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Liver Extraction Using Residual Convolution
Neural Networks From Low-Dose CT Images
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Abstract—An efficient and precise liver extraction from
computed tomography (CT) images is a crucial step for
computer-aided hepatic diseases diagnosis and treatment.
Considering the possible risk to patient’s health due to X-ray
radiation of repetitive CT examination, low-dose CT (LDCT)
is an effective solution for medical imaging. However, inho-
mogeneous appearances and indistinct boundaries due to
additional noise and streaks artifacts in LDCT images of-
ten make it a challenging task. This study aims to extract
a liver model from LDCT images for facilitating medical ex-
pert in surgical planning and post-operative assessment
along with low radiation risk to the patient. Our method
carried out liver extraction by employing residual convolu-
tional neural networks (LER-CN), which is further refined by
noise removal and structure preservation components. Af-
ter patch-based training, our LER-CN shows a competitive
performance relative to state-of-the-art methods for both
clinical and publicly available MICCAI Sliver07 datasets. We
have proposed training and learning algorithms for LER-
CN based on back propagation gradient descent. We have
evaluated our method on 150 abdominal CT scans for liver
extraction. LER-CN achieves dice similarity coefficient up
to 96.5±1.8%, decreased volumetric overlap error up to
4.30±0.58% , and average symmetric surface distance less
than 1.4 ±0.5mm. These findings have shown that LER-CN
is a favorable method for medical applications with high
efficiency allowing low radiation risk to patients.
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I. INTRODUCTION

COMPUTED Tomography (CT) has been a major analytical
modality in the clinical field for diagnostic and patholog-

ical treatment of hepatic diseases for decades. Precise identifi-
cation and marking of liver surface from CT images are vital
for pre-operative analysis as well as intra-operative assessment
prior to the clinical treatment [1]–[5]. Due to extensive use of
medical CT, the potential cancer risk caused by overall radiation
dose to a patient becomes an unsustainable aspect. Low-dose
CT (LDCT) is a preferred solution to minimize radiation harms
to patients [6]–[8]. However, it suffers significantly from the
supplementary noise and streak artifacts. In addition, manual
annotation of liver boundary grounded on a noisy pre-operative
image (i.e. LDCT) is tedious, error-prone and time consuming
which enforces surgeons to operate on vague estimation leads to
greater mental workload and impropriate post-operative results.
Seeking a generic method that can extract soft body parts from
LDCT is therefore highly demanding.

Efficient and accurate extraction of liver [9] from LDCT im-
ages is a crucial requirement yet promising challenge for effec-
tive planning in the pre-operative analysis. However, two main
issues, LDCT image characteristics and diverse anatomy of soft
body parts make the extraction process challenging. To counter-
act repetitive clinical CT examinations [10], low dose [11] strat-
egy is becoming a critical attention of researchers. One popular
way for reducing radiation dose is to shorten the exposure time
of an X-ray tube. This, however, introduces strong streak arti-
facts [11], [12], which degrade extraction process of the organ.
As a result, it could compromise the diagnostic performance
and make clinical investigation difficult. To improve the image
quality of LDCT, presently, many vendor-specific algorithms
are proposed such as sinogram domain filtration [13] and itera-
tive reconstruction methods [14], but they require unprocessed
information with complicated data formats which are difficult
to understand for most users. Due to the aforementioned con-
straints, the existing methods have a limited ability to denoise
LDCT [15], [16] image while preserving its structural details.

Liver extraction from LDCT aims to delineate its structure
and mark liver’s boundary line, its accuracy is of particular im-
portance for medical usage. Extracting organ of interest (ORI)
from LDCT offers challenging issues due to countless variation
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Fig. 1. Overview of the network architecture for LER-CN. First block shows the input data for training and testing LDCT image patches of size
64 × 64. Second block shows the component of LER-CN, i.e., five Convolution layers NRCi→n, five ReLUi→n, and five deconvolution layers of
SPCi→n. Residual component F (e) + (e) is added before final classification results and output in the form of 3D liver view points. Third block depicts
detailed working of LER-CN noise removal and structural preservation components.

such as the minor difference between the liver and background
structures [17], the heterogeneity of surrounding tissues [18],
and huge variations in liver contour and appearance. Moreover,
LDCT offers noisy data which provide poor visualization abil-
ity and restricts better analysis of pre-operative planning phase.
Also, abdominal parts offer a thin band of Hounsfield (HU)
ranges which restricts intensity-based methods for segmenta-
tion [19]. Several techniques such as graph cut [20], region-
based [21], and thresholding have been introduced to support
ORI segmentation. Thresholding is considered as traditional
method for image segmentation but not designed to segment
noisy image since it lacks spatial characteristics [22]. Region
growing requires seed region selection in an image to be seg-
mented. The foundation of graph cuts segments the image using
an undirected weighted graph [23]. However, all the above-
mentioned techniques are based on normal dose CT (NDCT). To
improve the visualization problem and image quality of LDCT,
Convolution Neural network (CNN) based approaches are use-
ful alternatives in handling soft body parts extraction.

