
1

High-efficiency Blockchain-based
Supply Chain Traceability
Hanqing Wu, Shan Jiang, Jiannong Cao, Fellow, IEEE

Abstract—Supply chain traceability refers to product track-
ing from the source to customers, demanding transparency,
authenticity, and high efficiency. In recent years, blockchain
has been widely adopted in supply chain traceability to pro-
vide transparency and authenticity, while the efficiency issue
is understudied. In practice, as the numerous product records
accumulate, the time- and storage- efficiencies will decrease
remarkably. To the best of our knowledge, this paper is the first
work studying the efficiency issue in blockchain-based supply
chain traceability. Compared to the traditional method, which
searches the records stored in a single chunk sequentially, we
replicate the records in multiple chunks and employ parallel
search to boost the time efficiency. However, allocating the record
searching primitives to the chunks with maximized parallelization
ratio is challenging. To this end, we model the records and chunks
as a bipartite graph and solve the allocation problem using a
maximum matching algorithm. The experimental results indicate
that the time overhead can be reduced by up to 85.1% with
affordable storage overhead.

Index Terms—Blockchain traceability; supply chain traceabil-
ity; searchable blockchain.

I. INTRODUCTION

In 2019, the global supply chain market value surpassed
14.6 trillion US dollars, having increased at a compound
annual growth rate of 10.8% since 2015 [1]. The supply
chain plays a vital role in the global economy. Supply chain
management, which refers to the flow management of goods
and services, including all the processes that transform raw
materials into final products along the supply chain, is essen-
tial for boosting customer services, reducing operation costs,
improving financial positions, etc. [2]

Among supply chain management services, traceability is
essential because it allows product tracking from the sources
to end consumers [3]. Supply chain traceability provides
opportunities to enhance the supply chain efficiencies, meet the
regulatory requirements, and, most importantly, to story-tell
the consumers about the provenance and journey of products.
Regarding the products whose safety is critical, e.g., food and
pharmaceuticals, supply chain traceability is critical and has
been pursued for decades by the industries [4].

Despite its importance, supply chain traceability is challeng-
ing primarily because of its undue reliance on the collaboration
of multiple stakeholders who are not motivated to collaborate.
Moreover, there is a lack of mechanisms to define the mini-
mum amount of data required from the stakeholders to achieve

Hanqing Wu, Shan Jiang, and Jiannong Cao were with the Department of
Computing, The Hong Kong Polytechnic University.

Emails: hanqing.91.wu@connect.polyu.hk, cs-shan.jiang@polyu.edu.hk,
jiannong.cao@polyu.edu.hk.

Corresponding author: Shan Jiang.

supply chain traceability. In existing studies, the researchers
focused on modeling supply chain traceability, especially the
data among different stakeholders [5], [6]. The incentives of
collaboration are understudied, letting alone the safety and
quality of the tracing process [7].

In recent years, blockchain has been regarded as a promising
solution for supply chain traceability because of the distinctive
features of immutability, transparency, auditability, and native
support of incentivization [8], [9]. Generally, a blockchain
is an append-only list of blocks, each containing a set of
transactions, maintained by a decentralized peer-to-peer net-
work [10]. The product records stored on the blockchain are
publicly available and cannot be modified, making the stored
information reliable. The auditability makes it possible to track
product information on a blockchain. Furthermore, blockchain
natively embeds tokens to incentivize collaboration among
supply chain stakeholders. To summarize, blockchain empow-
ers supply chain traceability with high reliability, auditability,
and incentives for collaboration [11]–[13].

Besides the applications of blockchain-based supply chain
traceability in big enterprises such as IBM and Walmart
[14], blockchain solutions for supply chain traceability are
also extensively studied in academia. On the one hand, the
concept of blockchain-based supply chain traceability and
the corresponding system design are discussed in many re-
search works [15]–[19]. On the other hand, the researchers
find blockchain technology can be used together with other
technologies, such as the Internet of Things (IoT), to provide
the traceability service [20]–[24]. However, all these works in
industry and academia focus on the design of the traceability
system while leaving the efficiency issue alone. In practice,
the time- and storage- efficiencies are significantly affected
by the considerable and increasing number of product records
generated by the ubiquitous IoT devices.

To the best of our knowledge, this paper is the first work
studying high-efficiency blockchain-based supply chain trace-
ability. In particular, we demonstrate the system architecture
of a blockchain-based supply chain and model the product
records as a directed acyclic graph. To this end, the traceability
problem is defined as a graph searching problem over the
blockchain. To address the problem, we propose replicating the
product records in multiple chunks in a database and develop-
ing a novel parallel search algorithm based on the maximum
matching algorithm to improve searching efficiency signifi-
cantly. The fundamental principle of efficiency improvement
lies in sacrificing storage overhead to reduce time overhead.
The key technical depth lies in the matching-based parallel
search algorithm.

2

The main contributions of this work are as follows:
• To the best of our knowledge, we are the first to study and

formally model the high-efficiency issue in blockchain-
based supply chain traceability.

• We propose a novel parallel search algorithm based on the
maximum matching algorithm, which significantly boosts
product tracking efficiency.

• We conduct extensive experiments on the proposed al-
gorithm, which indicates up to 85.1% time reduction for
product tracking.

The rest of this paper is organized as follows. Sec. II
introduces the related work of this work. Sec. III provides the
preliminaries of the problem. In Sec. IV, we explain the system
model and formally define the problem of high-efficiency
blockchain-based supply chain traceability. Sec. V gives the
traditional approach and the proposed algorithm for solving the
traceability problem. Sec. VI demonstrates the experimental
results. Finally, Sec. VII concludes this work and discusses
the future directions.

II. RELATED WORK

In this section, we survey the related work about high-
efficiency blockchain-based supply chain traceability, i.e., sup-
ply chain traceability and searching over blockchain, and
articulate the motivations and novelty of this work.

A. Supply Chain Traceability

The research on supply chain traceability can be roughly
divided into two categories, i.e., unified data representation
methods for various stakeholders along the supply chain,
and digital technologies to facilitate reliable and ubiquitous
information storage.

A large number of stakeholders along the supply chain
have their own data management systems with diversified
data formats. Supply chain traceability needs to retrieve the
data from the stakeholders, and a unified data representation
method is demanded. The unified data representation methods
for supply chain information have been studied for years. In
[6], Bechini et al. investigate the issues for supply chain trace-
ability, introduce a traceability data model and a set of suitable
patterns, discuss the suitable technological standards to define,
register, and enable business collaborations, and implement a
real-world system for food supply chain traceability. In [5],
Hu et al. propose a Unified Modeling Language (UML) model
for traceability along with a set of suitable patterns, develop
a series of UML class diagrams to conceive a method for
modeling the product, process, and quality information along
the supply chain, and conduct a case study on vegetable supply
chain traceability.

