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Abstract—Current facial authentication (FA) systems are
mostly based on the images of human faces, thus suffering from
privacy leakage and spoofing attacks. Mainstream systems utilize
facial geometry features for spoofing mitigation, which are still
easy to deceive with the feature manipulation, e.g., 3D-printed
human faces. In this paper, we propose a novel privacy-preserving
anti-spoofing FA system, named RFace, which extracts both the
3D geometry and inner biomaterial features of faces using a
COTS RFID tag array. These features are difficult to obtain
and forge, hence are resistant to spoofing attacks. RFace only
requires users to pose their faces in front of a tag array for a few
seconds, without leaking their visual facial information. We build
a theoretical model to rigorously prove the feasibility of feature
acquisition and the correlation between the facial features and
RF signals. For practicality, we design an effective algorithm to
mitigate the impact of unstable distance and angle deflection from
the face to the array. Extensive experiments with 30 participants
and three types of spoofing attacks show that RFace achieves an
average authentication success rate of over 95.7% and an EER of
4.4%. More importantly, no spoofing attack succeeds in deceiving
RFace in the experiments.

I. INTRODUCTION

In recent years, facial authentication (FA) systems have

been wildly applied to daily applications (e.g., access control,

online payment and individual identification [1, 2, 3]). FA is

regarded as a promising alternative to traditional authentication

approaches, such as PIN code [4], fingerprint [5] and token

[6] thanks to its convenience and precision.

Existing FA systems are mostly camera-based and have

some severe flaws, including privacy leakage risks and security

problems. On the one hand, most current FA systems collect

facial features of users by RGB cameras, which inevitably

reveals complete visual facial information (VFI) and raises

privacy concerns. On the other hand, these approaches perform

authentications by extracting geometry features from VFI.

Once the VFI of a user is leaked, an attacker can easily

conduct a spoofing attack by reproducing the features [7].

Although more geometry information has been introduced

to enhance the security, e.g., the depth information of faces

[8], camera-based FA systems are still vulnerable to spoofing

attacks. This is because the information can still be captured

remotely, e.g., using depth cameras or infrared dot projectors
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Fig. 1: Compared with camera-based systems, RFace is

privacy-preserving and can effectively resist spoofing attacks.

[9]. Therefore, attackers can manipulate a 3D-printed mask

based on the captured VFI to deceive FA systems [10]. To

overcome these drawbacks, we explore a new facial feature

based authentication technique, which can protect the visual

privacy of users, and meanwhile resist spoofing attacks.

It is worth noting that biomaterial-based FA has become

more reliable against spoofing attacks [11]. Meanwhile, recent

advances in wireless sensing reveal that radio frequency (RF)

signals are sensitive to the material that they encounter during

propagation [12]. Thus, by verifying the facial information

captured in RF signals, we can determine the authenticity

of users. Furthermore, researchers show that an array of

commercial-off-the-shelf (COTS) radio frequency identifica-

tion (RFID) tags can serve as a low-cost and sensitive sensor

to support fine-grained wireless sensing [13, 14]. Motivated

by the material-sensitive and fine-grained sensing capability

of RFID systems, we attempt to develop an anti-spoofing FA

system with COTS RFID devices.

In this paper, we propose a novel anti-spoofing privacy-

preserving authentication system, named RFace. Specifically,

RFace uses an RFID tag array to measure both RSS and phase

of RF signals and extract 3D facial geometry and biomaterial

features for spoofing attack resistant. The extracted features

are then fed into a well-trained support vector machine (SVM)

to conduct authentication. As shown in Fig. 1, compared with

camera-based systems, RFace protects the VFI of users. RFace



is also resistant to spoofing attacks since the extracted features

are difficult to be captured by attackers.

There are two main challenges in the design and devel-

opment of RFace: (1) It is difficult to build the correlation

model between real facial features and raw RF signals since

RF signals are not as structured as images. (2) For each user,

the distance and deflection from the face to the tag array may

slightly vary in different authentication attempts, leading to

undesirable degradation of the authentication accuracy due to

the sensitivity of RF signals.

To address the first challenge, we build a theoretical model

based on the principles of electromagnetism and RF signal

propagation. The model rigorously proves the feasibility of

leveraging RF signals to capture and extract the desired

facial features from raw backscatter signals. For the second

challenge, we try to explore a feature resistant to the variation

of distance and deflection angle. Based on experiments and

theoretical analysis, we find that in the tag array, the difference

values of RSS and phase of two tags is related to the

distance between the two tags. Specifically, the RSS and phase

differences of two tags that are close to each other are more

stable than that of two tags with a far distance, especially

when the distance and deflection angle vary. Therefore, we

take the RSS and phase differences of two tags within a tiny

area as the final stable feature. We propose a novel algorithm,

named DDDS, to split the array into minimum blocks, i.e.,
a tag with its adjacent tags, in which the tags leverage their

stable difference values of RF signals towards the variation to

mitigate the degradation in the authentication accuracy.

