
Embracing Tag Collisions: Acquiring Bloom Filters

across RFIDs in Physical Layer

Zhenlin An, Qiongzheng Lin, Lei Yang and Wei Lou

Department of Computing, The Hong Kong Polytechnic University, Hong Kong

Email: {an, lin, young}@tagsys.org, csweilou@comp.polyu.edu.hk

Abstract—Embedding Radio-Frequency IDentification (RFID)
into everyday objects to construct ubiquitous networks has been
a long-standing goal. However, a major problem that hinders
the attainment of this goal is the current inefficient reading of
RFID tags. To address issue, the research community introduces
the technique of Bloom Filter (BF) to RFID systems. This work
presents TagMap, a practical solution that acquires BFs across
commercial off-the-shelf (COTS) RFID tags in the physical layer,
enabling upper applications to boost their performance by orders
of magnitude. The key idea is to treat all tags as if they were
a single virtual sender, which hashes each tag into different
intercepted inventories. Our approach does not require hardware
nor firmware changes in commodity RFID tags - allows for
rapid, zero-cost deployment in existing RFID tags. We design and
implement TagMap reader with commodity device (e.g., USRP
N210) platforms. Our comprehensive evaluation reveals that the
overhead of TagMap is 66.22% lower than the state-of-the-art
solution, with a bit error rate of 0.4%.

I. INTRODUCTION

Today’s largest and fastest growing market of the Internet

of Things (IoT) by unit sale comes from the Radio Frequency

IDentification (RFIDs) [1]. In RFID systems, a device called

the reader transmits a continuous high-power RF signal.

Nearby tags can modulate the reader’s signal by changing

the impedance match state of antenna to convey a message

of zeros and ones back to the reader. Such communication

allows tags to work without batteries; they operate solely by

harvesting the energy from reader’s RF signal [2].

A fundamental operation in RFID systems is to scan and

read 96-bit or 128-bit Electronic Product Codes (EPCs, aka

ID) from tags, wherein time efficiency is a crucial performance

metric, especially when dealing with large volumes of RFID

tags. The challenge is that tags can collide and cancel each

other out, resulting in wastage of bandwidth and an increase

in the total delay. Many existing work made efforts to design

more efficient anti-collision inventory protocols [3]. However,

the lack of traditional transceivers [2] prevents tags from

utilizing a suitable channel to transmit additional bits per

symbol and increasing the bandwidth efficiency. Other sophis-

ticated communication mechanisms (e.g., CDMA or FDMA)

are unsuitable due to their high energy demand. Worsely, tags

merely rely on the reader to schedule their medium access

with the framed-slotted ALOHA protocol because they cannot

“hear” from each other. These limitations force the reader to

go through a time-consuming inventory procedure.

To address the issue, the research community introduces the

technique of Bloom Filter (BF) to RFID systems [4]. Unlike

0 1 0 0 1 0 1 1 0 1 0 0

t1 t2 · · · · · ·

1 2 3 4 5 6 7 8 9 10 11 12

Reader h1(t1) h2(t1)
h3(t1)

h2(t1)
h2(t2) h3(t2)

(a) Acquisition of a Bloom filter

0 1 0 0 1 0 0 1 0 1 0 1

t1 t2
· · · · · ·

tn+1

1 2 3 4 5 6 7 8 9 10 11 12

Acquired BF:

(b) Presence test with an acquired BF

Fig. 1: Acquisition of a Bloom filter in an RFID system. (a)
Initially, the M -bit BF bitmap begins as an array of zeros. The reader
divides the acquisition procedure into M time slots corresponding to
the M bits. Each tag in the set T = {t1, t2, . . . , tn} is hashed K
times using the hash functions of {h1, h2, . . . , hK} into K slots,
in each of which the tag yields a short presence signal to show its
presence. The reader sets a bit to 1 if any signal is detected in the
corresponding slot. (b) To check if a tag is present, hash it K times
and check the corresponding bits in the acquired BF. For example,
the t2 cannot be on the spot, since a ‘0’ is found at one of the bits;
a new tag (e.g., tn+1) must arrive since unwanted ‘1’ is found.

previous anti-collision protocols that avoid collisions, these

works embrace collisions as informative feedbacks. A Bloom

filter is a space- (or time-) efficient probabilistic data structure

that is used to represent a set. It can tell whether an element

is a member of the set that it represents. Fig. 1 demonstrates

how the reader acquires a BF across tags and how the acquired

BF is utilized to test the presence of a tag.

The upper layer can employ the acquired BF to explore

many notable applications. For example, consider a warehouse

that stores a large number of high-valued commercial prod-

ucts or a military base that stocks a large number of guns

and ammunition packages [4]. How can a staff immediately

determine if anything is missing? The BF naturally fits the

demand of this application because it is an exact representation

of the current tag set. Specifically, all tags are hashed K times

and the corresponding bits in the acquired BF are verified.