Regarding digital technologies for supply chain traceability,
radio-frequency identification (RFID) and blockchain are rep-
resentative. In particular, RFID is a sensing technology that
helps to collect the data along supply chains ubiquitously,
while blockchain is a distributed ledger technology to provide
secure and reliable data storage services.

The usage of RFID in supply chain traceability can be traced
back to as early as 2003 [25], at which time Karkkainen

proposed to develop an RFID-based data capture system to
solve the problems associated with the logistics of short shelf-
life products. In 2007, RFID was widely recognized as a
promising technology for supply chain traceability [4], [26]
because the passive RFID tags on the products are cheap,
do not need to be within the line of sight of the RFID
reader (compared with barcodes), and do not need batteries
(compared with other sensors). Later, there are also surveys
about RFID-enabled supply chain traceability [27]–[29].

The potential of using blockchain technology for supply
chain traceability was investigated by Tian in 2016 for the
first time [20], in which a traceability system was designed
for agri-food supply chains combining RFID and blockchain
technologies. Although the work is a pioneer, it is concep-
tual without real-world deployment. We see that the product
information recorded on a blockchain is immutable, i.e., it
cannot be modified once stored, making the traceability results
reliable. Similar works include [30]–[35] in the supply chains
of construction, wine, etc., some of which are implemented in
real-world settings.

B. Searching over Blockchain

Blockchain-based supply chain traceability requires
blockchain data to be searched given a product item. We
present the related work about searching over blockchain in
this subsection. In particular, searching over blockchain refers
to the process that the users (with no local storage) request
blockchain full nodes (with full storage) to search data on
a blockchain, in which the search requests can be keyword
search, range query, etc. In literature, integrity, privacy, and
efficiency are the three concerned performance metrics of
searching over blockchain, in which integrity means whether
the search results are sound and complete, privacy means
whether data leakage happens during searching, and efficiency
means the time and communication overhead.

The naive procedure of searching over the blockchain is
as follows. First, the user sends a searching request to a
blockchain full node. Then, the full node proceeds with the
request by scanning the data on the blockchain block by
block and transaction by transaction, and recording all the data
satisfying the searching request. Finally, the full node returns
the search result. As we can see, the integrity of the search
result cannot be guaranteed, the privacy can be disclosed
because of the raw data on the blockchain, and the efficiency
is low because scanning transactions one by one takes a long
time. The research community has been developing solutions
to improve integrity, privacy, and efficiency.

Smart contracts and verifiable computation are the two
approaches to guarantee searching integrity. The basic idea
of the smart contract is to send the searching requests to all
the blockchain nodes rather than a single one. The incentive
mechanism of blockchain will motivate the majority of the
blockchain nodes to return sound and complete search results,
which guarantees integrity. The advantage of using smart con-
tracts is that the method is general and can be easily adapted
to all kinds of data and queries. However, the drawback
lies in the high cost of executing smart contracts. In terms

3

of verifiable computation, the search result returned to the
user will be accompanied by proof for integrity verification.
Using verifiable computation can fine-tune the efficiency by
designing subtle data structure [36]–[41]. In contrast, the
disadvantage is that there is no general data structure for all
types of data and queries.

Searchable encryption is the major approach for privacy
preservation during searching over blockchains. The data,
queries, and search results are encrypted compared with the
naive search approach. The research community has been
developing efficient searchable encryption scheme for various
types of data and queries [42]–[46].

To summarize, the existing studies about blockchain-based
supply chain traceability mainly focus on the system design
while leaving the efficiency issue alone. When we reduce
blockchain-based supply chain traceability to a problem of
searching over blockchain, we find that the reduced graph
searching problem on blockchains is new.

III. PRELIMINARIES

In this section, we introduce the preliminary knowledge
about blockchain data structure and maximum matching al-
gorithms for bipartite graphs. Note that the maximum match-
ing algorithm is a necessary component for maximizing the
parallelization ratio in Sec. V.

A. Blockchain Data Structure

Block Header

Transactions

Block Header

Transactions

Previous Hash Value

Version Number

Timestamp

Merkle Root

Tx 1 Tx 2

Tx 3 Tx 4

Tx1

H1

Tx2 Tx3 Tx4

H2 H3 H4

H12 =
H(H1+H2)

H34 =
H(H3+H4)

H(H12+H34)

Previous Hash Value

Version Number

Timestamp

Merkle Root

Block Header

Transactions

Block N+1Block NBlock N-1

Fig. 1. Structure of a typical blockchain. The blocks are linked into a chain
using cryptographic hash values.

A blockchain is an append-only list of blocks linked by
cryptographic values, in which each block contains a set
of transactions, maintained by a decentralized peer-to-peer
network [47]. Fig. 1 depicts the structure of blockchain with
description. Specifically, a single valid block consists of a
block header and a list of transactions. The following fields
briefly document the block details:

• Block Header provides the important information inside
the block. It includes the Version Number, Previous
Hash Value, Timestamp, Merkle root, etc. Each block
header is hashed, unique, and cryptographically secured,
supporting the immutability property of blockchains. For
example, in Bitcoin [48], “target difficulty” and “nonce”

are included as part of the Proof of Work (PoW) consen-
sus algorithm used when mining.

• Version Number indicates which version of block valida-
tion rules to follow. If the block version number differs
from other blocks, it means this block is running on a
different chain, commonly known as a hard fork.

• Previous Hash Value is a byte field containing the hash
of the previous block header, serving as a pointer to the
previous block. Such a field ensures that no previous
block can be modified without changing the current block
header, making the whole blockchain difficult and even
impossible to be modified.

• Timestamp is the time of generating this block which
is more commonly known as the time when the miner
started hashing the current block header. It can be used
to calculate the average block propagation time.

• Merkle root is derived from the hashes of all transactions
included in the current block. It is a tamper resistance
measure that those transactions cannot be modified with-
out changing the Merkle Root value, furthermore, the
entire header. Merkle root is also a fast and efficient way
to verify the data. In Fig. 1, the Merkle root of block
N + 1 is computed as the hierarchical hash results upon
the transactions inside.

• Transactions contains the transactions confirmed by the
blockchain network and packed in the block. For exam-
ple, in Bitcoin [48], a typical transaction represents the
money transfer of two or more parties.

B. Maximum Matching

In graph theory, a matching in an undirected graph is a set
of edges without common vertices. The maximum matching
problem is to find a matching that uses as many edges as
possible given an undirected graph.

A bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U and V such that every
edge connects a vertex in U and a vertex in V . The maximum
matching problem on a bipartite graph is well studied and can
be solved efficiently (in polynomial time) using the Hungarian
algorithm [49], Ford-Fulkerson algorithm, etc.

IV. SYSTEM MODEL AND PROBLEM DEFINITION

This section first gives the system model of the blockchain-
based supply chain and then formally defines the problem of
high-efficiency blockchain-based supply chain traceability.