RFace is implemented with COTS RFID devices. To per-

form user authentication, users are only required to pose

their faces in front of a tag array for a few seconds. We

evaluate RFace with 30 volunteers under various distance and

deflection conditions. We also test RFace against three types

of mainstream spoofing attacks, including 2D, 2D+ and 3D

spoofing attacks. The results demonstrate the effectiveness

of RFace with over 95.7% authentication success rates and

around 4.4% equal error rates. More importantly, the results of

defense experiments indicate that RFace is resistant to spoofing

attacks, including 3D mask attacks. Our contributions can be

summarized as follow:

• We propose a novel privacy-preserving anti-spoofing FA

system, RFace, which can extract both 3D facial geometry

and biomaterial features of users’ faces from RF signals.

In addition, we build a theoretical model to validate the

feasibility of the feature extraction method.

• We propose a novel algorithm to enhance the flexibility of

RFace by mitigating the impact of distance and deflection

variations between human face and tag array.

• We build a prototype of RFace with COTS RFID de-

vices. Extensive experiments demonstrate that RFace can

achieve precise and robust authentication and defend

against various spoofing attacks.

II. PRELIMINARY

In this section, we start with some preliminary studies on

two elemental indicators of RF signals and the layout of tag

array that facilitates the feature collection. Then we introduce

three types of typical attacks for existing FA systems.

A. Elemental Indicators of RF Signals and Tag Array Layout

RF Signal Indicators: A typical RFID system includes

three parts, RFID tags, a reader and its antenna. The reader

continuously transmits RF signals to activate tags. Then each

tag responds its Electronic Product Code (EPC) by backscat-

tering RF signals using ON-OFF keying [15]. By analyzing

the backscatter signals, the reader can obtain the indicators,

i.e., received signal strength (RSS) and phase. Both indicators

are influenced by the propagation distance and the materials

encountered. In this paper, RFace measures the indicators to

extract facial features. The concrete mathematical model will

be presented in Section III-A.

In this work, we utilize the Impinj Speedway R420 reader

which can achieve a phase resolution of 0.0015 radians in

theory [16]. Thus, with the corresponding wavelength about

32cm, it is capable of providing ≈ 320mm ∗ 0.0015/(4 ×
3.14) = 0.038mm distance resolution, which suffices to

capture the geometry feature of human face.

Tag Array Layout: We adopt a perpendicular orientation

deployment of tags as in [14]. Additionally, for the purpose of

avoiding two tags on a tag array from sharing the same phase,

we ensure the maximum distance between any two tags on

an array is less than half of the wavelength (approximates

16cm). Specifically, we use the tiny RFID tag AZ-9629 (only

2.25cm× 2.25cm) to arrange a compact 7× 7 tag array with

the geometry of 16cm×16cm square space, which is capable

to cover whole faces in most cases.

B. Attacks

We mainly consider the following three types of attacks to

FA systems.

2D Spoofing Attack: This attack includes both 2D static

(photo) attack and dynamic (video) attack. 2D spoofing attacks

aim to deceive an FA system with a 2D photo (video) of a

legitimate user’s face. Most traditional 2D feature based FA

systems are vulnerable to this attack. As reported in [17], a

2D photo can deceive the face recognition systems of some

mainstream smartphones.

2D+ Spoofing Attack: This attack constructs an uneven

mask based on a precise 2D image plus rough depth measure-

ments of a legitimate user’s face. Such an attack can deceive

many existing anti-spoofing FA systems[2] that only look for

uneven surface rather than matching against the facial depth

information exactly.

3D Spoofing Attack: This attack constructs a precise 3D-

printed mask of a legitimate user. 3D spoofing attacks are

hard to defeat, since current FA systems only extract the 3D

structural features of face surface, while leaving the inner

composition, e.g., the biomaterial of faces, unexamined. In



this case, using a vivid 3D-printed mask can easily trick these

FA systems [18].

III. TURNING RFID INTO FACIAL FEATURES EXTRACTOR

In order to establish the correlation between RF signals

and both the 3D geometry and inner biomaterial features of

faces, we build a theoretical model based on the principles

of electromagnetism and RF signal propagation. Besides, we

conduct several experiments to test the feasibility of anti-

spoofing face authentication.

A. Modeling Face Features upon RF Signal Propagation

Modeling Consideration: In our system, the received

signals consist of three parts: the line-of-sight signal, the

signal reflected from other surrounding objects and the signal

reflected from face. The line-of-sight signal can be regarded

as a consistent one when the distance between the antenna

and the tag array remains static, In the FA scenario, the

distance between other surrounding objects and the tag array

is normally much larger than the one between the face and the

tag array. As a result, the face would contribute the most of the

impact on the tag array in terms of RF interaction. Therefore,

we focus on the signal reflected from the face in our model.

Moreover, we utilize the RSS and phase of received signals

to extract the user’s facial features. We demonstrate that the

extracted features can represent both the unique 3D geometry
and inner biomaterial features of human face in the following.

As illustrated in Fig. 2, the human face is parallel and

located directly in front of the tag array, and the user’s chin

is located on the vertical bisector of the bottom edge of the

tag array. We utilize the lateral view of the 7× 7 tag array to

interpret the effect of the signal reflected from the face on the

tag array. We denote the distance between the antenna and the

tag array as L and the distance between the tag array and the

chin as d. Our theoretical model involves three processes: 1)

mapping tags to blocks on face, 2) extracting facial features

by RSS and 3) extracting facial features by phase.

