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Abstract
Graph Neural Networks (GNNs) are powerful but vulnerable to

adversarial attacks, necessitating the research on certified robust-

ness that can provide GNNs with robustness guarantees. Exist-

ing randomized smoothing methods struggle with a trade-off be-

tween utility and robustness due to high noise levels. We introduce

AuditVotes, which integrates randomized smoothing with two

components, augmentation and conditional smoothing, aiming to

improve data and vote quality. We instantiated AuditVotes with
simple strategies, and preliminary results demonstrate its signif-

icant promise in enhancing certified robustness, representing a

substantial step toward deploying certifiably robust GNNs in real-

world applications.

1 Introduction
Graph Neural Networks (GNNs) [8] have emerged as a powerful

tool for learning and inference on graph-structured data. However,

GNNs are vulnerable to adversarial attacks, which can significantly

degrade their performance by introducing small, carefully crafted

perturbations to the input data [6]. This vulnerability has urged

extensive research into developing robust GNNmodels. One promis-

ing direction is certified robustness [5], which aims to provide prov-

able guarantees that a model’s predictions will remain stable under

any possible adversarial perturbation within a specified range.

The most representative approach for achieving certified robust-

ness is randomized smoothing [1], including our latest works [3, 4].

The basic idea is a majority voting scheme, where each vote is the

prediction result of the base classifier over a randomized graph, pro-

duced by adding carefully calibrated random noise to the original

graph. However, despite the tremendous advancements achieved

on certified robustness for GNNs in recent years, the certified ac-

curacy of existing models remains suboptimal. This hinders the

practical deployment of GNNs in security-sensitive applications

where robustness is paramount.

Thus, we are motivated to further improve the certification per-

formance of certifiably robust GNNs to facilitate their deployment

in real-world applications. The inefficacy of previous schemes are

mainly attributed to the high degree of random noise applied to the

input graph. For example, in order to guarantee a larger certified

radius, a representative scheme [1] will apply a higher probability

𝑝+ of adding edge. But, even with a small value of 𝑝+ such as 0.01,

the clean accuracy of a smoothed classifier will drop significantly.

That is, there is an inherent trade-off between model utility and cer-

tification performance, controlled by the degree of randomization.

To mitigate this trade-off, we propose AuditVotes as a general
enhancement to the randomized smoothing framework. Our gen-

eral strategy is to keep a larger degree of randomization (for better
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Figure 1: The Framework of AuditVotes, featuring two added
components: augmentation and conditional smoothing.

certification), and instead improve the quality of the graph data

as well as the quality of votes (to restore model utility). To this

end, AuditVotes (shown in Figure 1) features two components,

augmentation and conditional smoothing, that are seamlessly in-

tegrated to the randomized smoothing pipeline. Specifically, we

introduce augmentation to pre-process the randomized graphs, af-

ter which they are sent to the base classifier for classification. After

that, we apply conditional smoothing to the prediction results of

the base classifier, through which we aim to filter out some low-

quality predictions to improve the quality of votes. Combining these

pre-processing of graph data and post-processing of votes, we can

significantly improve the overall certification performance.

In this proposal, we have demonstrated the effectiveness of Au-
ditVotes by instantiating it with simple strategies, as detailed in

Section 4. Specifically, we employed Jaccard similarity to enhance

the randomized graphs as the augmentation and utilized prediction

confidence as a filter condition to implement conditional smooth-

ing. The evaluation results presented in Section 5 indicate that

AuditVotes shows significant promise in improving certified ro-

bustness, marking a substantial step towards deploying certifiably

robust GNNs in real-world applications. For future work, we plan

to explore more advanced techniques to enhance these components

further and improve the efficacy of certified robustness.

2 Background: Certified Robustness for GNNs
We represent a graph as G = (V, E,X), where V and E denote the

set of nodes and edges, respectively, and X is the node feature

matrix. We use A to denote the adjacency matrix of the graph G.
We consider the semi-supervised node classification tasks, where

a GNN model 𝑓 (·) is trained on a subset of labeled nodes V𝐿 ⊂ V
and predicts the labels for the remaining nodes in V/V𝐿 . Each node

is associated with a label amongY = {1, 2, · · · ,𝐶}. It is known that

GNNmodels are vulnerable to adversarial attacks [6] such as Graph

Modification Attacks (GMA) and Graph Injection Attacks (GIA),

where the attacker can modify the input graph G (e.g., structure

attack) to mislead node classification.