A. System Model

Fig. 2 elaborates on the system model of the blockchain-
based supply chain. In particular, the stakeholders along the
supply chain, e.g., raw material suppliers, factories, ware-
houses, transportation companies, and retailers, form a peer-
to-peer network and maintain a permissioned blockchain. The
regulatory authorities can also join and expand the blockchain
network. Our system prefers permissioned blockchain to the
public one because the nodes not hosted by the supply chain
stakeholders should be forbidden from joining the blockchain

4

Supplier

Consumer

Blockchain-based

Supply Chain

Stakeholders along Supply Chain

Transportation RetailerFactory Warehouse

Traceability

Query

Fig. 2. System model of the blockchain-based supply chain. There are three layers: the bottom layer contains the stakeholders along the supply chain;
the middle layer is the blockchain network maintained by the supply chain stakeholders; the top layer is the blockchain data and smart contract, providing
traceability services to the consumers.

network. Note that each stakeholder may contribute a set of
blockchain nodes, and the whole blockchain network will be
of large scale. In our system, the stakeholders will upload
the product information to the blockchain motivated by the
following reasons. First, transparent product information on
the blockchain will strengthen the consumers’ confidence in
the products. Second, the inter-related information helps im-
prove the efficiency of supply chain management. Finally, the
product information will better meet the frequent regulation
requests. Note that the blockchain system can only guarantee
that the information cannot be tampered with once stored. If a
stakeholder provides incorrect records, the blockchain can pro-
vide non-tamperable and permanent proof of the incorrectness.
In terms of the end consumers, they will enjoy the services
provided by the supply chain, as well as query the product
tracking information through the blockchain.

The product information recorded on the blockchain will
contain at least the following fields:

• TIME: the timestamp when the record is submitted.
• LOCATION: the location when the record is submitted.
• PUBLISHER: the one who submitted the record.
• SRCITEMS: the unique identifiers of the source (original)

food items.
• DESITEMS: the unique identifiers of the destination (re-

sult) food items.

The fields of SRCITEMS and DESITEMS indicate the
relationships among the product. That is, the products in
SRCITEMS are the raw materials of the ones in DESITEMS.
When talking about supply chain traceability, the products in
SRCITEMS should be output if any product in DESITEMS is
set as the input.

B. Problem Definition

In this section, we define the problem of high-efficiency
traceability formally.

Generally speaking, the function of blockchain is to serialize
a set of transactions to an ordered list.

Definition 1. A blockchain B = (t1, t2, · · ·) is defined to
be an append-only list of transactions, in which tis are
transactions.

The transactions tis in the blockchain are totally ordered,
which means tj is confirmed after ti for sure if i < j.

Definition 2. In a blockchain, a transaction ti = (idi,Pi) is
defined to be a tuple of identifier and direct predecessors, in
which idi is the identifier while Pi is the set of identifiers of
direct predecessor transactions.

In the context of traceability, the predecessor means the
relationship of dependency, e.g., a bag of potato chips is made
from a package of potatoes. Note that for a given transaction
ti, the predecessors in Pi must be already there in the
blockchain, e.g., the transaction of potatoes must appear before
the transaction of potato chips in the blockchain. Formally
speaking, if idj ∈ Pi, then we can infer that j < i.

For better understanding, the relationship among the trans-
actions can be represented as a direct acyclic graph (DAG).
The construction of the DAG given a blockchain is as follows:

• for each transaction ti, add a vertex vi; and
• for each transaction ti and each identifier idj ∈ Pi, add

a directed edge from vj to vi.
An example set of transactions and its corresponding DAG

are shown in Tab. I and Fig. 3, respectively. In the example, the
transactions with identifiers 1 and 4 are the direct predecessors
of the transaction 5. Meanwhile, transaction 3 is a predecessor
(indirect) of 5 as in Fig. 3. In this work, we define traceability
as a function to find all the predecessors (both direct and indi-
rect) of a given transaction in a given blockchain. The formal
definitions of direct predecessor, predecessor and traceability
are given are follows.

Definition 3. A transaction ti is defined to be a direct
predecessor of another transaction tj if idi ∈ Pj .

Definition 4. A transaction ti is defined to be a predecessor
of another transaction tj if there is a list of transactions
tk1

, tk2
, · · · , tkl

such that idi ∈ Pk1
, idk1

∈ Pk2
, · · · ,

idkl−1
∈ Pkl

, and idkl
∈ Pj .

5

TABLE I
EXAMPLE TRANSACTIONS IN BLOCKCHAIN

Identifier Direct Predecessors

1 ∅
2 {1}
3 {1}
4 {2, 3}
5 {1, 4}

1

2

3

5

4

Fig. 3. Example DAG based on the transactions in Tab. I. In the DAG, the
nodes represent the transactions, while the edges represent the predecessor
relationship. For example, node 1 has no incoming edge because transaction
1 has no predecessor.

In a blockchain, we assume that there is a function called
GETPREDECESSORS, which takes a transaction identifier as
input and outputs all the direct predecessors of the input trans-
action. We assume that GETPREDECESSORS takes t(n) time in
which n is the number of transactions in the blockchain. Note
that the expression t(n) depends on the implementation of
GETPREDECESSORS. For example, if GETPREDECESSORS is
implemented using a binary search tree, then t(n) = O(log n).

Definition 5. Problem Traceability: given a blockchain and
a transaction identifier idi, output the identifiers of all the
predecessors of ti.

TABLE II
EXAMPLE INPUT AND OUTPUT OF TRACEABILITY

Input Output

1 ∅
2 {1}
3 {1}
4 {1, 2, 3}
5 {1, 2, 3, 4}

Following the definition of traceability, if the input is
transaction 4, then the output should be transactions 1, 2, and
3. Other examples of input and output can be found in Tab. II.

V. PROPOSED ALGORITHM & ANALYSIS

In this section, we present the traditional algorithm and the
proposed algorithm for solving the problem traceability.

A. Traditional Approach

The naive approach to solving traceability is breadth-first
search (BFS) as shown in Algo. 1.

Algorithm 1 Breadth-first search algorithm to solving the
problem traceability
Input: B = (t1, t2, · · · , tn): a blockchain of n transactions;
id: identifier of a transaction
Output: AP: all the predecessors of ti

1: AP ← ∅
2: Q ← a first-in-first-out queue with a single element id
3: while Q is not empty do
4: u ← POPQUEUE(Q)
5: Pu ← GETPREDECESSORS(u)
6: for each v ∈ Pu do
7: if v /∈ AP then
8: PUSHQUEUE(Q, v)
9: AP ← AP ∪ {v}

10: end if
11: end for
12: end while
13: return AP

In this straightforward solution, searching is time-
consuming when repeatedly accessing the index and block. In
particular, we have a set AP , which is the expected output of
the given transaction idi. The AP is empty at the beginning.
A first-in-first-out queue, Q, is created to hold all the elements
that need to be processed. While the Q is not empty, we pick
out one element u at a time, POPQUEUE this element u from
the queue. The function GETPREDECESSORS is called to get
the direct predecessor or predecessors of u and temporarily
cached at Pu.