Recently, CNN-based methods are valuable research areas
in medical imaging for denoising, ORI detection [24], and ex-
traction. The patch-based CNN techniques [25] have improved
segmentation by pixel-wise classification with more precise out-
puts. However, in spite of significant classification precision, the
existing CNNs do not avoid poor results due to massive training
data [26]. Although CNN shows interesting results for image
segmentation, the prospective of the deep CNN has not been
fully realized [15]. Most liver segmentation models based on
CNN use normal dose CT modality [27], only a few are designed
for extracting ORI from LDCT but are not based on CNN [28].
Aiming to minimize the potential risk of X-ray radiation to the
patient, this research proposes a technique which extract liver
model from denoising a LDCT image. Inspired by [15], we
explore the residual CNN to address the challenging task of
liver extraction from LDCT. We incorporated residual encoder-
decoder CNN to denoise a low dose CT image, then extract a
3D liver model from it.

Our model referred as liver extraction residual convolution
neural (LER-CN) network comprises of two basic components:
Noise Removal Component (NRC) for coarse liver extraction
and Structural Preservation Component (SRC) for fine liver ex-
traction. This study differed from the work [15] by modifying
their approach for extracting liver model from the LDCT im-
age. The specific objective of this research is to reduce image
noise of low-dose CT scan and extract liver 3D model using
residual CNN. It will assist medical experts in pre-operative as-
sessments such as to maximize detectability of liver lesions as
well as accurate guidance during its intra-operative treatment
with minimal radiation risk to patient. The key contributions of
LER-CN network include:

� The LER-CN finely tunes residual convolutional neural
network to mark and extract a liver model by denoising
LDCT image as shown in Fig. 1.

� The liver extraction process is carried out by paired sym-
metric arrangement of two layers: convoluted NRC for
coarse extraction and deconvoluted SPC layer for fine ex-
traction see Fig. 2.

� We exploited the use of residual mapping to preserve spa-
tial details of LDCT image when network goes deeper,
while suppressing image noise and streak artifacts.

� The efficacy of LER-CN has validated on MICAAI
Sliver07 as well as real clinical datasets. Using 3D slicer,
we have extracted liver models of different view-points
from LDCT see Fig. 3.

The next section describes the related work. Section III dis-
cusses the LER-CN network architecture. Experimental results
obtained for our method are given in Section IV. Finally, we
summarize the paper with future directions.

II. RELATED WORK

Related work for this study can be divided into following two
sections i.e. image denoising approaches using CNN and liver
extraction techniques based on CNN.
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Fig. 2. Deep insight view of our two basic building blocks: symmetrical noise removal and structural preservation components. (Left) Convolution
process, marked with red arrows, starts from input image [512×512×1] to remove noise from LDCT until at last layer with dimension [8×8]. (Right)
Deconvolution process, marked with blue arrows, starts from image size [8×8] having five layers and ends at an extracted output image of size
[512×512×1].

Fig. 3. Visualization of liver extraction using 3D slicer output. Coarse
extractions to fine extraction, liver regions are marked red in detection
phase. Different viewpoints of the liver can be seen accurately from our
implemented resultant output.

A. Image Denoising Approaches Using CNN

CNNs are considered as powerful tools [29], [30] for fea-
ture extraction and classification tasks. Several methods using
CNN have been proposed for denoising [31], deblurring and
organ segmentation [32], [33]. To remove noise from CT im-
age a lightweight CNN-based approach was proposed by [34].
It is also tested to denoise LDCT in “2016 NIH-AAPM-Mayo
Clinic Low Dose CT Grand Challenge” [35]. Furthermore, tech-
niques such as filtered back-projection (FBP) using deep CNN
architecture [36] are introduced as well for LDCT to reduce re-
construction error by a factor of two. Various medical analysis
tasks such as tissue segmentation, organ classification [37] and
nuclei detection are accomplished using CNN models. Despite
the remarkable results on CNN for LDCT, most studies are con-
fined only to the low-level task of image denoising [15] without
intention to segment and extract organ of interest from LDCT
image. Although various approaches such as [38], [39] involved
CNN for organ segmentation, however, the potential of CNN
has not been fully realized to segment as well as to extract the
desired ORI using LDCT.