Certified robustness [5] is proposed as a countermeasure that can

provide provable defense in the sense that as long as the attacker’s

power is constrained, the predictions of the established classifier

are theoretically guaranteed to be stable. The mainstream approach

to realize certified robustness is randomized smoothing with repre-

sentative works [1, 3, 4] calibrated for GNNs. Specifically, given an

input graph G and any base classifier 𝑓 (·) (such as a GNN), they

will add random noise to G, resulting in a collection of randomized

graphs denoted by 𝜙 (G), where 𝜙 (·) denotes the randomization

process. Then, the base classifier 𝑓 is used to make predictions over

the random graphs, and the final prediction is obtained through

majority voting. Equivalently, randomized smoothing can convert

any base classifier into a smoothed classifier 𝑔(·), defined as

𝑔𝑣 (G) := argmax

𝑦∈Y
𝑝𝑣,𝑦 (G) := P(𝑓𝑣 (𝜙 (G)) = 𝑦), (1)

where P(𝑓𝑣 (𝜙 (G)) = 𝑦) denotes the probability of predicting a node
𝑣 as class 𝑦. Then, it can be proved that the smoothed classifier 𝑔

is provably robust with respect to a certain perturbation space B,

which defines the set of perturbations introduced by the attacker.

In this paper, we take SparseSmooth [1] as an example, and certify

against GMA perturbation: 𝐵𝑟𝑎,𝑟𝑑 (G) := {G′ |∑𝑖 𝑗 I(A′
𝑖 𝑗

= A𝑖 𝑗 −
1) ≤ 𝑟𝑑 ,

∑
𝑖 𝑗 I((A′

𝑖 𝑗
= A𝑖 𝑗 + 1) ≤ 𝑟𝑎}, where the attacker can

add at most 𝑟𝑎 edges and delete at most 𝑟𝑑 edges among existing

nodes. The 𝜙 (G) is defined as adding edges with probability 𝑝+ and

removing edges with probability 𝑝− .

3 The AuditVotes Framework
We now presentAuditVotes as a general framework (shown in Fig-

ure 1) to improve the performance of certified robustness for GNNs.

The term AuditVotes derives from its two essential components,

Augmentation and Conditional Smoothing, encapsulating our main

idea of auditing or enhancing the quality of votes to bolster the

majority-vote-based certification.

3.1 Noise-dependent Augmentation
The augmentation component operates on the randomized graph

𝜙 (G) before it goes through the base classifier 𝑓 , thus serving as a

pre-processing step. Intuitively, randomizing will inject undesirable

noise into the graph, which is the fundamental cause of the trade-off

between clean accuracy and the certified radius. It is observed that

a lightly larger 𝑝+ will significantly decrease the clean accuracy

of the model (i.e., model utility); however, larger 𝑝+ is essential

to ensure a larger certification radius against adding-edge attacks

(note that most attacks against GNNs will tend to add edges).

To address the above trade-off, our strategy is to keep good ran-
domization parameters that will lead to superior certification perfor-

mance, and process the randomized graph to restore model utility.
Our choice for processing the randomized graphs is graph augmen-

tation [2, 9], which is a widely used technique of crafting training

data to improve model performance.

Effectively fitting augmentation into the randomized smoothing

pipeline has several requirements. First, the augmentation process

should be efficient, as it needs to process a large number of random-

ized graphs. Second, the augmentation should be customized to the

specific randomization scheme, more specifically, the type of noise

added to the graph. In Section 4, we realized a simple augmentation

scheme based on node similarities to demonstrate the effectiveness

of this idea. As future work, we propose a noise-dependent inductive
graph augmenter to fulfill this task. Specifically, we use the noise

as guidance to pre-train a graph generator (i.e., augmenterA) with

the objective of maximizing model utility. Then, we create a func-

tion composition 𝑓 (A(·)) to be the new base classifier. With this

scheme, the existing randomized-smoothing-based certificates such

as [1, 3, 4] can be easily applied to our augmented model. Notably,

it also offers us the freedom to design the augmenter A.