Mapping Tags to Blocks on Face: In order to precisely

extract facial features, it is essential to map tags to their

corresponding areas on a face. Due to the sensitivity of RF

signal, each tag on the tag array backscatters the reflection

signal from the entire face. Thus, each tag captures the features

of the entire face. Nevertheless, the face will have a greater

impact on those tags closer to the face [14]. Therefore, without

losing the effectiveness of modeling, for each tag, we analyze

the influence on the tag from the area on the face which is

closest to the tag. In specific, we map each tag on the array to

an area closest to the tag on the face, which can be regarded as

a block. For ease of modeling, this reflection can be equivalent

to the effect of the center point of this block on the tag. Taking

tag Ti as an example, the corresponding reflection block is

represented as the closest area (Fu i, Fc i, Fl i), where Fu i,

Fc i, Fl i represent the upper vertex, center point and lower

vertex of this block on the face, respectively. Therefore, the

signal reflected from this block and received by tag Ti can be

regarded as the signal reflected from the center point Fc i and

Fig. 2: RF signal propagation model.

we denote the incident angle of RF signal propagating into

human face at Fc i as βin i. In addition, for distinct human

faces, each tag on tag array has different specific reflection

area with corresponding center point and incident angle. Then

we will take tag Ti and tag Tj as an instance to analyze the

impact of RF signals reflected from human face on RSS and

phase, and show how to extract facial features.

Facial Features Extracted by RSS: We divide the prop-

agation of RF signals in our system into three stages: from

antenna to face, reflection on face and from face to antenna.

We analyze the change of RSS in each stage respectively to

extract both 3D geometry and inner biomaterial features.

As for the first propagation stage, the RSS value is defined

by the power P , which is proportional to the square of the

amplitude A. The RSS can be formulated as:

RSS = 10 log
P

10−3
= 20 log(DA) (P ∝ A2), (1)

where D is a constant. Generally, the amplitude A causes

exponential loss in magnitude over a unit of propagation

distance, which can be denoted as e−α. For the tag Ti in Fig. 2,

the loss of amplitude A during the propagation of RF signal

from antenna to the center point Fc i of the corresponding

reflection block (Fu i, Fc i, Fl i) on face can be denoted as:

Ain = Ae−α(L+d−di). (2)

In this equation, Ain represents the amplitude of the RF

signal when it reaches the surface of face. di denotes the

horizontal distance between the center point Fc i and chin,

which indicates the 3D facial geometry feature of human face.

For the second propagation stage, the RF signal reaches

the surface of human face. The signal can be divided into

two parts: the part directly reflected and the part entering

the face with refraction. The inner structure of human face

consists of various biomaterials such as skin, fat, and muscle.

For ease of illustration, we assume that each person’s face

is a unique hybrid material composed of multiple layers of

materials, and the relative permittivity of the mixed biomaterial

can be denoted as εper. According to [12], the RF signal

refracted into the face has to traverse multi-layered tissue and

go through multiple reflections before it can escape. Due to

the exponential attenuation, there will be only very low power

signal to escape the human face, which can be ignored. Then



we mainly analyze the power loss caused by reflection on the

face surface. The power ratio of the signal before and after

reflection on the face surface is the power reflection coefficient

Rper i, so the corresponding amplitude can be calculated as:

A after =
√
Rper iA before, (3)

where A before and A after are the amplitudes of the corre-

sponding before and after reflection signal. Rper i is related

to the mixed material of human face and the incident angle

βin i. So Rper i can reveal the facial features of human face.

Then we analyze the factors that affect Rper i in detail.

The reflection on an interface between two biomaterials is

affected by the relative permittivity ε of them. Considering the

RF signal arriving at the face surface which is the interface

between the air (εair) and the face material (εper), the signal

can be decomposed into transverse electric (TE) and transverse

magnetic (TM) wave components, according to [19]. The

power reflection coefficient Rper i can be calculated by Rs

and Rp, which are the power reflection coefficient of TE and

TM wave components separately. Besides according to Fresnel

formula [19], Rper i can be represented as:

Rper i = RsRp

=

∣∣∣∣
√
εpercosβrefr i −√

εaircosβin i√
εpercosβrefr i +

√
εaircosβin i

∣∣∣∣
2

×
∣∣∣∣
√
εpercosβin i −√

εaircosβrefr i√
εpercosβin i +

√
εaircosβrefr i

∣∣∣∣
2

,

(4)

where βrefr i denotes the refraction angle. Furthermore, ac-

cording to Snell’s Law[19], Rper i is only determined by εper
and βin i. Therefore, in the propagation stage of reflection on

face, the value of Rper i involves both the inner biomaterial

and 3D geometry features of human face.

Then for the last propagation stage from face to antenna,

combining with Eq. 2 and Eq. 3, the amplitude of received

signal Ar can be calculated as:

Ar =
√

Rper iAe−2α(L+d−di). (5)

According to Eq. 1, the RSS of the received signal RSSi for

tag Ti can be denoted as:

RSSi = 20 log(DAr) = 20 log
[
D
√
Rper iAe−2α(L+d−di)

]
.