One tag is considered to have been definitely moved out or

missing when a ‘0’ is found; otherwise, it is assumed to be

still present, although this assumption may be incorrect with

a low probability.

Yet, RFID-oriented protocols or applications that appeal to

BFs are actually NOT available to today’s RFID systems,

because translating the idea of acquiring BFs across RFIDs

Reader Select Query

RN16

ACK

PC+EPC+CRC

QueryRep

RN16Tag 1

1st slot

(Collision)

2nd slot

(Empty reply)
1st slot

(Successful reply)

1st frame

RN16Tag 2 PC+EPC+CRC

2nd slot

(Successful reply)

QueryAdjust QueryRep

2nd frame

Filtering

ACK

RN16

Collide slot Empty slot

Singleton slot

Singleton slot

Fig. 2: Gen2 inventory procedure. The reader starts an inventory procedure with a Select command, which selects a group of tags to
join. Each inventory is composed of many frames, which are initiated by either a Query or QueryAdjust command. Further, the reader
divides a frame into many time slots with QueryRep. Tags (e.g., tag 1 and tag 2) randomly selects a time slot to reply. In particular, a
short reply called RN16 must be transmitted for collision avoidance before the transmission of a long reply.

into a practical system faces three major challenges:

• First, the primary challenge arises from the hardware con-

straint. The core of BF is the on-tag hash functionality,

which allows each tag to select time slots according to

the hash value of its EPC, making results predicable -

exactly knowing which bits a desired tag is mapped into.

Current pseudo-random generators of tags cannot meet the

demand of predictability. One option is to supplement newly

designed hash functions to tags [5]. However, they require

new hardware (thousands of gate equivalents [6]) for RFID

tags, making them significantly more expensive.

• Second, transmitting and receiving presence signals is non-

compliant with today’s RFID air protocols. These non-

standard operations would leave out the billions of RFIDs

already deployed in the today’s world, some of which were

even installed a decade ago.

• Third, the pioneering work named Tash [7] takes a step

towards designing hash primitives in the application layer.

Unfortunately, applications have no control of the physical-

layer inventory procedure. Thus the application-layer Tash

still requires the time-consuming anti-collision processing,

without unleashing full efficiency potentials of embracing

collisions.

In this work, we present TagMap, a practical solution that

acquires BFs across commercial off-the-shelf (COTS) RFID

tags in the physical layer, enabling upper applications to boost

their performance by orders of magnitude. TagMap introduces

multiple innovations that enable it to deal with the above

challenges. First, TagMap shifts the computation loads for

hashing from tag side to the reader side by an emulated hash

function. When running, it treats a portion of the pre-stored

hash values as a new hash value. Second, TagMap reader

forces all tags that are hashed into this bit to transmit their

RN16 replies in the first single slot and regards a detected

RN16 reply as the presence evidence of a tag and skips

the remaining anti-collision phase. Third, TagMap defines the

Modulo operation, allowing to acquire arbitrarily sized BFs.

Summary of Results. TagMap offers a new and interesting

tradeoff point on the spectrum between feasibility and effec-

tiveness. Our experiments reveal the following findings:

• TagMap is compatible with the EPCglobal Gen2 protocol

and can serve 97.5% types of commercial tags in today’s

market, even some were deployed 13 years ago.

• TagMap reduces the acquisition overhead by 74.73% and

66.22% compared with commercial readers (e.g., ImpinJ

R420) and Tash [7] respectively. TagMap has a mean bit

error rate of less than 0.4%.

• TagMap can accurately find out 97.1 ± 0.4% of missing

events within 2 seconds when 20% of tags are removed,

whereas a commercial reader requires more than 15 seconds

to know these events.

Key Contributions. This work presents a system that can

acquire BFs across COTS RFID tags in the physical layer.

Our design presents three key innovations. First, it emulates

on-tag hash and modulo functionality; second, it intercepts an

inventory to test if any tags are hashed into the corresponding

bit; finally, this work also presents a prototype implementation

and reveals the utility of BFs in typical application scenarios.

II. BACKGROUND

A. A Primer on Gen2 Air Protocol

The Gen2 RFID system adopts the reader-talks-first mode,

in which the reader dominates the communication and all

the tags follow its commands. Physical and MAC layers are

designed with power asymmetry.

Physical Layer: The reader transmits a continuous high

power RF signal (called continuous wave, or CW), which is

used to supply energy to tags and carrys out query commands.

Nearby RFID tags reply to the reader’s query by reflecting the

high power RF signal via ON-OFF keying. The tags transmit

a bit by changing the impedance on their antennas.

MAC Layer: A framed ALOHA MAC protocol, called Q-

adaptive, is employed in the Gen2 standard to avoid collisions.