For each element Pu, if it is not in AP , which means it is
a new element, Pu will be PUSHQUEUE to the queue Q. At
the same time, we update AP with the new element Pu. If Pu

is already in AP , which means the element has already been
processed, no further operation will be needed. This procedure
stops when the queue Q is empty, indicating that the entire
blockchain has been gone through. This procedure processes
all the elements linearly, one element at a time. Although
the breadth-first search-based solution achieves the objective
of traceability, the efficiency is quite low because only one
element can be processed at a time.

B. Proposed Solution

The critical drawback of the traditional approach lies in
the frequent operations of GETPREDECESSORS of high time
overhead. To improve the time efficiency, we gain the insight
that the operations of GETPREDECESSORS can be parallelized
when tracing the transactions. In particular, we use α chunks
to store the transactions, which can be accessed in parallel.
Each transaction is replicated for β−1 times in the chunks to
enhance the degree of parallelization.

To store the transactions into α chunks, we need to find a
way to evenly distribute all transactions into chunks without
causing an imbalance in the chunk storage. Here we propose
Algo. 2, a transaction allocation mechanism. We directly mod-
ulo each transaction identifier with α and store this transaction
pair (idi,Pi) into the corresponding chunk.

6

Algorithm 2 Transaction allocation
Input: idi: identifier of the new transaction; Pi: the set of
direct predecessors of the new transaction
Output: The allocation scheme of the new transaction

1: for i← 0 to β − 1 do
2: Store (idi,Pi) in CKidi mod α

3: end for

With transactions evenly allocated to α chunks, we propose
the parallelized search algorithm as shown in Algo. 3. To
recap, with given transaction identifier idi, we aim at getting
all the predecessors AP of idi.

The AP is empty at first, the same with Algo. 1. Then, a
set S is created to hold the elements that need to be processed.
While the S is not empty, a scheduling algorithm SCHEDULE
will be called to generate optimal transaction-chunk pairs R
from the S. This R contains a list of transaction-chunk pairs
which has no conflict with each other. The primary purpose
is to process different elements stored in different chunks
simultaneously since processing them one by one essentially
hinders the searching efficiency, as discussed in Sec. V-A. The
details of the procedure SCHEDULE is explained in Algo. 4.

For each pair (idi, CKi) from R, a new thread is forked
exclusively to handle the pair. GETPREDECESSORS will be
called to get the direct predecessors of idi, and idi will be
removed from S. We wait until all the threads, forked from
each pair, terminate. For the results returned from each thread,
if the element is not in AP , which means it is a new element,
the element is added to both S and AP . Otherwise, it is a
processed element that needs no further operation. Please note
that the condition is whether id is not in AP since the AP
is the expected result set while the S is a set with elements
awaiting to be processed. The AP is the superset of S. For
example, a processed element will be in AP rather than S.

Algo. 4 explains the particulars of generating transaction-
chunk pairs, which can be parallelized from a set of trans-
actions. It is a common bipartite graph maximum matching
problem. The input is S, a set of transactions. The expected
output is R, the set of transaction-chunk pairs representing
the queries that can be parallelized. The R is empty at the
beginning, and G is an empty bipartite graph. At line 3-
7, we add vertex vi to V for each chunk CKi. Also, for
each transaction belongs to S, we add a vertex ui to U
representing transaction idi. Next, from line 8-11, for each
given transaction, we first calculate the allocated chunk index
based on Algo. 2 and then add an edge to graph G representing
the pair of transactions and its allocated chunk index.

Until this step, we have transformed the original transaction
data into the graph format in the form of transaction and
its corresponding chunk index pairs, stored in G. Then,
the problem has been modeled as a MAXIMUM-MATCHING
problem, which aims to find the maximum number of edges
that share no vertex. We use the Hungarian algorithm to solve
the problem. In particular, for a complete bipartite graph G,
the Hungarian algorithm finds the maximum-weight matching,
sometimes called the assignment problem. A bipartite graph
can easily be represented by an adjacency matrix, where the

Algorithm 3 Parallelized search algorithm to solving the
problem traceability
Input: B = (t1, t2, · · · , tn): a blockchain of n transactions;
id: identifier of a transaction
Output: AP: all the predecessors of ti

1: AP ← ∅
2: S ← a set with a single element id
3: while S is not empty do
4: R ← SCHEDULE(S)
5: for each (idi, CKi) ∈ R do
6: fork thread: Pi ← GETPREDECESSORS(idi, CKi)
7: S ← S \ {idi}
8: end for
9: Wait until all the threads terminate

10: for each Pi returned by the threads do
11: for each id ∈ Pi do
12: if id /∈ AP then
13: S ← S ∪ {id}
14: AP ← AP ∪ {id}
15: end if
16: end for
17: end for
18: end while
19: return AP

weights of edges are the entries. The method operates on this
key idea: if a number is added to or subtracted from all of
the entries of any one row or column of a cost matrix, then
an optimal assignment for the resulting cost matrix is also an
optimal assignment for the original cost matrix. Based on this
MAXIMUM-MATCHING Algorithm, we get the result of R′,
which is the edge set of non-conflict edges. At line 14-16, we
transform the returned eligible edges back into (idi, CKi) key
pairs. Finally, we return the result R which is the input of
line 5 at Algo. 3.

C. Time Complexity Analysis

In this subsection, we formally analyze and compare the
time complexities of Algo. 1 and Algo. 3.

We assume the number of returned predecessors to be
m, i.e., AP = m. The time complexity of Algo. 1 is
O(m logm + mt(n)) when maintaining the set AP and
invoking the procedure GETPREDECESSORS for m times.

Because Algo. 4 is a function called by Algo. 3, we analyze
the time complexity of Algo. 4 first. Algo. 4 constructs a graph
and run the MAXIMUM-MATCHING algorithm. Note that the
time complexity of the MAXIMUM-MATCHING algorithm is
O(V · E), in which V and E are the numbers of vertices
and edges of the graph, respectively [49]. When constructing
the graph, α vertices are added from line 3 to 5, and |S|
vertices and |S| · β edges are added from line 6 to 12. Here,
|S| = O(m) because S from Algo. 3 is a subset of AP .
Therefore, the number of vertices and edges are O(α + m)
and O(mβ), respectively. To this end, the time complexity of
Algo. 4 is O((α+m)mβ). Because α is a constant compared
to m, the time complexity is reduced to O(β ·m2).