(6)

We can find that the value of RSS is relevant to the distance

(d) between the tag array and chin, and d is an unstable factor

because of the movement of human face. In order to better

extract stable facial features, we then subtract the RSS values

of these two tags Ti and Tj to remove the impact of d, which

is irrelevant to the structure of human face. Then we can gain:

RSSi −RSSj = 20 log
D
√
Rper iAe−2α(L+d−di)

D
√

Rper jAe−2α(L+d−dj)

= 20 log

[√
Rper i√
Rper j

e−2α(dj−di)

]
.

(7)
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Fig. 3: RSS difference distributions of various sensing targets.
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Fig. 4: Phase difference distributions of various sensing targets.

It can be observed that the factor d has been eliminated and

the value of RSSi−RSSj only related to Rper i, Rper j and

dj − di. Among these variables, Rper i and Rper j involve

both the inner biomaterial feature and 3D geometry feature of

human face which vary among persons. Meanwhile dj − di
represents the horizontal distance between the center points of

two different blocks on the human face, which also indicates

the 3D geometry feature of human face. Therefore, we can

conclude that the difference between the RSS values of the

tags can reveal both distance-resistant 3D geometry and inner

biomaterial features of human face.

Facial Features Extracted by Phase: Similar to RSS, we

analyze the changes of phase according to the three stages of

RF signal propagation in our model successively. Taking tag

Ti as an example, the phase of the RF signal transmitted from

the antenna before entering face (θ before) can be expressed

as:

θ before = θt +
2π

λ
(L+ d− di), (8)

where θt represents the initial phase value of the transmitter.

As aforementioned, the signal is thought to be unable to escape

once it enters the face, so only the reflections that occur on the

surface of human face are considered. In this case, the phase

of the RF signal (θ after) after reflection can be calculated as:

θ after = θ before + θper i, (9)

where θper i denotes the phase variation caused by reflection

at the human face. We then show that θper i is also related

to the facial features. According to[19], after reflections, there

will be a phase change when the angle of incidence (βper i)

is larger than Brewster angle (βB):

{
θper i = 0, βper i ≤ βB

θper i = π, βper i > βB
, βB = arctan

√
εper i

εair
. (10)

Therefore, θper i is decided by εper i and βper i, which

means that the value of the phase variation (θper i) caused by

reflection on human face can reveal both the inner biomaterial

and 3D facial geometry features of the face.

Combining with the phase changes in the third stage and

substituting Eq. 8 into Eq. 9, we can obtain the final phase of



the received RF signal for tag Ti as:

θi =

[
θ after + θtag i +

2π

λ
(L+ d− di)

]
mod 2π

=

[
θt + θper i + θtag i +

4π

λ
(L+ d− di)

]
mod 2π,

(11)

where θtag i denotes the additional phase shift caused by the

characteristic of tag. Similarly, to remove the factor d, we

subtract θi with θj and the result can be denoted as:

θi − θj =(θper i − θper j) + (θtag i − θtag j)

+
4π

λ
(dj − di) + 2kπ, k ∈ Z.

(12)

It is worth noting that there is a term 2kπ in theory since the

phase of the received RF signal is a periodic function with a

period of 2π. This uncertainty term can be eliminated when we

apply a cosine function in Section IV. Similar to the analysis

of RSS, we can conclude that the difference value of phase

between tags (θi − θj) can represent the 3D geometry and

inner biomaterial features of human faces.

B. Feasibility of Anti-Spoofing Face Authentication

We conduct experiments to demonstrate that the 3D geom-

etry and inner biomaterial features of human face have been

indeed extracted for anti-spoofing FA purpose. Specifically,

we ask two volunteers (Person A and Person B) to put their

faces at a fixed distance in front of the tag array twice, and

record the phase and RSS values of the tags. Then we hold

the 2D photo and 3D printed mask of the two volunteers

respectively, and collect the phase and RSS values. In Fig.

3 and Fig. 4, we calculate the phase difference and the RSS

difference between the surrounding tags with the center one

to analyze the impact of different targets on the tags. We can

observe that the result of 2D photo is different from that of

3D mask, (Fig. 3(d) vs. Fig. 3(e) and Fig. 4(d) vs. Fig. 4(e)),

which shows that the 3D geometry features of human face

have been extracted. Besides, the result of 2D photo also varies

severely to the real human face (Fig. 3(a) vs. Fig. 3(d) and

Fig. 4(a) vs. Fig. 4(d)), which indicates that the traditional

2D static and dynamic attacks can be defended. Similarly, the

result of 3D mask is distinct to the real face (Fig. 3(a) vs.

Fig. 3(e) and Fig. 4(a) vs. Fig. 4(e)), indicating that the inner

biomaterial features of human face have been extracted, and

our system can resist 3D spoofing attacks. Additionally, the

results of the same volunteer at different attempts are very

similar (Fig. 3(a) vs. Fig. 3(b) and Fig. 4(a) vs. Fig. 4(b)),

while they are different for two volunteers (Fig. 3(a) vs. Fig.