3.2 Conditional Smoothing
Despite the effectiveness of augmentation, the base classifier could

still make low-quality predictions over the processed graph. We

thus further propose a conditional smoothing framework to post-
process the prediction made by the base classifier before it goes into

the voting procedure.

The main idea is to filter out some low-quality predictions based

on certain conditions. We use ℎ(·) to denote a filtering function

with output {0, 1}, where 0 means keeping the prediction in voting

and 1 otherwise. Then, we can construct a conditional smoothed
classifier 𝑔𝑐 (·) as follows:

𝑔𝑐 (G) := argmax

𝑦∈Y
𝑝𝑣,𝑦 (G) := P(𝑓 (𝜙 (G)) = 𝑦 |ℎ(𝜙 (G)) = 0), (2)

where 𝑝𝑣,𝑦 (G) denotes the probability of predicting an input sample

G as class 𝑦 conditioned on the criteria that ℎ(𝜙 (G)) = 0.

Next, we establish the condition for the conditional smoothed

classifier to be certifiably robust, which is a non-trivial adaption

from the existing certification method [1]. Specifically, given a node

𝑣 , let 𝑦𝐴 and 𝑦𝐵 denote the top predicted class and the runner-up

class, respectively. Let 𝑝𝐴 and 𝑝𝐵 denote the lower bound of 𝑝𝑣,𝑦𝐴
and the upper bound of 𝑝𝑣,𝑦𝐵 , respectively.

Theorem 3.1. Let the conditional smoothed classifier 𝑔𝑐 (·) be as
defined in Eq. (2). We divide G into disjoint regions G =

⋃𝐼
𝑖 R𝑖 , where

R𝑖 denote the consent likelihood ratio region that P(𝜙 (G)=𝑍 )
P(𝜙 (G′ )=𝑍 ) = 𝑐𝑖

(a constant). Let 𝑟𝑖 = P(𝜙 (G) ∈ R𝑖 ), 𝑟 ′𝑖 = P(𝜙 (G′) ∈ R𝑖 ) denote the
probability that the random sample fall in the partitioned region R𝑖 .
We define 𝜇 as follows:

𝜇 := min

s,t
s𝑇 r′ − t𝑇 r′, (3)

s.t. s𝑇 r = 𝑝𝐴, t𝑇 𝑟 = 𝑝𝐵, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.

Then for ∀G′ ∈ B𝑟𝑎,𝑟𝑏 (G), we have 𝑔𝑣 (G′) = 𝑔𝑣 (G), if 𝜇 > 0.

We provide the proof for Theorem 3.1 in Appendix A. Given the

condition to determine certified robustness, Theorem 3.1 lays the

theoretical foundation for integrating the filter function ℎ into the

randomized smoothing framework. Notably, it offers us the freedom

to design the functionℎ to improve the quality of votes. In Section 4,

we implement a simple filter function based on the confidence of

the predictions made by the base classifier. In future work, we will

explore the more advanced designs of ℎ. One promising direction

is to cast it as a supervised classification problem since we can

generate a lot of randomized graphs offline, from which we can

learn which graphs tend to give false directions.
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Figure 2: Certified accuracy and result analysis of AuditVotes model.

4 Instantiation
In this section, we give simple examples to instantiate the two

components, augmentation and conditional smoothing, in our Au-
ditVotes framework. We explore the design of these two compo-

nents in our future work.

Augmentation based on Similarity. Inspired by the simple but

effective defense approach proposed for GNNs, the GCNJaccard [7],

we propose a simple graph rewiring augmentation. We set a thresh-

old 𝜏 to prune the edge with 𝐽𝑢,𝑣 > 𝜏 , and we add the edge if the

Jaccard similarity exceeds a threshold 𝜉 . To reduce computation

overload and avoid repeated similarity computation, we only need

to pre-calculate Jaccard similarity for all the potential edges (𝑂 (𝑛2)),
which we denote by a Jaccard matrix J. Then, at the time of infer-

ence, we only need to apply the mask to conduct the graph rewiring

augmentation efficiently:

A′ = A ◦ (J > 𝜏) + (J > 𝜉) ◦ (A = 0), (4)

where ◦ denotes element-wise matrix multiplication, and (J > 𝜏)
denotes the matrix with each element assigned with 1 if 𝐽𝑢,𝑣 > 𝜏 ,

otherwise 0. Similarly, (A = 0) denotes a matrix with element

assigned with 1 if A𝑢,𝑣 = 0, otherwise 0.