B. Approaches for Liver Extraction Based on CNN

CNN is a valuable subdivision of deep artificial neural net-
works. Various organ segmentation approaches based on CNN

have been proposed such as lungs and brain MRIs segmen-
tation [24], digestive system segmentation [25], and urinary
bladder segmentation [27]. An end-to-end learning approach
of fully connected conditional random field (CRF) [26] was
proposed, by implementing fully convolutional network (FCN).
Similarly, CRF refinement [40] was demonstrated in combina-
tion with FCN to improve segmentation results. Other methods
have employed graph-cut approach [41] to refine FCN. These
learning-based CNN techniques are dependent on predefined
refinements by conventional methods for additional accuracy
improvement. Furthermore, multi-organ segmentation was car-
ried out [42] using fully convolutional network to perform end-
to-end learning and pixel-to-pixel dense predictions. Similarly,
quite a few techniques involved 3D fully CNN for automatic
liver segmentation [41], [43] in CT images. However, more re-
search is still necessary until the ORI extraction from LDCT
images can be considered largely solved. The main limitation
in traditional CNN methods is the usage of huge input data and
lack of capability to finely extract ORI from LDCT images.
Although state-of-the-art CNN have not trained dedicatedly for
LDCT images, their potential performance undeniably moti-
vates us to use CNN branch and explore more valuable models
for medical applications.

III. METHOD

In this section, we explain our proposed LER-CN network,
which takes a low dose image with streak artifacts of size [512×
512× 1] as input, and outputs a denoised classified image of
size [512× 512× 1] with precise detection of ORI. The overall
structural design of our LER-CN network is shown in Fig. 1. The
comprehensive architecture of LER-CN consists of total 10 lay-
ers: five convolution layers consist of noise removal components
and five deconvolution layers for structure preservation symmet-
rically arranged with their corresponding rectified linear units
(ReLU), see Table I for details. The layer pattern of LER-CN net-
work is described as INPUT → [[NRC → RELU ] ∗ 5]→
[SPC → RELU ] ∗ 5→ OUTPUT . Where (*) is showing the
repetitions of layers. The convoluted NRC accomplishes coarse
extraction by converting LDCT image to its noise free represen-
tation and delivers its output to SPC. The SPC, on the other hand,
carries out fine extraction by preserving its structural details to
reconstruct and compare received image with its corresponding
NDCT. The noise removal and the structural preservation layers
of LER-CN are structurally symmetric due to the contrary roles
as shown in Fig. 2. The LER-CN pipeline consists of three key
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TABLE I
DETAILED CONFIGURATION OF OUR LER-CN. NRC AND SPC DENOTE

LAYERS OF NOISE REMOVAL STRUCTURAL PRESERVATION COMPONENTS,
RESPECTIVELY. LETTERS NEXT TO EACH LAYER NAME SHOW

THE ORDER OF CORRESPONDING LAYER IN LER-CN

steps: (i) Training of LER-CN using LDCT images, (ii) Coarse
extraction of liver via noise removal convolution layer, and (iii)
Fine extraction of liver using structure preservation deconvolu-
tion layer see Fig. 1.

A. Training

The training process of CNN-based medical imaging appli-
cations requires an enormous amount of data samples for the
sake of precise classification. This constraint is hard to meet in
practice for clinical data. In our research to solve this issue, we
have used the concept of fixed size overlapped patches [64×64]
extracted from low dose and corresponding normal dose im-
ages to boost the number of training samples. For our setup,
low contrast regions [44] of liver with respect to its background
can be detected efficiently using above-mentioned patch-based
training strategy. For first time training of LER-CN, the map-
ping function W is formulated by randomly initializing training
I parameters set σ = K,F, S, P for NRC and SPC layers ex-
plained in Algorithm 1. Next, The estimation of σ is achieved
by finding probabilities of output class through forward propa-
gation by minimizing the total error (L(c, σ)) between LDCT
and NDCT images denoted by Y . considering V as a set of
(y1 , z1), (y2 , z2), ..., (yT , zT ) paired patches, total error func-
tion can be formulated as:

L(c, σ) =
1
M

M∑

p=1

‖yp −W (zp)‖2 (1)

where yp and zp symbolize the normal and low dose image
patches and W is the overall number of training sets. We used
backpropagation to calculate the gradients of L with respect to
all weights (Wp to WT ) in the LER-CN and use gradient descent
to update all I parameters values to minimize the output error

Algorithm 1: Training Phase of LER-CN from LDCT.

