of various terms:

E = Ecolor (w)+ γ Egrad(w)+ λEsmooth(w)

+ βEmatch(w,w1)+ βEdesc(w1) (11)

In Eq. (11), γ , λ and β are controlling parameters, Ecolor and
Egrad penalize deviations from gray value constancy assump-
tion and gradient constancy assumption, respectively. w1 is
the correspondence vector obtained by descriptor matching.
The sum of Ecolor and Egrad is the data term, Esmooth is
the smoothness term which penalizes the total variation of the
flow field to enforce regularity. In this paper we use the method
in [45] to compute the data term and smoothness term. Ecolor

is the square sum of gray value difference of the original pixel
gray value and the mapping pixel gray value. Similar to Ecolor ,
Egrad is that of magnitude gradient value instead of grayscale
value. Esmooth is the sum of square sum value of two vector
components on each pixel. The optical field can be computed
by minimizing Eq. (11).

Pixel correspondences from descriptor matching are inte-
grated into the variational model by adding two matching
terms Ematch and Edesc, and we use OSF as the descriptor for
matching. The proposed illumination-invariant features based
on OSF can also be utilized to exploit the images where

Fig. 5. The formulation for generating seeds. We first estimate foreground
region which is surrounded with red color, and obtain the search window.
The foreground and background seeds are shown in blue and green points,
respectively.

illumination changes dramatically. The problem of computing
the minimal Edesc can be converted into block matching
problem in the image domain �:

Edesc(w1) =
∫
�
δ(p)φ(p)ψ(D(p, p + w1(p)))d p (12)

where δ(p) is 1 if the OSF descriptor exists at p otherwise
0, ψ(s2) =

√
s2 + 0.0012 is the robustness function, w1 is

the candidate block. φ(p) is the weight of Ematch , which is
reflected by OSF value of the best and worst match block.
Ematch shows similarity between two blocks w(p) and w1(p).
In our experiments, the three tradeoff parameters γ , λ and β
of the variational model are set to 10, 3 and 200, respectively.
However, the target boundary estimated by optical flow is
not accurate to cover the moving foreground object. Besides,
the foreground region may be falsely estimated when the target
partially remains static. In order to refine the optical flow and
foreground-background labels, we use a novel algorithm Fast
Object Segmentation [4] to identify the foreground region. The
algorithm overcomes the shortcomings of inaccurate boundary
estimation due to partially static region of foreground, thus an
accurate object region can be obtained.

The last work in this section is to generate foreground
and background seeds and a search window for tracking as
is illustrated in Fig. 5. Seeds are set of pixels which are
labeled foreground or background, and the search window
which is marked with the yellow rectangle indicates the size
and location of target. The window is set big enough to cover
the target, which will be used for visual tracking in the next
section. Denote T as the number of total number of seeds.
We keep the number of object region seeds 1.2 times that of
background seeds, and both 30 percent of them are selected
uniformly from the region which are the difference between
erosion or dilation object image and the original image in
experiments, respectively. The iteration times of erosion and
dilation are denoted as σ1 and σ2 which are determined by the
object size.

D. Seeds Update and Objects Segmentation

In each loop, it is required to update the seeds location and
then extract the object based on the seed points. As described
in Section III-B, the difference between blocks is computed
by the vote map which is based on pixel OSF distance.
We search within the neighbor area of the window, and the
matching result is the candidate block with the lowest joint
score. The marginal regions are given less weight, which
facilitates robustness to occlusion. We illustrate how to update
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Fig. 6. Tracking with OSF on birdfall sequence in SegTrack. (a) The
initial frame #18, where object is covered by search window shown in red.
The orange overlapped circles show the multi-region with which to measure
block dissimilarity. (b) Tracking results in frame #31. (c) Tracking results in
frame #40. In (b) and (c), results of TLD [41], KCF [42], BOOSTING [43],
LSH [17] and OSF tracker are indicated in cyan, yellow, blue, green and
purple rectangles respectively.

the window with OSF using multi-region in Fig. 6, and
give the contrast experiment between OSF tracker and other
effective trackers. Note that only a few regions are displayed
for the sake of clarity. It can be observed that TLD [41] and
KCF [42] trackers cannot deal with fuzzy object boundaries
and appearance change due to illumination variance, while our
tracker obtains the more accurate tracking results than other
trackers. Our tracker can obtain more precise results compared
with LSH [17].