Filtering based on confidence. In this paper, we find that simply

employing the prediction confidence of the base classification can

effectively improve the certified accuracy. For any random sample

∀G ∈ G, the node classifier 𝑓 will also return the confidence for the

prediction, and we denote the confidence as 𝑐𝑜𝑛𝑓 (G). Intuitively,
the classifier has higher accuracy for those samples with high confi-

dence. For this reason, we investigate the impact and effectiveness

of confidence in filtering high-quality samples. We set the sample

with a high confidence as a filtering criterion. Specifically, we set a

threshold 𝜃 to filter the sample: We only keep the random sample

with confidence 𝑐𝑜𝑛𝑓 (𝜙 (G)) > 𝜃 . That is, we can set ℎ(𝜙 (G)) = 0

if 𝑐𝑜𝑛𝑓 (𝜙 (G)) > 𝜃 , otherwise 0.

5 Preliminary Results
Experimental Setup: Our evaluation involves experiments on the

GCN model using the Citeseer and Cora-ML datasets, following [1].

In both datasets, we maintain thresholds at 𝜏 = 0.1, 𝜉 = 0.2, and

𝜃 = 0.5. We consider three models: 1) GCN: the original Spars-

eSmooth model [1], 2) GCN+JacAug: the GCN model augmented

with our Jaccard augmenter (JacAug), and 3) GCN+JacAug+Conf:

the complete AuditVotes framework integrating both the Jaccard

augmenter (JacAug) and the confidence filter (Conf).

We begin by evaluating the effectiveness of the augmentation

in improving certified accuracy by comparing models with and

without JacAug (Figure 2(c,f)). We obverse that the GCN model

with JacAug augmenter greatly improves the clean accuracy of the

smoothed model (from 0.29 to 0.71 on the Citeseer and from 0.32

to 0.76 on Cora-ML).

Next, we investigate the impact of our conditional smoothing ap-

proach by applying the confidence filter to the GCN+JacAug model.

Firstly, we visualize the distribution of confidence levels based

on the correctness of node classification (Figure 2(a,d)), highlight-

ing distinct confidence distributions for correctly and incorrectly

predicted samples. Notably, the high-confidence group exhibits sig-

nificantly higher node classification accuracy (Figure 2(b,e)). By

leveraging our confidence filter, we achieve a notable enhancement

in certified accuracy. For instance, with an attack budget involving

adding 5 edges, the GCN+JacAug+Conf model improves certified

accuracy by 16.7% on Citeseer and 10.0% on Cora-ML compared to

GCN+JacAug.

In conclusion, the JacAug augmentation significantly boosts

model utility, while the conditional smoothing model with the con-

fidence filter further enhances certified accuracy. Our AuditVotes
model, encompassing both JacAug and Conf, demonstrates the

most substantial enhancement in certified accuracy. Specifically,

when the attack budget involves adding 5 edges, the certified accu-

racy for GCN, GCN+JacAug, and GCN+JacAug+Conf are 0.29, 0.48,

and 0.56 on the Citeseer dataset, and 0.32, 0.50, and 0.55 on the

Cora-ML dataset (Figure 2(c,f)). Compared to SparseSmooth [1], our

3



AuditVotes model enhances certified accuracy by 93.1% on Citeseer

and 71.9% on Cora-ML, highlighting its potential in optimizing the

trade-off between utility and robustness.
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A Proof for Theorem 3.1
Theorem 3.1. (Restate) Let the conditional smoothed classifier

𝑔𝑐 (·) be as defined in Eq. (2). We divide G into disjoint regions G =⋃𝐼
𝑖 R𝑖 , whereR𝑖 denote the consent likelihood region that

P(𝜙 (G)=𝑍 )
P(𝜙 (G′ )=𝑍 ) =

𝑐𝑖 (a constant). Let 𝑟𝑖 = P(𝜙 (G) ∈ R𝑖 ), 𝑟 ′𝑖 = P(𝜙 (G′) ∈ R𝑖 ) denote
the probability that the random sample fall in the partitioned region
R𝑖 . We define 𝜇 as follows:

𝜇 := min

s,t
s𝑇 r′ − t𝑇 r′, (5)

s.t. s𝑇 r = 𝑝𝐴, 𝑡
𝑇 𝑟 = 𝑝𝐵, 0 ≤ 𝑠 ≤ 1, 0 ≤ 𝑡 ≤ 1.