Input: I_Patches [64× 64× 1], I_Parameters(K,F,S,P),
Iterations

Output: Classified LER− CN ← [1× 1× 2]
Intialize_weights←I_Parameters(K,S,F,P);
(NRCi,ReLUi, SPCi)weights←inti_wei(Wd1 ,He1 ,Dp1);
for NRCi←n && ReLUi←n && SPCi←n do

Compute_outputsize = (W
n t h −F +2P )

S+1 ;

Wd2 = (Wd 1 −F +2P )
S+1 ;

He2 = (He 1 −F +2P )
S+1 ;

Dp2 = K;
end for
repeat

Move to next layer;
Apply AND ∀ output sizes;

until LER-CN Unclassified

(L(c, σ)). The total error at the NRCn layer is utilized as the
loss function.

To formally define the backpropagation for our experimental
setup, we have five [M ×M ] NRC convoluted layers with a
filter λ size of n× n. Our first NRCi delivers an output of size
(M − n + 1)× (M − n + 1) for calculating pre-nonlinearity
input to some unit Km

vy in our NRC layer, we have added up the
weights with filter components for the previous layers as:

Km
vy =

n−1∑

x=0

n−1∑

z=0

λdm−1
x2 (v + x)(y + z) (2)

Then, our NRC applies its non-linearity as:

dm
vy = σ(Km

vy ) (3)

Now, to optimize all the weights and I parameters of LER-
CN to correctly classify and detect liver from LDCT training set,
we apply here the chain rule to compute error for the previous
NRC layers. By applying partial of E with respect to each layer’s
output ( ∂E

∂dm
v y

). Gradient component for each weight by applying
chain rule is to sum the contribution of all expression in one
variable as:

∂E

∂λxz
=

M−n∑

x=0

M−n∑

z=0

∂E

∂Km
vy

∂km
vy

∂λxz
=

M−n∑

x=0

M−n∑

z=0

∂E

∂Km
vy

dm−1
(v+x)(y+z )

(4)
We have added up dm

vy in which λxz occurs.
Compute NRCk to NRCn by applying chain rule as:

∂E

∂dm−1
vy

=
n−1∑

x=0

n−1∑

z=0

a1
∂km

(v−x)(y−z )

∂Km−1
vy

=
n−1∑

x=0

n−1∑

z=0

a1λxz (5)

The term
∂km

( v −x ) ( y −z )

∂K m −1
v y

is the value of the total error of the previous
layer. Similarly, we can deduce errors for SPC layers to optimize
loss function. At this stage, all the weights and I parameters of
LER-CN have now been set to correctly detect and extract liver
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from LDCT testing dataset. See Algorithm 1 for the detailed
training of LER-CN.

B. Coarse Extraction of the Liver Using Noise Removal
Convoluted Layer

In the context of denoising LDCT, LER-CN demonstrates
an excellent performance. Learning complicated features in a
CNN is directly proportional to depth of the network. See Fig. 1
for our experimental setup of LDCT liver extraction process,
LER-CN learn to distinguish edges and corners from low-level
features in the NRCi , then use this information to spot simple
shapes in NRCj , and next use these shapes to distinguish higher-
level features, such as liver texture and its contour in advanced
layers from NRCk→n . Unlike the traditional CNN, we use a
chain of symmetrically connected noise removal convolutional
layers as the stacked component. Streak artifacts in LDCT im-
age are smoothen from low-level layer NRCi to high-level layer
NRCn to maintain vital information in the patches. Moreover,
we have abandoned the down-sampling layer to preserve impor-
tant structural details. As a result, our coarse extraction phase
comprises of following two layers: NRC layers and ReLU units,
so the noise removal component Nj

k (ej ) can be formulated as:

Nj
k (ej ) = ReLU(kj ∗ ej + mj ) (6)

where j = 0, 1, . . . ,M , M shows the number of NRC layers,
Kj represents weights mj as biases, (∗) operator indicates the
convolution process, e0 symbolizes patch extracted from input
LDCT, and ej (j > 0) is previous layer feature. ReLU(e) =
max(0, e) is the formulation of an activation function. After
noise removal operation, the image patches are converted to a
feature space j, and the output is referred as feature vector em

delivered to SPC layer for further operations. See Algorithm 2
for details of learning phase of the proposed method.