If ignoring the pose and scale change of foreground object,
the seeds and the window location can be updated after
tracking only with the object displacement. Let the location
of the window center in frame i be Li , and let Sp

i denote the
location of seed p in frame i , then:

Sp
i = Sp

i−1 + (Li − Li−1) (13)

where Li − Li−1 is the displacement vector which represents
moving from Li−1 to Li , and update the seed location based on
window displacement. Owing to object deformation, the seeds
would be assigned with false foreground or background labels
in this strategy. If the pixel color remains unchanged, a conve-
nient way to reduce seeds updating error is to find a pixel in
the local region with minimal color difference. Nevertheless,
updating results based on this assumption is not always robust
due to occlusion and illumination change. Updating the seeds
with tracking displacement and minimal color distance can
fit in well with scale change of object, but would also lead
to incorrect update in frames where the object appearance
changes partially. In this paper we use the minimal IIF distance
instead.

The proposed algorithm for seeds updating is illustrated
in Fig. 7(c). Let ω be the border length of the seeds search
region as in Fig. 7(c), the new seed location should be:

Sp
i = Sp

i−1 + (Li − Li−1)+ arg min
v

D(p, q) (14)

where q denote pixels which are moved from pixel p by the
updating vector v. Let v = (u, v), where u and v are integers in
[−ω−1

2 , ω−1
2 ]. The seeds updating is robust to dramatic object

pose or scale changes. The seeds can be correctly updated by
setting ω greater if there is large object displacement. The
seeds update strategy can handle the appearance and scale
change of object well, however, mistakes of seeds update still
occur accidentally, which is a disaster for subsequent object

Fig. 7. The deployed seeds update strategy. (a) The location of seed p in
frame i − 1 is marked red, and the dashed yellow rectangle represents the
search window in frame i − 1. (b) Firstly we move the seed based on the
tracking displacement Li − Li−1. The rectangle with solid yellow line is
the search window in frame i . (c) Secondly we obtain the new pixel with least
OSF difference to the intermediate result in (b) within the region marked by
dark orange squares.

segmentation. In view of this problem, the new seeds and
the search window are generated every frame to adapt them
to shape and illumination change. After the window and the
seeds have correctly generated, seeds location is updated based
on tracking and OSF distance in pixel level. Fig. 8 shows
the seeds update results of our strategy. In sequence (a) and
(b), foreground objects both undergo illumination change. The
light is suddenly turned on in (a) and the car enters into
shadow area in (b). It can be observed that the seeds are kept
in correct location to present foreground location. It can also
be discovered in (c) that our seeds update strategy can also fit
in object deformation.

With the updated foreground and background seeds,
the foreground region can be segmented based on graph-cut
methods. Let G = �V, E� denote an image, where V is the set
of all pixels and E is the set of adjacency relationships between
neighborhood pixels, respectively. The foreground region is
segmented by minimizing Gibbs energy:

EG(X) =
∑
p∈V

E1(x p)+ η
∑

(p,q)∈E
E2(x p, xq) (15)

where E1(x p) and E2(x p, xq) are the likelihood and prior
energy, respectively [33]. Segmenting the foreground region
is a binary labeling problem, and for each node p ∈ V , x p is
equal to 1 if node p is assigned with the foreground label, and
0 otherwise. We use the watershed algorithm to pre-segment
the image into small regions, then denote V as the set of the
small regions instead of pixels and denote E as the set of
arcs connecting adjacent regions. We compute the likelihood
energy E1 using the method in [33], which encodes the cost of
color similarity. We integrate the color gradient between nodes
into color difference to represent E2 and use the proposed
OSF as the additional term in order to deal with ambiguous
boundaries. We compute the prior energy E2 as:

E2(xP, xQ) = |xP − xQ|
1 + T (P,Q)+ μ · D(p, q)

(16)

where p and q denote the center pixel of small regions
P and Q which are generated by pre-segmentation, respec-
tively. T (P,Q) is the L2-Norm distance of RGB difference
between mean colors of P and Q. We combine the color
and proposed IIF matching with the weight parameter μ,
and set it to 50 in the experiments. E2 penalizes adjacent
nodes which are assigned with different labels. Different from
RGB distances, the proposed OSF takes spatial information
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Fig. 8. Examples of seeds update results. Images from (a) to (c) are frames selected in man, car and girl sequence respectively. The points marked in green
and blue represent the background and foreground seeds, respectively.

Fig. 9. Comparison on the traditional graph-cut and the improved method by
integrating the IIF. (a) is the zoomed-in orignal frame. (b) is the seed points
image. (c) and (d) are the results of graph-cut and ours, respectively.

into consideration, thus adjacent regions will have higher
probability to be assigned with the same label to the seed
region. In Fig. 9, we show the results of traditional graph-
cut [33] and ours. Because graph-cut only takes into account
the color information while we also try to achieve the space
consistency on the basis of seed points, our method can obtain
better segmentation results when the boundary is fuzzy. This
scheme has been shown robust to ambiguous and low-contrast
boundaries since some foreground and background seeds are
obtained near the object boundary when seeds are generated.
We can cut out the video shots quickly because all pixels
outside the search window are undoubtedly assigned with
background labels thus decreasing computation domain, and
the acceleration effect will be more significant if the object
size is relatively small.