The reader divides time into several slots, which are further

organized into frames. As shown in Fig. 2, the reader starts an

inventory by broadcasting a Select command for choosing

a group of tags to join in the incoming inventory (select all

by default). Then the command Query or QueryAdjust

follows to start a new frame, in which each unidentified

tag randomly selects a time slot to reply. The command

QueryRep indicates a new beginning of a slot. During a slot,

the tag transmits a 22-bit short reply (called RN16) firstly for

collision detection. Then, either of the following two cases

occurs on the reader side:

• RN16 is successfully decoded, which indicates that only one

tag was transmitting (i.e., singleton slot). The reader then

requests its 128-bit long reply (i.e., PC + EPC+ CRC) by

issuing an ACK command.

• Otherwise, the situation indicates either a collision or non-

reply (i.e., called collision slot and empty slot). In this case,

the reader proceeds to the next slot without requesting any

long reply. Thus, singleton slots are longer than other slots.

In the end of each frame, if any collision slot is detected or any

long reply is corrupted, then the reader restarts a new frame

using QueryAdjust for these tags. QueryAdjust is able

to adjust the frame length based on the number of collisions

in the previous frame. This procedure terminates till all tags

are identified.

B. Comparison with the Sate-of-the-Art

This work is inspired by a pioneering work - Tash [7], which

emulates a group of hash primitives in the application layer.

However, our solution is more efficient and practical prior to

Tash at least in two aspects.

• Practicality: As an application-layer emulation technique,

Tash highly depends on a Gen2 command, i.e., Truncate,

which forces tags to transmit truncated EPCs. These in-

complete EPCs are viewed as the presence evidence of

tags. Unfortunately, to our best knowledge and investigation,

we have not found any Truncate-available tags on the

market. Actually, this issue has been claimed in [7]. This

is also the reason that the performance of Tash [7] related

to this command is evaluated with simulations, instead of

real tags. On the contrary, our solution uses RN16 reply as

presence evidence. As a fundamental reply, the RN16 reply

is completely serviceable in today’s Gen2 tags.

• Efficiency: The anti-collision processing is actually un-

avoidable in Tash, because there is no way to control the

inventory procedure in the application layer. No relevant

APIs are provided by commercial readers so far. Our ap-

proach intercepts an inventory in the physical layer to skip

the anti-collision processing.

In short, TagMap is highly advantageous due to its physical-

layer performance boost and full compatibility with COTS

tags.

III. SYSTEM DESIGN

In this section, we firstly sketch the overall solution and

then progressively elaborate technique details.

A. Formulation of Bloom Filter

A BF represents a set T = {t1, t2, . . . , tn} with n tags. It is

described by an array of M bits, which are initially set to 0.

We can use K hash functions, {h1, h2, . . . , hK} to map each

Intercepted

Inventory
· · ·

Intercepted

Inventory

Select Query RN16Select· · · τ2 τ3

K

τ1 τ1

0 1 0 1 0 1 0 0

Intercepted

Inventory
· · ·

M

BF bitmap:

Fig. 3: Acquisition solution. To acquire an M -bit BF, TagMap
reader initiates M intercepted inventories, each of which contains
K Selects, one Query and a time window for RN16 reply.

tag in the universe to a number within the range {1, . . . ,M}.

For each tag t ∈ T , the bits of {h1(t), . . . , hK(t)} are set to

1. A bit can be set to 1 multiple times (e.g., collisions), but

its value remains 1. To check if a tag t is in T , we check if

all bits of {h1(t), . . . , hK(t)} are set to 1. If not, then t is not

in the tag set. If all bits are set to 1, we assume that t is in

T , although this assumption may be wrong with sufficiently

low probability, namely, yielding a false positive. The false

positive rate depends on parameter selection: using many hash

functions equates to a high probability of finding ‘0’ bits for

each tag that is not in the set; using a few hash functions

increases the fraction of ‘0’ bits in the map. Here, we present

two useful Lemmas as follows:

Lemma 1: The false negative rate is minimized when the

number of hash functions K = ⌈ln 2 · (M/n)⌉.

Lemma 2: Given a tolerance ε (i.e., upper bound of false

positive rate), BF length M ≥ ⌈n log2 e · log2(1/ε)⌉.

Their proofs are similar in nature to the standard analysis of

the Bloom filter as shown in [8]. The number of tags n is

assumed to be known already. It can be discovered through a

preliminary inventory or stored in backend.