7

Algorithm 4 Procedure SCHEDULE as in Algo. 3 to Generate
Parallelized Query
Input: S: a set of transactions
Output: R: a set of transaction-chunk pairs representing the
queries that can be parallelized

1: R ← ∅
2: G ← an empty bipartite graph with vertex sets U and V ,

and edge set E
3: for i← 0 to α− 1 do
4: Add a vertex vi to V representing chunks CKi

5: end for
6: for idi ∈ S do
7: Add a vertex ui to U representing transaction idi
8: for i← 1 to β do
9: j ← idi mod α

10: Add an edge (ui, vj) to E
11: end for
12: end for
13: R′ ← MAXIMUM-MATCHING(G)
14: for each (ui, vj) ∈ R′ do
15: R ← R∪ {(idi, CKj)}
16: end for
17: return R

In Algo. 3, we also assume that p transactions are searched
in parallel at line 6 on average. We find that the main loop
from line 3 to 18 is entered for m

p times. Inside the main loop,
line 4 takes O(β·m2) as analyzed previously and line 5-9 takes
O(p+t(n)+logm) time, reduced to O(t(n)+logm) because
p is minor compared to t(n) and logm. As a result, the main
loop takes O(mp · (β ·m

2+ t(n)+ logm)) = O(βm
3

p + mt(n)
p)

because logm is minor compared to β ·m2, excluding line 10-
17. In terms of line 10-17, it takes O(m logm) in total because
its purpose is to maintain two sets S and AP , both of which
are of size O(m). As a result, the overall time complexity of
Algo. 3 is O(m logm + βm3

p + mt(n)
p) = O(βm

3

p + mt(n)
p)

because m logm is minor compared to βm3/p.
Next, we compare the time complexities of Algo. 1 and

Algo. 3, which are O(m logm+mt(n)) and O(βm
3

p +mt(n)
p),

respectively. If t(n) dominates the time complexity compared
to m (for example, when n is large), Algo. 3 will take much
less time than Algo. 1 theoretically. This is because t(n) is
averaged by p times in Algo. 3. Note that Algo. 3 achieves
much lower time overhead with the sacrifice in higher storage
overhead (β − 1 replicas of the transactions in α trunks).

VI. EXPERIMENTAL RESULTS & DISCUSSION

In this section, we demonstrate the effectiveness and practi-
cability of the proposed high-efficiency traceability solution
based on implementation on Hyperledger Fabric [50] and
extensive experiments evaluating the parallelization ratio and
storage ratio. We also discuss the transaction allocation algo-
rithm and the database selection, which might affect the tracing
efficiency in this work.

Chaincode 1:

0 replica, 1 database

Ledger Replica

Blockchain-based

Supply Chain Traceability

Certificate

Authority

Network

Configurator

Peer 1

Chaincode 2:

α replicas, β databases

Ledger Replica

Peer 2

Orderer

1

Orderer

2

Orderer

3

Orderer

4

Channel

Fig. 4. System architecture. The blockchain-based supply chain traceability
system and algorithms are implemented in Hyperledger Fabric with 4 orderers,
2 peers, 2 chaincodes, and 1 channel.

A. Experimental Environments & Design

In this work, we leverage Hyperledger Fabric, an open-
source permissioned blockchain platform, to implement and
evaluate our proposed algorithms. Fig. 4 depicts the archi-
tecture of the developed system using Hyperledger Fabric,
showing the components and their relationship as follows:

• The benchmark algorithm, i.e., BFS-based solution when
α = 0 and β = 1, is implemented in “Chaincode 1”,
hosted by “Peer 1”.

• The proposed algorithm in this work with varying param-
eters α and β is implemented in “Chaincode 2”, hosted
by “Peer 2”.

• The two chain codes, i.e., “Chaincode 1” and “Chaincode
2”, are deployed on the “Channel”, supporting the appli-
cation “Blockchain-based Supply Chain Traceability”.

• The transactions in “Channel” are ordered by four or-
derers, i.e., “Orderer 1”, “Orderer 2”, “Orderer 3”, and
“Orderer 4”, running the crash fault-tolerant consensus
protocol as provided by Hyperledger Fabric.

• The “Certificate Authority” dispenses identities to the
application and two peers.

• The “Network Configurator” configures the networks of
the channel and four orderers.

We deploy a prototype based on the system architecture
using eight workstations. Each workstation runs Ubuntu 20.04,
consisting of a 4-core 8-thread Intel Core i7-8809G 4.2Ghz
CPU, a 32GB DDR4 DRAM, and a 1, 024GB NVMe SSD.
The workstations are connected in a local network, forming a
blockchain network. The implementation and deployment im-
ply the practicability of the proposed high-efficiency traceabil-
ity solution. We use the Bitcoin data in 2012, containing up to
1.9 million transactions, as the input of the blockchain-based
traceability system. In particular, each Bitcoin transaction tx is
regarded as a supply chain transaction, containing several in-
puts ({in1, in2, · · · }) and outputs ({out1, out2, · · · }). For each
ini, it must be the output of another transaction tx′ because
of the safety of the Bitcoin system. If tx′ is also generated in
2012, we notate tx′ as one of the direct predecessors of tx.
Similarly, if outj is the input of another transaction tx′′ and
tx′′ is generated in 2012, we notate tx as one of the direct
predecessors of tx′′. Fig. 5 depicts an example of the data
usage.

8

0x0132

0x1423

0x5809

0x7324

0x5806

0x0908

0x3261

0x0899

0x0132

0x8299

0x5487

0x2309

0x8710

0x9001

0x1423

0x8898

0x3351

0x5806

0x1122

0x4423

Beyond 2012, the relationship

is NOT considered

Within 2012, the relationship

is considered

Tx1

Tx2

Tx3 Tx4

Fig. 5. An example of how Bitcoin transactions are used in the experiments.
Particularly, Tx1, Tx2, and Tx3 are within 2012 and considered supply
chain transactions while Tx4 is not. Because 0x0132 is the output of Tx1

and the input of Tx3, we notate Tx1 as one of the direct predecessors of
Tx3. The relationship between Tx3 and Tx4 is not considered because Tx4

is beyond 2012.

We study how the proposed solution performs with the pro-
totype system compared with the BFS-based solution. Based
on Algo. 2, Algo. 3, and Algo. 4, three variables will impact
the proposed solution’s efficiency: n, α, and β, representing
the numbers of transactions, chunks, and replicas, respectively.

In order to reduce the impact of n on the system, we use
parallelization ratio and storage ratio as two key performance
metrics for demonstrating the solution’s effectiveness. The
parallelization ratio and storage ratio are the execution time
overhead and chunk storage overhead compared to the BFS-
based solution, respectively. In the following experiments,
we will examine the parallelization and storage ratios with
combinations of α and β. We will also discuss the transaction
allocation algorithm and database selection. We repeat the
experiment 50 times for each experiment to get the average
results.

B. Evaluation of Parallelization Ratio

In this experiment, we will compare the parallelization
ratio of the proposed parallelization algorithm. We try to find
the pair of optimal parameters of α and β, by changing
their values, calculated by the number of operations. The
algorithm has such a condition that it will be terminated by
final results where the transaction has no father nodes or is
the genesis/origin transaction. Intuitively, with the increase of
α (the number of chunks) or β (the number of replicas), the
parallelization ratio shall also rise compared to the straight-
forward BFS-based solution.