IV. EXPERIMENTAL RESULTS

We used 5 sequences of SegTrack [46] and 13 sequences
of Visual Tracking via Locality-sensitive-histogram Data
(VTLD) [17] to perform evaluations, which offer various

Fig. 10. Results for the effect of the seeds number T on board, car and
lemming sequence in VTLD [17] evaluated by mIU (mean Intersection-over-
Union). We set T to various numbers from 2 to 117 for the sequences.

challenges for moving object extraction. In the two datasets,
a video is excluded if it contains several moving objects while
only one of them is labeled in the ground-truth. All tested
video shots are handled on an Intel Core 5, 2.5 GHz PC with
8 GB RAM, and our method is implemented using C++ on
visual studio.

A. Experiments on VTLD

We use video shots in VTLD [17] to evaluate the video
cut-out effect of our method. At first, we use car and skiing
sequences in VTLD [17] to assess the performance of our
method. In different situations where image size or object
size varies, and whether rotation, deformation and illumination
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Fig. 11. Qualitative video cut-out results of our algorithm on car and skiing sequence. There are challenges of illumination change caused by cast shadow
and large object displacement in the two sequences, respectively.

change exist or not, we have to set parameters to different
values. We give an example in Fig. 10 of car sequence in
VTLD [17]. We try the attenuation value α by setting it to
many different values, and find that setting it from 0.015 to
0.04 is appropriate. Therefore, α is fixed at 0.03 in all
experiments. In the step of generating local search window
and seeds, iteration times of erosion and dilation σ1 and σ2
are set as 5 for most cases. If the two parameters are set
rather little, the seed points would be too dense and lack
of discrimination. On the other hand, the false points would
be generated if σ1 and σ2 are set too large. Experiments
show that they can be adjusted from 3 to 12 by the user,
which is determined by the image resolution. Here we take
car sequence as an example. We set ε = 10 and ω = 7
to fit in appearance change of object. η is set to 50 when
segmenting. The performance of our algorithm with different
seeds number T is shown in Fig. 9. Theoretically, better results
would be achieved when the number of seeds grows larger,
because it means more guidance is given for semi-supervised
segmentation. However, it may not be necessarily appropriate
because of the amplification effects of false seeds estimating
in initial steps. From Fig. 9, we can find that mIU tends to be
stable when T is greater than 20. For instance, the mIU peaks
when T is set to 85 on the car sequence. Similar to σ1 or
σ2, T also depends on the image resolution and object scale.
We conduct many experiments where we use various T value.
We conclude that good segmentation results can be obtained
for most cases if T is set to default value 80.

Representative illumination challenging frames from the car
and skiing sequence are shown in Fig. 10. The selected video
shot has 80 frames at 320×240 resolution. The car in the video
moves forwards to camera gradually whose appearance has
dramatic change due to shadows, and that is where difficulty
lies. In Fig. 10, the reasonable objects are cut out when cast
shadow and large displacement exist. Our method outperforms
the state-of-the-art methods in accuracy as is shown in Fig. 11.
In Fig. 12, we further give comparison experiments results
in VTLD [17] evaluated by PER (average Per-frame Error
Rate) with VOS [5], SAG [10], FOS [4], SLD [8], CVS [47]
and ours by annotating ground-truth images in a subset of

Fig. 12. Quantitative comparison of VOS [5], SAG [10], FOS [4], SLD [8],
CVS [47] and ours on VTLD [17] dataset. Note that PER is set to 8000 when
it is over 8000 or there are no available output images.

frames. As shown in Fig. 13, our method presents better
performance compared with other implementations when han-
dling sequences where the cast shadow exists. The proposed
algorithm also performs well in scenarios where illumination
varies, such as abrupt dramatic illumination change in man
sequence. Furthermore, our method performs comparatively
well with large displacement as shown in cliffdiv1 and skiing
sequence. In other scenarios where object deforms, scale
changes or rotates, our method still performs no worse than
state-of-the-art algorithms like cliffdiv2 and lemming.

B. Experiments on SegTrack

We test our algorithm on 5 sequences from SegTrack [46]
which offers various challenges including non-rigid deforma-
tions, fast camera motion and low contrast between foreground
and background. The penguin video in this dataset is discarded
because there are several moving foreground objects in these
frames. We show cut-out results in Fig. 14 where ground-
truth in pixel level is provided in every frame. We can observe
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Fig. 13. The precision-recall curve showing the cut-out accuracy when evaluating the performance of VOS [5], SAG [10], FOS [4], SLD [8], CVS [47],
and ours. (a) and (b) are the precision-recall curves for the car and skiing sequence, respectively.