C. Fine Extraction of the Liver Using Structure
Preservation Deconvolution Layer

Even though the down-sampling layer in LER-CN is de-
tached, a series of NRC convolution layers still diminishes the
details of an input image. We have incorporated the concept of
deconvolutional into our LER-CN for preserving LDCT’s struc-
tural details [38], [39]. In our fine extraction phase, the decon-
volution layer reconstructs an image from the features extracted
by convolution layers. We use successive deconvolutional layers
named SPC to arrange the symmetrical stacked component. We
use similar kernel size in the proposed method to ensure sym-
metry of NRC and SPC layers for generating matching input
and output. We use the stack LIFO rule (Last In First Out) for
data flow through the NRC and SPC layers As depicted in Fig. 1,
the first NRC layeri connected to the last SPC layern , the last
NRC layern is attached to the first SPC layeri for maintaining
paired symmetry. Hence, our SPC network Sj

l (gj ) contains the
deconvolution and ReLU layers is defined as:

Sj
l (gj ) = ReLU(k′j ⊗ gj + m′j ) (7)

where j = 0, 1, . . . ,M , M shows the number of SPC layer,
Kj represents weights, mj indicates biases, (⊗) operator

Algorithm 2: Testing Phase of LER-CN from LDCT.

Input: I_Patches [64× 64× 1], I_Parameters(K,F,S,P),
Iterations from ith to nth

Output: Learned LER− CN
I_Parameters←Initialize _Weights(K,S,F,P);
LER-CN← Prop Net Layer(I Patche,
I Parameter);
for (NRCi=1 to NRCi=n ) && (SPCi=1 to SPCi=n )
do

Noise_Red←Forward_Prop(I Parameters,
ReLUi=n );
Struct_Presv←Back_Prop(Noise Redi→n ,
ReLUi→n );
Total_error=

∑ 1
2 [Target output− desired

output]2 ;
Update_Weights(Loss_Fuct, Learned_LER-CN);
repeat
until Learned_LER-CN

end for

formulate the deconvolution process, gm = e symbolizes output
vector, gj (M > j > 0) is referred as previous deconvolutional
layer feature vector, and g0 is the extracted patch. After SPC
operation, image patches are assembled with AND operator to
extract liver area from LDCT shown in Fig. 1. Algorithm 2 is
an explanation of learning process of LER-CN.

One possible implication of NRC layer is the elimination of
some image details along with noise removal from LDCT [45].
Although we have incorporated SPC layer to recover some de-
tails, however, moving deeper into advanced layers of LER-CN
could lead to a quite unsatisfactory loss for precise extraction of
ORI. Also, with an increase in LER-CN depth, overall network
training with back propagation could be difficult. To stabilize
LER-CN from aforementioned two issues, we build a solution
based on residual compensation method [29]. Instead of an ex-
clusive linear flow between input and output of stacked layers,
we implement a residual mapping in NRC and SPC layers [46],
depicted in Fig. 1. Considering e = input and r = output the
residual mapping is formulated as M(e) = r − e and original
mapping as M(e) = R = F (e) + (e). Residual mapping suits
our technique for two key reasons. First, it helps to optimize
LER-CN training when the network is deep by evading gradient
vanishing problem. Second, residual addition preserves more
structural and contrast details of low dose image which can sig-
nificantly enhance the precision of ORI extraction from LDCT
imaging. Consequently, we have combined shortcut connection
with an up-sampled output by SPC layer to achieve high reso-
lution features for improving the object extraction process from
low dose imaging.

IV. EVALUATIONS AND DISCUSSIONS

This section validates LER-CN using two datasets i.e. pub-
licly available MICAAI Sliver07 [43] and real-time clinical
dataset. The clinical data were acquired with use of auto-
mated exposure control (150 mAs) and automated tube potential
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selection (150 kV p). It comprises of 150 normal-dose CT vol-
umes [512× 512] from 50 patients including abdominal parts
of the human body collected from hospital which is located in
Shanghai, China. Out of total 150, 100 NDCT and correspond-
ing LDCT image pairs were chosen for training LER-CN and the
rest were used for testing purpose. The number of a voxel in our
dataset were around 350× 400× 350, and the spacing between
voxel is between (0.5mm, 0.5mm, 0.1mm) to (1mm,1mm,2mm).
In preprocessing step, the volumes have been re-sampled to
the spacing of (1mm,1mm,1mm), and split into slices of size
64× 64× 64. The simulated dataset, Sliver-07 contains 20
training and 10 testing scans [43]. LDCT images were gen-
erated for our both dataset by imposing Poisson noise [15] into
the sinograms simulated from corresponding NDCT imaging
with the blank scan flux of n1 = 3× 105 to n3 = 3× 107 . The
source and detector-to-rotation center distance was 45 and 43cm
respectively. Poisson noise was inserted into the projection data
for each CT image in the clinical as well as Sliver07 datasets to
reach a noise level that corresponded to 30% of the normal dose.