Then for ∀G′ ∈ B𝑟𝑎,𝑟𝑏 (G), we have 𝑔𝑣 (G′) = 𝑔𝑣 (G), if 𝜇 > 0.

Proof. We employ a similar proof scheme as SparseSmooth [1].

Specifically, the problem of certified robustness can be formulated

as a linear programming problem in (5). Intuitively, the linear pro-

gramming problem is to find a worst-case classifier that tends to

assign the highest probability of class 𝑦𝐴 to 𝜙 (G) and assign the

lowest probability of class 𝑦𝐴 to 𝜙 (G′). Therefore, the worst-case
classifier will assign class 𝑦𝐴 in decreasing order of the constant

likelihood regions until P(𝑓 (𝜙 (G)) = 𝑦𝐴 |ℎ(𝜙 (G)) = 0) = 𝑝𝐴 , and

assign class𝑦𝐵 in increasing order of the constant likelihood regions

until P(𝑓 (𝜙 (G)) = 𝑦𝐵 |ℎ(𝜙 (G)) = 0) = 𝑝𝐵 .

Let G′
denote the perturbed sample from G, and 𝑧 ∈ G be

any possible graph obtained by 𝜙 (G) or 𝜙 (G′). We now need to

compute the likelihood ratio with condition ℎ(𝑧) = 0. Notably, the

likelihood ratio only depends on the difference between G and G′
,

and does not depend on the filter ℎ(𝑧), so we have the likelihood

ratio Λ(𝑧) as follows:

Λ(𝑧) = P(𝜙 (G) = 𝑧 |ℎ(𝑧) = 0)
P(𝜙 (G′) = 𝑧 |ℎ(𝑧) = 0) =

P(𝜙 (G) = 𝑧)
P(𝜙 (G′) = 𝑧) . (6)

That is, our conditional smoothing model (with arbitrary ℎ(·)) does
not affect the likelihood ratio, allowing us to utilize the same con-

stant likelihood ratio region as in SparseSmooth [1]. This under-

scores the seamless adaptability of the certifying condition to our

conditional smoothing model. The only difference lies in the defini-

tion of 𝑝𝐴 and 𝑝𝐵 . In SparseSmooth [1], the 𝑝𝐴 and 𝑝𝐵 are estimated

among all the votes, while in our model, the probabilities 𝑝𝐴 and

𝑝𝐵 are estimated among the valid votes (ℎ(𝑧) = 0).

Assuming that there are two constant likelihood regions R1 and

R2, and Λ(𝑧 ∈ R1) > Λ(𝑧 ∈ R2), then we can decompose the

conditional probabilities 𝑝𝐴 and 𝑝𝐵 as follows:

𝑝𝐴 = P(𝑓 (𝜙 (G)) = 𝑦𝐴 |ℎ(𝜙 (G)) = 0)
= P(𝑓 (𝑧) = 𝑦𝐴, 𝜙 (G) = 𝑧 ∈ R1 |ℎ(𝑧) = 0)
+ P(𝑓 (𝑧) = 𝑦𝐴, 𝜙 (G) = 𝑧 ∈ R2 |ℎ(𝑧) = 0)

= P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G) = 𝑧 ∈ R1, ℎ(𝑧) = 0)
× P(𝜙 (G) = 𝑧 ∈ R1 |ℎ(𝑧) = 0)
+ P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G) = 𝑧 ∈ R2, ℎ(𝑧) = 0)
× P(𝜙 (G) = 𝑧 ∈ R2 |ℎ(𝑧) = 0)

= P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G) = 𝑧 ∈ R1, ℎ(𝑧) = 0)P(𝜙 (G) = 𝑧 ∈ R1)
+ P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G) = 𝑧 ∈ R2, ℎ(𝑧) = 0)P(𝜙 (G) = 𝑧 ∈ R2) .