3(c) and Fig. 4(a) vs. Fig. 4(c)). Therefore, the features we

extract are unique to everyone, so they can be utilized for

authentication. Additionally, since these characteristics of a

specific human face are difficult to imitate, our system can

resist spoofing attacks.

IV. SYSTEM DESIGN

In this section, we present the design details of RFace. We

first remove noise from raw RF signals and then suppress the

impacts of distance and deflection variations between the face

Fig. 5: System architecture of RFace.

and the tag array to extract a stable fusion feature including

both 3D geometry and inner biomaterial features. Finally, we

utilize an SVM to realize anti-spoofing authentication.

A. System Overview

The architecture of RFace is illustrated in Fig. 5, which

consists of two primary phases: registration phase and au-

thentication phase. Users are required to pose their faces in

front of a tag array for registration and authentication. In

the registration phase, RFace collects the RSS and phase

values of the RF signals reflected from human face, and

feeds them into a denoising and rearrangement algorithm

to construct a sequence of RSS and phase values. Then,

this sequence goes through a distance-deflection disturbance

resistant facial features extraction algorithm. Then a reliable

fusion feature consisting of 3D geometry and inner biomaterial

can be extracted by calculating the RSS and phase differences

between the tags on the tag array. Finally, the extracted fusion

feature is organized into feature blocks according to the time

dimension and fed into an SVM for model training.

In the authentication phase, once a human face is detected,

RFace collects a set of RSS and phase values for about 1.25

seconds, and then goes through denoising and face features

extraction process. Then RFace leverages the extracted fusion

feature to conduct authentication and spoofing attack defense.

B. Denoising and Rearrangement

The collected phase values from an RFID reader involve

noise due to the involuntary movement of faces and imperfec-

tion of hardware. These inevitable defects may make RFace

unreliable. We eliminate the noise by unwrapping successive

phase values [20]. Moreover, we set a window with a size

of five samples and filter out abnormal phase values in the

window with the average of other normal values. Fig. 6 shows

an instance of noise filtering, where abnormal phase values

are filtered out. Additionally, for subsequent face features

extraction, we rearrange both RSS and phase values (which

can be represented as N ∗ 2 ∗M , where N is the number of

frames based on slot ALOHA [21], where M is the sum of

tags) into a new sequence (whose shape is N ∗2∗R∗C, where

R is the number of rows and C is the number of columns in

tag array) according to the layout of the tag array.
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Fig. 7: The impact of deflection. Fig. 8: A 7*7 example to represent the find-

center-and-divide operation in DDDS.

C. Distance-Deflection Disturbance Resistant Feature

Based on the rearranged RSS and phase sequence, we start

to extract the 3D geometry and inner biomaterial features

(which can be represented as fusion feature in the following).

As presented in Section III-A, the RSS difference and phase

difference between tags can reveal the fusion feature of human

faces and we can utilize these two kinds of difference values

to extract a distance-resistant fusion feature. Nevertheless, in

actual FA scenarios, it is hard to ensure that the user’s face

is always in a fixed position and deflection angle relative to

the tag array for each authentication attempt. Moreover, due

to the sensitivity of RF signals, the tiny variations in distance

and angle to the tag array would cause non-trivial errors in the

measurements of RSS and phase values [22]. In order to obtain

more reliable features, we design a facial feature extraction

algorithm resistant to distance and angle variations.

1) Challenges: Intuitively, we can calculate difference val-

ues between any two tags on the tag array to extract desired

fusion feature. However, we have many practical challenges.

Firstly, although arbitrary subtraction can potentially calculate

more facial features, it requires about 2∗C2
M times of subtrac-

tion for each authentication, which is time-consuming. Addi-

tionally, the deflection of user’s face could lead performance

degradation of RFace. As shown in Fig. 7, when a user faces

at a certain angle γ, the RSS and phase differences between

the leftmost and rightmost tags not only involve the relative

distance Δdij , but also the unexpected distance difference

dr due to facing direction. Δdij represents the difference of

distances between the center points of their corresponding

areas to tag array. This unexpected distance dr may make

RFace mistakenly authenticate a legitimate user as illegitimate.

Finally, as shown in Eq. 12, there is an uncertainty term 2kπ
which makes the phase difference unstable with the impact of

distance variation, thus making RFace unreliable as well.

2) Distance-Deflection Disturbance Suppression Algorithm
(DDDS): In order to tackle the challenges mentioned above,

we propose a universal subtraction method that can suppress

the disturbance of distance and deflection as well as achieve

fast and accurate fusion feature extraction. As for deflection, it

is vital to mitigate the unexpected distance difference dr which

may result in authentication deviation. Based on theoretical

analysis, we can find that the closer the two tags are selected

for subtraction, the smaller the dr is. Therefore, the key idea

of suppressing the impact of face deflection is to narrow the

difference calculation range in the tag array. Besides, as for the

2kπ term, the uncertainty of the value k is actually due to the

Algorithm 1: Distance-Deflection Disturbance Sup-

pression

Input: RSS and θ sequence of tags:
{{RSSr,c}, {θr,c}}, r ∈ [1, Row], c ∈ [1, Column];
Output: Difference between RSS and θ sequence:
{{ΔRr,c}, {cos(Δφr,c)}}, r ∈ [1, Row], c ∈ [1, Column];