Fig. 6 and Fig. 7 depict the change of parallelization ratio
with 1 to 4 replicas and 5 to 9 replicas respectively. Note that
the 0 replica and 1 chunk indicate the BFS-based solution.
It is obvious that when the number of chunks is fixed, the
parallelization ratio increases dramatically with the increase
of replicas. When there are 9 replicas, the parallelization ratio
can be up to 6.74 as shown in Fig. 7 and Fig. 8, which means
1− 1

6.74 ≈ 85.1% time can be saved.
Such a trend holds when the number of chunks is small.

More precisely, the turning point slightly shifts towards the
right as the number of replicas increases. For example, when

Fig. 6. Parallelization ratio with 0−4 replicas. Despite the number of replicas,
the parallelization ratio will increase first and then decrease with the increasing
number of chunks. The number of replicas (0 − 4) significantly affects the
parallelization ratio.

Fig. 7. Parallelization ratio with 5-9 replicas. The influence of the number
of replicas on the parallelization ratio is less and less noticeable with an
increasing number of replicas.

β equals 2, the turning point of α is around 6. When β equals
6, the turning point of α is around 12. For the surge part,
the reason is that each transaction has a higher probability
of coverage to store it into different chunks when the num-
ber of replicas increases. After the turning point, the curve
comes down moderately. The reason is that the increasing
number of chunks decreases the probability of finding the
exact transaction among chunks. In extreme cases, the ratio
becomes unstable at the end when having 8 and 9 replicas. The
reason is that the relatively large number of replicas distributed
among chunks increases the complexity of finding the target
transaction. Fig. 8 depicts the maximum parallelization ratio
that can be achieved based on the different number of replicas.
The growth slows down when the system has more than six
replicas.

In Sec. VI-B, we plan to find the optimal pair of α and
β via changing their values. For each β, there should be an
optimal value of α which should be noticed at the curve’s
apex. Fig. 9 illustrates the relationship between the number
of chunks to achieve the max parallelization ratio with the
number of replicas. It is not hard to find that such a linear
relationship maintains steadily with more replicas. By simple
linear regression, we can get f(α) = 1.43β + 1.93. This
formula implies that the number of chunks should not be too
small or too large, given the number of replicas. The excess

9

Fig. 8. Maximum parallelization ratio that can be achieved with different
numbers of replicas.

number of chunks does not contribute to the parallelization
ratio, which has an upper limit, as shown in Fig. 8. The “sweet
point” of the α and β can be easily calculated, which will be
helpful when we have more replicas.

Fig. 9. Number of chunks to achieve the maximum parallelization ratio. It
requires more chunks to achieve the maximum parallelization ratio as the
number of replicas increases.

C. Evaluation of Storage Ratio

In this set of experiments, we investigate the database
storage overhead of the proposed parallelization algorithm. We
will fix the value of α and change the value of β. Then we do
it in a reverse way by fixing the β and changing the α. The
storage cost of the BFS-based solution is normalized as 1 for
easier comparison.

Fig. 10 illustrates the change of storage overhead ratio with
different settings of the number of chunks and replicas. The
experimental results show that the storage overhead is largely
affected by the value β, the number of replicas. With more
replicas available, the storage ratio grows steadily. On the
other hand, α, i.e., the number of chunks, affects little on
the storage ratio, with a slight increase when more chunks are
used. The reason for the slight increase is that more chunks
lead to higher storage overhead in building the chunk index.
Overall, the storage overhead slightly increases compared with
the BFS-based solution, which is acceptable to our concern.

Fig. 10. Database storage ratio with 0−9 replicas. The storage ratio remains
nearly unchanged with different numbers of chunks.

D. Discussion of Transaction Allocation Algorithm

In Sec. V-B, we point out that the major drawback of the
traditional approach is the frequent operations of GETPRE-
DECESSORS with high time overheads. Based on the insight,
we propose using α chunks to store the transactions, which
can dramatically improve the parallelized operations when
tracing the transactions. We propose a straightforward transac-
tion allocation mechanism, Algo. 2, with the mod operation.
However, the issue of imbalance may still occur for many
reasons. For example, the uneven distribution of transaction
identifiers can be found in many statistical reports, which may
be solved using the mod function.

To improve the randomness of transaction allocation, we
propose a new random mechanism as shown in Algo. 5.
The main difference with the Algo. 2 is that before mod
each transaction identifier with α, Algo. 5 pre-processes the
transaction identifier with a hash function fi (e.g., SHA and
MD5). To this end, the deterministic correlation between the
transaction identifier and the target allocated chunk can be
eliminated. It is expected that the randomness can contribute
to a more average distribution of the transactions on the chunks
and lower the tracing time overhead in consequence.

Algorithm 5 Transaction allocation (random method)
Input: idi: identifier of the new transaction; Pi: the set of
direct predecessors of the new transaction
Output: The allocation scheme of the new transaction

1: for i← 1 to β do
2: Store (idi,Pi) in CKfi(idi) mod α

3: end for

We conduct experiments to compare Algo. 2 and Algo. 5.
We find that the two algorithms perform nearly the same in
parallelization and storage ratios. In particular, the two algo-
rithms lead to similar distributions regarding vertex degree.
It means Algo. 5 can hardly achieve better randomness of
transaction allocation than Algo. 2 as expected.

E. Discussion of Database Selection

Blockchain can be considered a multi-node database main-
tained by a network of independent participants. It is decen-
tralized, with no single user having the ultimate authority

10

over the system. On the other hand, the database, unlike
blockchains, are a centralized ledger that is run by an ad-
ministrator. Although blockchain looks contradictory to the
database, they are closely connected. Conceptually, as a whole,
a blockchain is distributed across the entire network of peers.
Fundamentally, a single network node still relies on a specific
database to maintain its local ledger, synchronized with peers,
for verification and synchronization purposes. For example,
the Bitcoin core client uses the LevelDB database for the
block index and the chain state, also known as the unspent
transaction output set. LevelDB is also the default key-value
state database embedded in Hyperledger Fabric. At the same
time, CouchDB is a choice as it supports rich queries and
indexing for more efficient queries over large datasets. During
our experiments, we find that the database selection does not
impact the parallelization ratio.

VII. CONCLUSION AND FUTURE DIRECTIONS

This work is the first to study the efficiency issue of
blockchain-based supply chain traceability. First, we depict the
system model supply chain and formally define the traceability
problem as a graph searching problem. Then, a parallel search-
ing algorithm is proposed, in which the maximum flow theory
is employed and adapted to maximize the parallelization ratio.
The experimental results show up to 85.1% reduction in the
product tracking time. The proposed algorithm is expected to
be applied for broader applications, e.g., tracking of cryptocur-
rencies, besides supply chain traceability.

In the future, we will study the algorithm to further boost the
time efficiency of blockchain-based supply chain traceability.
Particularly, the proposed algorithm contains a sequence of
allocations of search queries. This work decides the allocations
one by one without considering the influence of the current
allocation on the future ones. We will consider the sequence
of search allocations to reduce the tracing time overhead.
Moreover, The experiments in this work are based on Bitcoin
data because real-world supply chain data can hardly be
obtained. We will validate the proposed algorithm on real-
world supply chains given available data.