Fig. 14. Qualitative segmentation result comparison for #42 frame in car sequence of our methods with the results of VOS [5], SAG [10], FOS [4], SLD [8],
and CVS [47]. The manifestly false segmented region is marked with a yellow rectangle.

TABLE I

COMPARISON OF AVERAGE RUN TIME PER-FRAME (SECONDS)
FOR THE 5 VIDEOS IN SEGTRACK [46]

that our method outperforms others when there is illumination
change in birdfall and parachute.

Fig. 15 shows the qualitative comparison between our
method and other state-of-the-art methods on SegTrack [46]
benchmark. Fig. 16 is the bar graph of quantitative comparison
in terms of PER showing the effectiveness of the proposed
video cut-out method. Overall, objectness algorithms like
VOS [5], FOS [4] and ours. Our method outperform SAG [10]
and SLD [8], especially in dynamic background scenario.

The proposed video cut-out method is robust to illumination
change and rotation as is shown in birdfall and parachute
sequence, which can be attributed to the fact that we take
local information of seeds into account and the seeds update
strategy. Still, our method performs relatively well when the
object undergoes scale or pose change. In the girl and cheetah
sequence, there is severe occlusion challenge. Our method is
based on color and local feature matching. However, it does
not focus on handling occlusion. Similar to [48], [49], our
approach has relatively satisfying outputs. We also replace
IIF in the video cutting out framework with DAISY [14] and
HOG [50] in Fig. 16. HOG [50] is effective to deal with
optical deformation and slight deformation. DAISY [14] is a
dense descriptor and has rotation invariance. We use them to
update the seed point location and perform segmentation, and
the parameters are reset in the experiments. In Fig. 16, we can
find that IIF outperforms these two features on most sequences,
especially on birdfall sequence where the brightness changes.

Table I compares the average run time between the pro-
posed approach and other methods on the SegTrack [46]
dataset. In Table I, the VOS [5] takes over one hours time
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Fig. 15. Qualitative comparison between our method and other state-of-the-art methods on SegTrack [46] benchmark. The first column shows the first frame
of birdfall, cheetah, girl, monkeydog and parachute. The second column is the ground truth image used for evaluation. The last six columns are outputs of
VOS [5], SAG [10], FOS [4], SLD [8], CVS [47], and ours, respectively. The cutting-out object boundaries are marked green and the dark red triangle means
no available outputs.

Fig. 16. Quantitative comparison between our method and other state-
of-the-art methods of VOS [5], SAG [10], FOS [4], SLD [8], CVS [47],
DAISY [14], and HOG [50] on SegTrack [46] benchmark. From left to right
are birdfall, cheetah, girl, monkeydog and parachute sequence. We replace
OSF and IIF with DAISY [14] to evaluate the effectiveness of the proposed
IIF in our framework.

until convergence and get the final segmentation results, and
SLD [8] requires hours to finish over-segmentation for han-
dling one image sequence. VOS [5] optimizes object pro-
posals iteratively, which requires massive time cost. Our
method outperforms FOS [4], SAG [10] and CVS [47] in

time efficiency because the other three algorithms compute
the dense optical flow between every two subsequent frames.
The reduction in run time is caused by our tracking and
segmentation framework. Our method takes around 15 seconds
to estimate the foreground moving object when processing the
first two frames, and taking 0.4 to 1.5 sec/frame for the rest
frames in the subsequence which is determined by target size
(0.3 seconds for tracking and seeds updating and the rest for
segmentation which depends on the object size). The run time
of our method can be further reduced if the foreground object
has no significant pose or scale change.

V. CONCLUSION

In this paper, we have presented a new unsupervised
approach for video cut-out, which is robust to illumination
change. A local feature OSF and the corresponding illumina-
tion invariant features are introduced in the paper. We also
propose a new tracking-and-segmentation framework to con-
duct video cutting-out. We first integrate the OSF into our
variational model to estimate the objects regions in the first
frame. We then apply an IIF tracker to update the seed loca-
tions and further refine the locations in pixel level to accom-
modate to poses or scales changes of objects. We address
the foreground extraction with our IIF-based graph-cut to
extract the foreground objects in case of vague boundaries.
Various experiments on challenging datasets have shown the
robustness of our video cut-out to illumination changes.
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Our approach outperforms the existing state-of-the-art meth-
ods in the perspective of time efficiency in experiments.
We will work on related video editing methods as our future
work, including enhancing the latest accurate optical flow
techniques to handle incorrect estimation at pixels around
target boundaries, and investigating seeds updating skills to
adapt to significant pose changes of objects. We will conduct
researches on image/video segmentation with deep learning
techniques [35], [36].
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