𝑝𝐵 = P(𝑓 (𝜙 (G)) = 𝑦𝐵 |ℎ(𝜙 (G)) = 0)
= P(𝑓 (𝑧) = 𝑦𝐵, 𝜙 (G) = 𝑧 ∈ R1 |ℎ(𝑧) = 0)
+ P(𝑓 (𝑧) = 𝑦𝐵, 𝜙 (G) = 𝑧 ∈ R2 |ℎ(𝑧) = 0)

= P(𝑓 (𝑧) = 𝑦𝐵 |𝜙 (G) = 𝑧 ∈ R1, ℎ(𝑧) = 0)P(𝜙 (G) = 𝑧 ∈ R1)
+ P(𝑓 (𝑧) = 𝑦𝐵 |𝜙 (G) = 𝑧 ∈ R2, ℎ(𝑧) = 0)P(𝜙 (G) = 𝑧 ∈ R2).

The worst-case classifier is:

P(𝑓 (𝑧) = 𝑦𝐴 |ℎ(𝑧) = 0) =
{

𝑝𝐴, 𝑧 ∈ R1, ℎ(𝑧) = 0

0, 𝑧 ∈ R2, ℎ(𝑧) = 0

P(𝑓 (𝑧) = 𝑦𝐵 |ℎ(𝑧) = 0) =
{

𝑝𝐵, 𝑧 ∈ R1, ℎ(𝑧) = 0

1, 𝑧 ∈ R2, ℎ(𝑧) = 0.

Next, our goal is to estimate the prediction probabilities given

arbitrary perturbed graph G′ ∈ B𝑟𝑎,𝑟𝑏 .

𝑝′𝐴 := P(𝑓 (𝜙 (G′)) = 𝑦𝐴 |ℎ(𝜙 (G′)) = 0)
= P(𝑓 (𝑧) = 𝑦𝐴, 𝜙 (G′) = 𝑧 ∈ R1 |ℎ(𝑧) = 0)
+ P(𝑓 (𝑧) = 𝑦𝐴, 𝜙 (G′) = 𝑧 ∈ R2 |ℎ(𝑧) = 0)

= P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G′) = 𝑧 ∈ R1, ℎ(𝑧) = 0)P(𝜙 (G′) = 𝑧 ∈ R1)
+ P(𝑓 (𝑧) = 𝑦𝐴 |𝜙 (G′) = 𝑧 ∈ R2, ℎ(𝑧) = 0)P(𝜙 (G′) = 𝑧 ∈ R2)

= 𝑝𝐴 · P(𝜙 (G′) = 𝑧 ∈ R1) . (7)
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𝑝′𝐵 := P(𝑓 (𝜙 (G′)) = 𝑦𝐵 |ℎ(𝜙 (G′)) = 0)
= P(𝑓 (𝑧) = 𝑦𝐵, 𝜙 (G′) = 𝑧 ∈ R1 |ℎ(𝑧) = 0)
+ P(𝑓 (𝑧) = 𝑦𝐵, 𝜙 (G′) = 𝑧 ∈ R2 |ℎ(𝑧) = 0)

= P(𝑓 (𝑧) = 𝑦𝐵 |𝜙 (G′) = 𝑧 ∈ R1, ℎ(𝑧) = 0)P(𝜙 (G′) = 𝑧 ∈ R1)
+ P(𝑓 (𝑧) = 𝑦𝐵 |𝜙 (G′) = 𝑧 ∈ R2, ℎ(𝑧) = 0)P(𝜙 (G′) = 𝑧 ∈ R2)

= 𝑝𝐵 · P(𝜙 (G′) = 𝑧 ∈ R1) + P(𝜙 (G′) = 𝑧 ∈ R2) . (8)

Finally, the prediction of sample G by the smoothed classifier

defined in (2) can be certified if:

𝜇 = 𝑝′𝐴 − 𝑝′𝐵
= P(𝑓 (𝜙 (G′)) = 𝑦𝐴 |ℎ(𝜙 (G′)) = 0)
− P(𝑓 (𝜙 (G′)) = 𝑦𝐵 |ℎ(𝜙 (G′)) = 0)

= 𝑝𝐴 · P(𝜙 (G′) = 𝑧 ∈ R1)
− 𝑝𝐵 · P(𝜙 (G′) = 𝑧 ∈ R1) − P(𝜙 (G′) = 𝑧 ∈ R2)

> 0.

□
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