VIII. ACKNOWLEDGMENT

This work is supported by the Research Institute for Ar-
tificial Intelligence of Things, The Hong Kong Polytechnic
University, HK RGC CRF No. C2004-21GF, and HK RGC
RIF Noo. R5034-18.

REFERENCES

[1] B. M. Beamon, “Supply chain design and analysis: Models and meth-
ods,” International Journal of Production Economics, vol. 55, no. 3, pp.
281–294, 1998.

[2] J. T. Mentzer, W. DeWitt, J. S. Keebler, S. Min, N. W. Nix, C. D. Smith,
and Z. G. Zacharia, “Defining supply chain management,” Journal of
Business logistics, vol. 22, no. 2, pp. 1–25, 2001.

[3] D. Lee and J. Park, “Rfid-based traceability in the supply chain,”
Industrial Management & Data Systems, vol. 108, no. 6, pp. 713–725,
2008.

[4] T. Kelepouris, K. Pramatari, and G. Doukidis, “Rfid-enabled traceability
in the food supply chain,” Industrial Management & Data Systems, 2007.

[5] J. Hu, X. Zhang, L. M. Moga, and M. Neculita, “Modeling and
implementation of the vegetable supply chain traceability system,” Food
Control, vol. 30, no. 1, pp. 341–353, 2013.

[6] A. Bechini, M. G. Cimino, F. Marcelloni, and A. Tomasi, “Patterns and
technologies for enabling supply chain traceability through collaborative
e-business,” Information and Software Technology, vol. 50, no. 4, pp.
342–359, 2008.

[7] M. M. Aung and Y. S. Chang, “Traceability in a food supply chain:
Safety and quality perspectives,” Food Control, vol. 39, pp. 172–184,
2014.

[8] A. Gurtu and J. Johny, “Potential of blockchain technology in supply
chain management: a literature review,” International Journal of Physi-
cal Distribution & Logistics Management, vol. 49, no. 9, pp. 881–900,
2019.

[9] S. E. Chang and Y. Chen, “When blockchain meets supply chain:
A systematic literature review on current development and potential
applications,” IEEE Access, vol. 8, pp. 62 478–62 494, 2020.

[10] S. Jiang, J. Cao, H. Wu, Y. Yang, M. Ma, and J. He, “BlocHIE: A
BLOCkchain-Based Platform for Healthcare Information Exchange,” in
2018 IEEE International Conference on Smart Computing (SMART-
COMP). IEEE, 2018, pp. 49–56.

[11] S. F. Wamba and M. M. Queiroz, “Blockchain in the operations and
supply chain management: Benefits, challenges and future research op-
portunities,” International Journal of Information Management, vol. 52,
p. 102064, 2020.

[12] M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply
chain management integration: a systematic review of the literature,”
Supply Chain Management: An International Journal, vol. 25, no. 2,
pp. 241–254, 2018.

[13] H. Wu, J. Cao, Y. Yang, C. L. Tung, S. Jiang, B. Tang, Y. Liu, X. Wang,
and Y. Deng, “Data Management in Supply Chain Using Blockchain:
Challenges and A Case Study,” in 2019 28th International Conference
on Computer Communication and Networks (ICCCN). IEEE, 2019, pp.
1–8.

[14] R. Kamath, “Food Traceability on Blockchain: Walmart’s Pork and
Mango Pilots with IBM,” The Journal of the British Blockchain As-
sociation, vol. 1, no. 1, p. 3712, 2018.

[15] S. Apte and N. Petrovsky, “Will blockchain technology revolutionize
excipient supply chain management?” Journal of Excipients and Food
Chemicals, vol. 7, no. 3, p. 910, 2016.

[16] N. Hackius and M. Petersen, “Blockchain in logistics and supply chain:
trick or treat?” in Proceedings of the Hamburg International Conference
of Logistics (HICL), vol. 23, 2017, pp. 3–18.

[17] G. Blossey, J. Eisenhardt, and G. Hahn, “Blockchain technology in
supply chain management: an application perspective,” in Proceedings
of the 52nd Hawaii International Conference on System Sciences.
ScholarSpace, 2019, pp. 1–9.

[18] S. Saberi, M. Kouhizadeh, J. Sarkis, and L. Shen, “Blockchain tech-
nology and its relationships to sustainable supply chain management,”
International Journal of Production Research, vol. 57, no. 7, pp. 2117–
2135, 2019.

[19] R. Cole, M. Stevenson, and J. Aitken, “Blockchain technology: impli-
cations for operations and supply chain management,” Supply Chain
Management: An International Journal, vol. 24, no. 4, pp. 469–483,
2019.

[20] F. Tian, “An agri-food supply chain traceability system for china based
on rfid & blockchain technology,” in 2016 13th International Conference
on Service Systems and Service Management (ICSSSM). IEEE, 2016,
pp. 1–6.

[21] M. Sidorov, M. T. Ong, R. V. Sridharan, J. Nakamura, R. Ohmura,
and J. H. Khor, “Ultralightweight mutual authentication rfid protocol
for blockchain enabled supply chains,” IEEE Access, vol. 7, pp. 7273–
7285, 2019.

[22] S. Mondal, K. P. Wijewardena, S. Karuppuswami, N. Kriti, D. Kumar,
and P. Chahal, “Blockchain inspired rfid-based information architecture
for food supply chain,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 5803–5813, 2019.

[23] S. Jangirala, A. K. Das, and A. V. Vasilakos, “Designing secure
lightweight blockchain-enabled rfid-based authentication protocol for
supply chains in 5g mobile edge computing environment,” IEEE Trans-
actions on Industrial Informatics, vol. 16, no. 11, pp. 7081–7093, 2019.

[24] S. Jiang, J. Cao, H. Wu, and Y. Yang, “Fairness-based packing of
industrial iot data in permissioned blockchains,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 11, pp. 7639–7649, 2021.

[25] M. Kärkkäinen, “Increasing efficiency in the supply chain for short
shelf life goods using rfid tagging,” International Journal of Retail &
Distribution Management, vol. 31, no. 10, pp. 529–536, 2003.

11

[26] M. Attaran, “Rfid: an enabler of supply chain operations,” Supply Chain
Management: An International Journal, vol. 12, no. 4, pp. 249–257,
2007.

[27] A. Sarac, N. Absi, and S. Dauzère-Pérès, “A literature review on the
impact of rfid technologies on supply chain management,” International
Journal of Production Economics, vol. 128, no. 1, pp. 77–95, 2010.

[28] Y. Wu, D. C. Ranasinghe, Q. Z. Sheng, S. Zeadally, and J. Yu,
“Rfid enabled traceability networks: a survey,” Distributed and Parallel
Databases, vol. 29, no. 5, pp. 397–443, 2011.