1 F1(1, Row, 1, Column);
2 ΔR 1+Row

2
, 1+Column

2
← 0;

3 cos(Δφ 1+Row
2

, 1+Column
2

) ← cos(0);
4 Function F1(row1, row2, col1, col2):
5 C.r = row1+row2

2
, C.c = col1+col2

2
;

6 if row2− row1 > 2 and col2− col1 > 2 then
7 Δr = row1+row2

4
,Δc = col1+col2

4
;

8 for r ← {C.r −Δr, C.r, C.r +Δr} do
9 for c ← {C.c−Δc, C.c, C.c+Δc} do

10 if r == C.r and c == C.c then
11 Continue;
12 ΔRr,c ← RSSr,c −RSSC.r,C.c;
13 cos(Δφr,c) ← cos(θr,c − θC.r,C.c);
14 if r == C.r then
15 F1(r, r, c− (Δr − 1), c+ (Δr − 1));
16 else if c == C.c then
17 F1(r − (Δr − 1), r + (Δr + 1), c, c);
18 else
19 F1(r − (Δr − 1), r + (Δr + 1), c− (Δr −

1), c+ (Δr − 1));
20 end
21 end
22 else
23 for r ← [row1 : row2] do
24 for c ← [col1 : col2] do
25 if r == C.r and c == C.c then
26 Continue;
27 else
28 ΔRr,c ← RSSr,c −RSSC.r,C.c;
29 cos(Δφr,c) ← cos(θr,c − θC.r,C.c);
30 end
31 end
32 end

variation of distance. Here, we can eliminate this uncertainty

by calculating the cosine of the phase difference to obtain a

stable distance-resistant feature.

According to the above analysis, we propose the distance-

deflection disturbance suppression (DDDS) algorithm (as

shown in Algorithm 1) to extract reliable fusion feature. The

purpose of DDDS is to decrease the time for difference cal-

culation and avoid the RSS subtraction and phase subtraction

for a pair of tags that are far apart on the tag array (e.g., the

leftmost and rightmost, top and bottom). To this end, we first

find the center point of the tag array (C) (as shown in Fig. 8

with a 7 ∗ 7 tag array as an example) and divide the tag array

into smaller blocks based on the row and column where C
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Fig. 9: Distributions of raw RSS and phase and features

extracted by DDDS in different distance conditions.
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Fig. 10: Distributions of raw RSS and phase and features

extracted by DDDS in different deflection conditions.

locates. Then we repeat this find-center-and-divide operation

until we obtain the smallest block whose rows and columns

are both no more than 3. Next, for each smallest block, we first

find the subcenter of it (Csub), and then for each remaining

tag (represented by Tr,c, with r and c as the row and column

it locates) in this block, we get:

ΔRr,c = RSSr,c −RSSC sub, (13)

Δφr,c = θr,c − θC sub, (14)

with ΔRr,c and Δφr,c denoting the RSS difference and phase

difference between Tr,c and the corresponding subcenter point

Csub of the block. For the subcenters (Csub) of these smallest

blocks, we utilize the same method to get their ΔRr,c and

Δφr,c by calculating the RSS difference and phase difference

between the subcenters (Csub) and the center point of the

whole tag array (C). So far, we have obtained ΔR and Δφ
of all tags. In the end, as we have analyzed at the beginning,

we have to substitute Δφ by cos(φ) in the phase part of our

final fusion feature. Finally, combining the ΔR and cos(Δφ)
of all tags in the tag array, we form a 3-dimension feature

array with a shape of (2 ∗R ∗C) with only (2 ∗R ∗C) times

of subtraction operations.

Fig. 9 and Fig. 10 show the effect of our DDDS algorithm

with the 7∗7 tag array, where the X-axis and Y-axis represent

the row and column of the tag array respectively. Compared

with the distribution of raw RSS and θ of each tag before,

the values of ΔR and cos(Δφ) after applying the DDDS

algorithm become more stable under varying distance and

deflection conditions. Hence, we can obtain a reliable fusion

feature based on the DDDS algorithm.

D. Anti-Spoofing Authentication

Based on the extracted face fusion feature, we next demon-

strate how to perform face authentication and defend against

spoofing attacks. In addition to the aforementioned RSS differ-

ence and phase difference, we also include the time series as a

new dimension in the feature extraction. We take A (A = 5 in

implementation) consecutive fusion feature arrays (2 ∗R ∗C)

in time series as a fusion feature block (A ∗ 2 ∗ R ∗ C),

and reshape the fusion feature which we obtain from DDDS

algorithm into a five-dimensional array (N/A ∗A ∗ 2 ∗R ∗C).

Fig. 11: Experimental setup.

Then the following anti-spoofing authentication and feature

visualization are all based on this five-dimensional fusion

feature array.

In RFace, we utilize an SVM as the classifier to implement

face authentication and spoofing attack detection. Specifically,

each user needs to provide a batch of signal samples to

train the SVM for RFace registration. All feature blocks

are reshaped as one-dimensional feature vectors to train the

SVM. In the authentication stage, once receiving a login

request, RFace feeds extracted features from the received

signal samples into the pre-trained SVM model which outputs

a series of confidence coefficients representing the similarity

between the login user and the registered users in the database.