The proposed method was implemented in C++ under the
open source framework of 3D-Slicer 4.8.0 (64 bit) [47]. We
used overlapping patches [64×64] with a sliding window of
size 4 as the input to LER-CN. Using overlapped patches in-
stead of whole images as an input is beneficial for LER-CN
because of two reasons: First, images can be better represented
by local structures and second is the requirement of huge train-
ing dataset for CNN based methods. Patching the input images
can efficiently boost the training performance. LER-CN training
process used standard back-propagation using stochastic gradi-
ent descent (weight decay = 0.00045, momentum = 0.12 and
learning rate= 0.02 with increasing factor of 15 after five hun-
dred iterations). The training time on clinical dataset was around
1.5 hours using a 2.70 GHz Intel Xeon E5-2680 CPU and GPU
of NVIDIA GeForce GTX Titan.

A. Quantitative Evaluation

There are many factors that possibly affect the performance
of LER-CN, here we focus on key aspects of radiation dose
of LDCT, size of training data, and scoring systems for error
metrics. For radiation dose, we select peak signal to noise ratio
(PSNR), root mean square error (RMSE), and structural simi-
larity index (SSIM) as metrics [15]. To quantitatively evaluate
noise removal results for LER-CN, we have measured PSNR,
RMSE, and SSIM of LDCT images in the testing set of our both
public and clinical dataset with K-SVD [48] and CNN10 [35]
techniques. It can be seen in Table II that, for all the metrics
of Fig. 4, our proposed method achieved the best results for
denoising LDCT image.

As shown in Table III segmentation accuracy measure in
terms of Dice Similarity Coefficient (DSC%) and Jaccard In-
dex (JI%) on LDCT has been improved as compared to NDCT
images. The noise levels of LDCT images in the training and
testing sets were constant in our technique. However, the noise
level of target images was not constantly obtainable. Hence, we
use varied noise levels of training and testing images to vali-
date the strength of LER-CN as shown in Table IV. We also

TABLE II
COMPARISON OF LER-CN WITH TWO STATE-OF-THE-ART METHODS IN

TERMS OF NOISE REMOVAL AND STREAK ARTIFACTS USING PEAK
SIGNAL TO NOISE RATIO (PSNR), ROOT MEAN SQUARE ERROR (RMSE),

AND STRUCTURAL SIMILARITY INDEX (SSIM) AS METRICS

Fig. 4. Noise removal in LDCT images using NRC component values
of (a) PSNR, (b) SSIM, and (c) RMSE, plotted VS number of iterations
for LER-CN compared with KSVD and CNN10 methods. LER-CN shows
greater efficacy in terms of all three measuring parameters.

TABLE III
SEGMENTATION ACCURACY MEASURE IN TERMS OF DICE SIMILARITY

COEFFICIENT (DSC%) AND JACCARD INDEX (JI%) ON LDCT AND NDCT
IMAGES WITH CLINICAL AND SLIVER07 DATASETS, WHERE DSC AND JI =
100% SHOWS PERFECT SEGMENTATION. RESULTS REVEAL THAT LER-CN

HAS BEEN IMPROVED WHILE USING LOW DOSE CT IMAGES
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TABLE IV
QUANTITATIVE MEASUREMENTS OF PIXEL ACCURACY, MEAN ACCURACY, MEAN REGION INTERSECTION OVER UNION (IU),

FREQUENCY WEIGHTED IU FOR LER-CN WITH RESPECT TO VARIABLE NOISE LEVELS

TABLE V
QUANTITATIVE RESULTS FOR LIVER EXTRACTION IN TERMS OF MEAN IU FOR
LOW DOSE CT (LDCT) AND CORRESPONDING NORMAL DOSE CT (NDCT)