[29] C. Costa, F. Antonucci, F. Pallottino, J. Aguzzi, D. Sarriá, and P. Mene-
satti, “A review on agri-food supply chain traceability by means of rfid
technology,” Food and Bioprocess Technology, vol. 6, no. 2, pp. 353–
366, 2013.

[30] S. A. Abeyratne and R. P. Monfared, “Blockchain ready manufacturing
supply chain using distributed ledger,” International Journal of Research
in Engineering and Technology, vol. 5, no. 9, pp. 1–10, 2016.

[31] F. Tian, “A supply chain traceability system for food safety based
on haccp, blockchain & internet of things,” in 2017 International
Conference on Service Systems and Service Management. IEEE, 2017,
pp. 1–6.

[32] K. Biswas, V. Muthukkumarasamy, and W. L. Tan, “Blockchain based
wine supply chain traceability system,” in Future Technologies Confer-
ence (FTC) 2017. The Science and Information Organization, 2017,
pp. 56–62.

[33] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, “Blockchain-based
traceability in agri-food supply chain management: A practical imple-
mentation,” in 2018 IoT Vertical and Topical Summit on Agriculture-
Tuscany (IOT Tuscany). IEEE, 2018, pp. 1–4.

[34] K. Francisco and D. Swanson, “The supply chain has no clothes:
Technology adoption of blockchain for supply chain transparency,”
Logistics, vol. 2, no. 1, p. 2, 2018.

[35] Z. Wang, T. Wang, H. Hu, J. Gong, X. Ren, and Q. Xiao, “Blockchain-
based framework for improving supply chain traceability and informa-
tion sharing in precast construction,” Automation in Construction, vol.
111, p. 103063, 2020.

[36] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling Verifiable Boolean
Range Queries over Blockchain Databases,” in Proceedings of the 2019
International Conference on Management of Data, 2019, pp. 141–158.

[37] C. Zhang, C. Xu, J. Xu, Y. Tang, and B. Choi, “GEMˆ 2-Tree: A Gas-
Efficient Structure for Authenticated Range Queries in Blockchain,” in
2019 IEEE 35th International Conference on Data Engineering (ICDE).
IEEE, 2019, pp. 842–853.

[38] K. Hao, J. Xin, Z. Wang, and G. Wang, “Outsourced data integrity
verification based on blockchain in untrusted environment,” World Wide
Web, vol. 23, no. 4, pp. 2215–2238, 2020.

[39] C. Zhang, C. Xu, H. Wang, J. Xu, and B. Choi, “Authenticated Keyword
Search in Scalable Hybrid-Storage Blockchains,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 2021.

[40] Q. Guo, S. Deng, L. Cai, Y. Zhu, Z. Zhang, and C. Jin, “Blockchain PG:
Enabling Authenticated Query and Trace Query in Database,” in Asia-
Pacific Web (APWeb) and Web-Age Information Management (WAIM)
Joint International Conference on Web and Big Data. Springer, 2020,
pp. 529–534.

[41] X. Dai, J. Xiao, W. Yang, C. Wang, J. Chang, R. Han, and H. Jin, “LVQ:
A Lightweight Verifiable Query Approach for Transaction History in
Bitcoin,” in 2020 IEEE 40th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2020, pp. 1020–1030.

[42] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an
Encrypted Cloud Meets Blockchain: A Decentralized, Reliable and Fair
Realization,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 792–800.

[43] S. Jiang, J. Cao, J. A. McCann, Y. Yang, Y. Liu, X. Wang, and
Y. Deng, “Privacy-Preserving and Efficient Multi-Keyword Search over
Encrypted Data on Blockchain,” in 2019 IEEE International Conference
on Blockchain (Blockchain). IEEE, 2019, pp. 405–410.

[44] Y. Guo, C. Zhang, and X. Jia, “Verifiable and Forward-secure Encrypted
Search Using Blockchain Techniques,” in ICC 2020-2020 IEEE Inter-
national Conference on Communications (ICC). IEEE, 2020, pp. 1–7.

[45] Y. Ding, W. Song, and Y. Shen, “Enabling Efficient Multi-keyword
Search Over Fine-Grained Authorized Healthcare Blockchain System,”
in Asia-Pacific Web (APWeb) and Web-Age Information Management
(WAIM) Joint International Conference on Web and Big Data. Springer,
2020, pp. 27–41.

[46] L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang,
“Blockchain based searchable encryption for electronic health record
sharing,” Future Generation Computer Systems, vol. 95, pp. 420–429,
2019.

[47] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks,” IEEE Access, vol. 7, pp. 22 328–
22 370, 2019.

[48] M. A. Cusumano, “The Bitcoin ecosystem,” Communications of the
ACM, vol. 57, no. 10, pp. 22–24, 2014.

[49] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[50] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich et al.,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–15.

Hanqing Wu is working towards the Ph.D. degree in
computer science with the Department of Comput-
ing, The Hong Kong Polytechnic University, Hong
Kong SAR, China. Before that, he was a research as-
sistant with The Hong Kong Polytechnic University
from May 2015 to December 2015. He received the
B.Sc. degree in software engineering from Tongji
University in 2010. His research interests include
distributed computing, blockchain, and big data.

Shan Jiang received the B.Sc. degree in computer
science and technology from Sun Yat-sen University,
Guangzhou, China, in 2015 and the Ph.D. degree
in computer science from The Hong Kong Poly-
technic University, Hong Kong SAR, in 2021. He
is currently a Research Assistant Professor with the
Department of Computing, The Hong Kong Poly-
technic University, Hong Kong SAR. Before that,
he visited Imperial College London from November
2018 to March 2019. He won the best paper award
from BlockSys 2021 International Conference on

Blockchain and Trustworthy Systems. His research interests include dis-
tributed systems and blockchain, blockchain-based big data sharing, and
blockchain as a service.

Jiannong Cao (M’93-SM’05-F’15) received the
B.Sc. degree in computer science from Nanjing Uni-
versity, Nanjing, China, in 1982, and the M.Sc. and
Ph.D. degrees in computer science from Washington
State University, WA, USA, in 1986 and 1990, re-
spectively. He is currently the Otto Poon Charitable
Foundation Professor in Data Science and the Chair
Professor of Distributed and Mobile Computing in
the Department of Computing at The Hong Kong
Polytechnic University (PolyU), Hong Kong. He is
also the Dean of Graduate School, the director of

the Research Institute for Artificial Intelligence of Things in PolyU, and the
director of the Internet and Mobile Computing Lab. He was the founding
director and is now the associate director of PolyU’s University Research
Facility in Big Data Analytics. He served the department head from 2011 to
2017. Prof. Cao is a member of Academia Europaea, a fellow of IEEE, a
fellow of the China Computer Federation (CCF), and an ACM distinguished
member. His research interests include distributed systems and blockchain,
wireless sensing and networking, big data and machine learning, and mobile
cloud and edge computing.