Then RFace finds the largest one among these confidence

coefficients and compare it with a pre-determined threshold.

If it is larger than the threshold, the user will be accepted as a

legitimate user. Otherwise, the user will be denied. Since the

fusion feature of each person is distinct, unregistered users

will fail the authentication owing to low similarity. Further-

more, as spoofing attackers cannot produce inner biomaterial

features, attackers will be rejected by the threshold-confidence

comparison mechanism.

V. EVALUATION

We evaluate the performance of RFace in real environment

on both authentication and anti-spoofing.

A. Implementation

Hardware: RFace is implemented with an Impiji R420
reader connected to a directional antenna Larid A9028. Be-

sides, we utilize 49 Alien-9629 RFID tags to form a 7 ∗ 7 tag

array in a perpendicular orientation deployment as shown in

Section II. The working frequency of RFace is 920.625MHz.

Software: The collection of RF signals is implemented by

C# based on slot-ALOHA protocol and EPC Gen2 standard

to avoid collision and control the communication respectively.

The processing algorithms of RFace are implemented by

Python which runs on a personal computer (PC) with Intel(R)

Core(TM) i5-8250U 1.6 GHz CPU and 8 GB RAM.

Experimental Setup: We conduct our experiments in a

typical laboratory environment. Fig. 11 shows the default setup

of RFace. The directional antenna is placed 30cm behind

the tag array to transmit interrogative RF signals, and users

place their faces around 10cm in front of the tag array for

authentication. Then RF signals reflected from human faces are

collected and further sent to PC via Ethernet for processing.



Fig. 12: ASR and EER

with raw data and RFace.

Fig. 13: Confidence dis-

tributions for users.

Fig. 14: ROC curves for

RFace and raw data.

Fig. 15: The effect of the

training set size.

Data Collection: We invite 30 volunteers (10 females and

20 males) aged from 18 to 30 in our experiments. Among the

30 volunteers, we randomly choose 5 volunteers as spoofers

and the rest 25 volunteers register as legitimate users. In the

registration phase, we collect three groups of RF signals (each

group contains 60 fusion feature blocks) for each legitimate

user, which takes about 225 seconds. Then in the authentica-

tion phase, each legitimate volunteer performs authentication

for 120 times and each illegitimate volunteer performs 360

times authentication to test the performance of RFace. Each

authentication attempt takes about 1.25 seconds.

Metrics: We define six metrics to evaluate RFace: Authen-

tication Success Rate (ASR), False Accept Rate (FAR), False

Reject Rate (FRR), Receiver Operating Characteristic (ROC),

Equal Error Rate (EER) and Defense Success Rate (DSR).

ASR is the probability that the system authenticates a legiti-

mate user correctly and can be represented as: ASR = Nacc

Nall
,

where Nacc is the number of correct authentication times for

legitimate users and Nall is the number of all authentication

times for legitimate users. FAR is the probability that the

system mistakenly authenticates an illegitimate user as a

legitimate one and can be represented as: FAR = Nwr

Nil
, where

Nwr is the number of wrong accepted times for illegitimate

users and Nil is the number of all authentication times for

illegitimate users. FRR is the probability that the system

mistakenly authenticates a legitimate user as an illegitimate

one. ROC curve indicates the relationship between the ASR

and FAR under various threshold. Additionally EER describes

the rate where FAR equals FRR. Finally, we define the DSR to

measure the performance of RFace on anti-spoofing. DSR is

the probability that a spoofing attack is successfully detected,

and the higher DSR indicates that RFace is more secure. DSR

can be formulated by: DSR =
Ndef

Natt
, where Ndef is the

number of successfully detected spoofing attacks and Natt is

the number of all spoofing attacks.

B. Overall Performance

We first compare the overall performance of RFace

with/without our DDDS algorithm. As shown in Fig. 12,

the ASRs for RFace and raw data are 95.73% and 85.55%,

respectively. Meanwhile, with the threshold of 0.8, the EERs of

RFace and raw data are 4.40% and 14.60%, respectively. These

comparison results demonstrate that our denoising and feature

extraction method can effectively remove noise and improve

feature quality. To show if RFace is able to reject illegitimate

users, we plot the confidence distributions of legitimate users

and illegitimate users in Fig. 13. This result indicates that

RFace can effectively reject illegitimate users with a high

probability. Therefore, as shown in Fig. 14, RFace can achieve

a low FAR of 4.48% while the FAR of raw data is as high as

16.52%. These results demonstrate that RFace can authenticate

users accurately and securely. In addition, our experiments

show that every authentication only takes 1.26 seconds on

average, indicating that RFace performs well in real-time

authentication.

C. Effect of Training Set Size

To explore the effect of training set size, i.e., the number

of feature blocks of each user in the training set, we vary the

size from 20 to 90. The experiment results shown in Fig. 15

indicate that with 90 feature blocks for each user, RFace can

achieve a FAR that is lower than 5.0% while retaining a high

ASR of about 95.5%. This result also shows that RFace is

user-friendly in user registration because collecting 90 feature

blocks only takes 112.5 seconds approximately.