IMAGES AGAINST LER-CN NETWORK LAYERS. THREE REGIONS OF
INTEREST (ROI1, ROI2, AND ROI3) WERE SELECTED SHOWING

MEAN IU VALUES OF LER-CN LAYERS i TO n

Fig. 5. Training and testing errors for coarse and fine extraction plotted
for MICCAI-Sliver07 and clinical datasets with respect to number of iter-
ations. (a) Simulated data training error (SDTrE), simulated data testing
error (SDTsE), real data training error (RDTrE), and real data testing error
(RDTsE). (b) Pixel Accuracy, mean accuracy, and geometric accuracy
plotted against the LER-CN layers.

state four metrics pixel accuracy, mean accuracy, mean region
intersection over union (IU), and frequency weighted IU for
LER-CN with respect to variable noise levels. Table V gives
the statistical analysis and performance of our LER-CN on the
test sets for the above-mentioned metrics. Also, see Fig. 5b for

Fig. 6. Mean IU plotted for low-dose and corresponding normal-dose
images against LER-CN network layers. (a) Three regions of interest
(ROI1 , ROI2 , ROI3 ) were selected for visualizing mean IU for LDCT im-
ages with respect to LER-CN Layer i to n. (b) Three regions of interest
(ROI1 , ROI2 , ROI3 ) were selected for visualizing mean IU for corre-
sponding NDCT images with respect to LER-CN Layer i to n.

TABLE VI
QUANTITATIVE RESULTS ASSOCIATED WITH TRAINING AND TESTING ERRORS
FOR COARSE AND FINE EXTRACTION OF SLIVER07 AND CLINICAL DATASETS

graphical representation. We achieve the best results for LDCT
imaging on mean IU as described in Table V and Fig. 6, by a
relative margin of 15% than NDCT imaging. Also, Inference
time is reduced to 120s from LDCT with image noise=3× 103 .

Another essential factor for evaluating the sensitivity of LER-
CN is the size of training data. Fig. 5a shows the training and
testing loss of our method on Sliver07 and clinical datasets. The
testing loss of fine extraction on clinical dataset is inversely pro-
portional to number of training samples, while the loss for coarse
extraction was relatively high shown in Table VI. It reveals that
with excessive training, the performance of our LER-CN can be
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TABLE VII
COMPARISON OF LER-CN WITH STATE-OF-THE-ART ON CLINICAL DATASET: CRITERIA HAVING SCORE MEASURED IN TERMS OF SEVEN ERROR

METRICS, NAMELY, DICE SIMILARITY COEFFICIENT (DSC), JACCARD INDEX (JI), VOLUMETRIC OVERLAP ERROR (VOE), RELATIVE
VOLUME DIFFERENCE (RVD), AVERAGE SYMMETRIC SURFACE DISTANCE (ASD), MAXIMUM SYMMETRIC SURFACE

DISTANCE (MSD), AND ROOT MEAN SQUARE SYMMETRIC SURFACE DISTANCE (RMSD)

improved by many folds. Quantitative evaluation of LER-CN is
carried out using a scoring system inspired by [49]. The score
for LER-CN is defined as:

πi = max

(
100− 25∗

αi

αi
, 0

)
(8)

π =
1
M

M∑

i=1

πi (9)

where π represents final score when fine liver extraction is com-
pleted, πi is the score derived for each layer i→ n of LER-CN
network, αi is the real value of the resultant metric for each
layer, and αi is the mean value for outputs delivered from NRC
and SPC layer.

Table VII describes scoring criteria along with seven volume
and surface distance-based error metrics, namely, Dice Simi-
larity Coefficient (DSC), Jaccard Index (JI), Volumetric Over-
lap Error (VOE), Relative Volume Difference (RVD), Average
Symmetric surface Distance (ASD), Maximum Symmetric sur-
face Distance (MSD), and Root Mean square Symmetric surface
Distance (RMSD) [42], [49]. Among these metrics, DSC and
JI as 100% indicate perfect segmentation, ASD=0 mm shows
an ideal match between the extracted ORI and the ground-truth
of liver. VOE=0 represent faultless segmentation and 1 if both
conditions do not overlie. RVD=0 means both volumes are in-
distinguishable. RMSD is susceptible to outliers and returns
maximum error. Generally, it is tricky to compare the proposed
study with state-of-the-art due to diverse datasets and different
evaluation metrics. We have roughly compared our LER-CN
network in Table VII with seven previously implemented seg-
mentation methods [42], [50]–[55], based on the following
metrics: VOE (%), DSC (%), JI (%), ASD (%), RVD (mm),
RMSD (mm), MSD (mm), final score and computation time.
The study by Linguraru et al. [51] developed a 4D graph model
for multiple organ segmentation and achieved inspiring results.
However, there method uses a small dataset for evaluation with
high-resolution CT images. The findings of Tong et al. [52] and
Wolz et al. [54] are costly due to the rigorous registration pro-
cess. Although the assessment is conducted on different datasets
of variable sizes, Table VII still emphasizes LER-CN advan-
tages in terms of computational time (of around 5-6 minutes)
over other methods.

Fig. 7. Comparison of LER-CN method with state-of-the-art. (a) Box
plot to represent VOE (%), RVD (%), and DSC (%), where LER-CN
shows better performance comparable to other three methods. (b) Box
plot to represent ASD (mm), RMSD (mm), and MSD (mm), where LER-
CN shows comparable result to Hu et al. [42].

Table VII indicates that, in terms of DSC, RVD, JI, MSD
and VOE, LER-CN achieved competitive performance with
an increased value of DSC up to 96.5±1.8%, RVD up to
1.28±0.19%, JI= 92.5±3.4%, MSD=17.88±3.61 mm and de-
creased value of VOE up to 4.30±0.58%. Also, all of the above-
mentioned techniques were not designed to work on low-dose
CT imaging. Clearly, the proposed LER-CN can mark ORI more
accurately than previous methods from LDCT with best scores
relative to error metrics. Results are depicted from error graphs
in Fig. 7a and Fig. 7b.

B. Qualitative Evaluation

Qualitative results from Fig. 8 show that LER-CN has sup-
pressed noise streaks clearly from LDCT and precisely mark
liver boundary to extract liver structure. Furthermore, fine ex-
traction phase depicted in Fig. 8 indicates that utilizing SPC
and residual mapping, contextual information is extracted more
clearly in places where the contrast of liver area is low. Although
there are still minor indistinct regions where the liver boundary
is not so exact, the results of our method are more precise in
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Fig. 8. Coarse and fine liver extraction. Input LDCT images of size
[512×512×1], Layeri includes (NRCi , ReLUi and SPCi ) to remove ad-
ditional noise streak artifacts from LDCT, next Layerj converts liver area
slightly lighter than background. Similarly, Layerk preserves structure
properties of liver, black and white spots can be seen in Layerk output
along with final marking of liver boundary using red colored in Layern
output images. Top layer shows 3D slicer output with extracted liver view
points (ELVPs).

comparison to those generated from state-of-the-art [42], [50]–
[55]. This evidenced the efficacy of LER-CN qualitatively. Fig. 3
shows illustrative examples of liver extraction by LER-CN with
a 3D-Slicer output. The two cases correspond to coarse and fine
extraction results in terms of DSC. The fine extraction leads to
DSCs of 96.5% for the liver, while the coarse extraction gave
DSCs of 95.2% for the liver. As it can be seen from box plots
of extraction process in Fig. 7, our LER-CN can predict even
rough shapes for most cases in LDCT dataset. Also, the use
of symmetric convolution and deconvolution layers is a rea-
sonable ORI extraction hypothesis used in an efficient way as
compared to direct mapping. The way through which the liver
region from LDCT image is evaluated incorporates both lower
and high-level information, and thus the impact of training loss
on classification error can be alleviated as shown in Fig. 5a. Tex-
ture preservation within the liver is another separate challenging
task for our case to be solved (due to use of LDCT image) which
we will hope to achieve in the future as a continuation of our
proposed model.

V. CONCLUSION

We propose a liver extraction method from LDCT images to
help the physician distinguish disease and plan a proper intra-
operative setup with low radiation risk to a patient. We finely
tuned residual convolutional neural network classifier for organ

extraction task. The main strength of LER-CN network for ac-
curate liver extraction process lies in a combination of noise
removal, structure preservation, and residual mapping trained
by overlapped patches. Our technique outperforms all other
approaches in terms to denoise a low dose CT and as well
as preserve structural details. Extending residual CNN to organ
extraction and improving the architecture for LDCT images
dramatically improves the state-of-the-art, while concurrently
simplifying and speeding up training and learning process.
Our quantitative evaluation on MICCAI Sliver07 and clinical
datasets along with comparisons of state-of-the-art segmenta-
tion methods revealed that LER-CN can mark and extract liver
model precisely and competently. The increased values of DSC
and RVD along with lower values of VOE and ASD emphasize
that LER-CN could be potentially used for hepatic diagnosis and
treatment in pre-operative planning as well as intra-operative as-
sessment. In the future, we plan to enhance LER-CN architecture
for other soft body parts.
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