D. Performance Towards Distance and Deflection Variations

In the distance experiment, we use the feature blocks

collected in 10 centimeters distance as the training set. Then

we vary the distance from 5 centimeters to 15 centimeters

to evaluate the impact of distance. The authentication results

are shown in Fig. 16(a), in which we find that large distance

variation (i.e., far from 10 centimeters) would cause ASR

reduction. However, even if the difference is 5 centimeters, the

reduction scale is still acceptable (less than 6%), which proves

that DDDS algorithm is effective at distance disturbance

suppression and RFace is robust to distance variation.

In the deflection experiment, we use the normal feature

blocks without deflection as the training data. Then we col-

lected testing data of two orientations (i.e., leaning left or right

of cheeks) of deflections. Specifically, we vary the deflection

angles from 5 degrees to 15 degrees. As in Fig. 16(b), it can be

observed that even if the left or right deflection is 15 degrees,

RFace can still achieve a high ASR. Therefore, DDDS is also

effective in deflection impact suppression.

E. Attack and Defense

Attack Realizations: We evaluate our system against three

types of spoofing attacks: 2D spoofing attack, 2D+ spoofing

attack and 3D spoofing attack. For the 2D spoofing attack,

there are two attack methods including static and dynamic

attacks, which are respectively realized with photos and videos

of three victims (each authenticates 60 times) in front of
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Fig. 16: The impact of distance and deflection on ASR.

the tag array. For the 2D+ spoofing attack, we recruited five

unregistered volunteers as attackers, each wearing a soft PVC

mask printed with victim’s photo respectively. We make three

soft PVC masks with three victims’ photos and each attacker

wears each mask to attack RFace 60 times. For the most

challenging 3D spoofing attack, we launch attacks by utilizing

photosensitive resin to build three 1 : 1 scale 3D masks of

victims which simulate both 2D features and precise depth

features of the victim. Specifically, we also pose each 3D

printed mask in front of the tag array to perform 3D spoofing

attack 60 times. The setup of these three types of attack is

presented in Fig. 11.

Defense Performance: We calculate the DSRs of three

types of attacks. The results are shown in Fig. 17, which

indicate that the DSRs for all three types of attacks are 100%.

This is because the confidence coefficients of the features

provided by attackers cannot reach our empirical threshold of

0.8. The results indicate that the extracted inner biomaterial

feature is effective in defending against the spoofing attacks.

Table I compares RFace with four advanced FA systems. The

results show that, compared with other FA systems, RFace can

protect users’ privacy and defeat various spoofing attacks.

VI. RELATED WORK

Facial Feature-based Authentication: Over the past

decades, FA has been extensively studied in literature. For

instance, Alfalou et al. [26] leverage a nonlinear function to

increase the correlation peak to make the face recognition

application more robust. However, traditional FA systems,

which only capture user’s two-dimensional facial features,

are vulnerable to spoofing attacks. To solve this problem,

many solutions were proposed to verify if a user is alive,

i.e., liveness detection [1, 3, 27]. For example, EchoPrint

[27] employs inaudible voice emitted by a smartphone to

TABLE I: Comparison with previous work

System
2D

Attack
Resistance

2D+
Attack

Resistance

3D
Attack

Resistance

Privacy
Preserved

Samsung
FR [23] × × × ×

EchoFace
[24] � � × ×

FaceHeart
[25] � � × ×
Face

Flashing[3] � � × ×
RFace � � � �

Fig. 17: The change of DSR of three attacks with threshold.

sense the 3D contour of human face to check the liveness.

Nevertheless, existing anti-spoofing techniques only sense the

3D structure of human face, which makes them vulnerable

to 3D-printed faces [28]. In this paper, we try to defeat this

spoofing attack problem by extracting both the 3D geometry

and inner biomaterial features from RFID backscatter signals

using COTS RFID systems.

RFID Sensing Techniques: Recently, RFID has been de-

veloped in many application fields, such as user authentication

[20, 29], activity recognition [30, 31], localization [32, 33],

and so on [34]. RF-Mehndi [20] is an RFID-based user

authentication system. It leverages the coupling effect of a tag

array to amplify user’s impedance feature to achieve biometric

acquisition. DU et al. [30] design a novel in-library activity

recognition system to facilitate readers and book managers.

3DLRA [32] develops a 3D indoor localization system with

RFID tags. It uses deep learning to analyze the variation

characteristic of signal indicators to localize tags in 3D space.

VII. CONCLUSIONS

In this paper, we build a novel facial authentication sys-

tem named RFace with COTS RFID devices. RFace ensures

privacy-preserving and spoofing-resistant simultaneously. We

build a rigorous theoretical model to prove the feasibility of

extracting both 3D geometry and biomaterial features from

backscatter RFID signals. In order to alleviate the impact

caused by position difference in real scenarios, we design a

novel distance and deflection disturbance suppression algo-

rithm. We conduct comprehensive evaluations with 30 par-

ticipants in various experiment settings. The results show that

RFace achieves an ASR of 95.73% and an EER of 4.4%. More

importantly, RFace can effectively defeat spoofing attacks by

jointly considering 3D geometry and biomaterial features.
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