B. Solution Sketch

The features and usage of the Bloom filter have been widely

studied in various fields [8]. They are not our focus in this

work. Instead, we more concern about the way to acquire a

BF across RFID tags, which must be tightly integrated with

the standard EPCglobal Gen2 RFID air protocol [9], making

billions of tags serviceable. The whole solution consists of two

phases as follows:

• In offline phase, we compute the hash value of each tag’s

EPC and store it inside the tag’s non-volatile memory bank

for future use. The storing can be accomplished by using

the standard Gen2 command of Write. This phase is only

initiated once. For example, it is initiated when the user

writes EPCs to tags.

• In online phase, the reader acquires a BF bit by bit. The

TagMap reader initiates an intercepted inventory for each

bit. The inventory is used to answer the question of presence

that if any tag is hashed into the corresponding bit. If answer

is positive, the bit is set to one; otherwise, it is set to zero.

Fig. 3 shows the acquisition procedure from a high-level.

To acquire an M -bit BF, the reader initiates M intercepted

inventories, each of which corresponds to a bit in the BF. In

Tag Memory Model

0 1 1 1 0 1 0 1 1 1 0 0 0 1 1 0 H(t)

1 0 1 0 1 1 1 0 1 1 0 1 0 0 1 0 tMemBank1:

MemBank3:

10102

1 0 1 0

l = 4

bitmask
r = 5

r = 5, l = 4

Fig. 4: Illustration of a hash function. The figure shows a tag’s two
memory banks: MemBank1 and MemBank3, which store the tag’s
EPC t and the real hash value H(t) respectively. Given an input of

r = 5 and l = 4, the output of h(4)(t, 5) equals 10102, which exactly
is the sub-bitstring of H(t) within [5, 9) bits stored in MemBank3.

each inventory, the reader broadcasts K Select commands

and one Query command; the tags matching the hash rules are

forced to transmit their RN16 replies in the first slot. In the end

of the intercepted inventory, the reader determines the value of

the corresponding bit. The subsequent sections progressively

introduce this acquisition approach by discussing the following

issues:

• Emulating hash function. Commercially available tags at

present do not support hash functions. Thus, our first task is

to emulate a hash function that works as if it was embedded

on each tag.

• Answering the question of presence. With the emulated hash

functions, a TagMap reader initiates an intercepted inventory

to suggest whether any tag that can output a given hash value

is present or not.

• Acquiring a Bloom filter. Finally, we show how the reader

builds a whole BF bit by bit through a series of intercepted

inventories in three cases.

C. Emulating Hash Functions

A hash function, denoted by h(l)(t, r), outputs an l-bit hash

value when given a tag’s EPC t and a random number r. It

takes three inputs: (1) an lt-bit tag’s EPC number t; (2) an

lr-bit random number r; and (3) the bit length of the hash

value l. Formally,

h(l)(t, r) : {0, 1}lt × {0, 1}lr → {0, 1}l (1)

where l is also called the dimension of the hash function. The

output is randomly distributed in [0, 2l). Following a common

practice, we create K hash functions by shuffling the output

using K different random numbers. The kth hash function is

denoted by h
(l)
k (t, rk). The superscript l is sometimes omitted,

such as h(t, rk), hk(t) or hk, for clarity unless it should be

noted.

Memory Banks. Before introducing the hash design, we

need to introduce some background about the memory bank

of tag. The Gen2 air protocol specifies a simple tag memory

model: each tag contains four types of non-volatile memory

blocks (called memory banks). The first three banks are used

to store the password, EPC number and TID number. The last

memory bank (MemBank3) is reserved for user-defined data.

Fig. 4 demonstrates the first and the third memory bank. The

Read or Write commands are used to read or write data

from or into these banks respectively.

Hash Function. Initially, we compute the real hash value

(denoted by H(t)) of a tag’s EPC by using SHA-1 for tag t,
and then store H(t) in the tag’s MemBank3 for future use.

Note both operations are performed once in the offline phase.

We define a tag’s sub-bitstring within [r, r+ l) in MemBank3

as its l-bit hash value challenged by the random number r.

In other words, our hash value h(l)(t, r) is a portion of H(t)
stored in MemBank3. Fig. 4 demonstrates the relation between

the real hash value and our hash value, where the tag’s 4-bit

hash value h(4)(t, 5) = 10102
1. Clearly, our design does not

requires a tag to equip a real hash function or gets its chip

involved.

Discussion. A few points are worth noting:

• Evidently, h(l)(t, r) is random and its randomness is derived

from H(t), which is supposed to have good quality of

randomness at each bit. If the upper application needs

a stronger randomness, one could store a truly random

bitstring in the MemBank3 rather than the real hash value,

meanwhile save the mapping between the EPC and the

bitstrings in database for future query. In addition, to avoid

the dependence of K hash values, one can tactfully choose

r1, . . . , rK such that [r1, r1 + l) ∩ · · · ∩ [rK , rK + l) = ∅.

• The computation of H(t) is performed in a host computer

rather than on tags, so its workload is almost neglected.

Storing H(t) is also performed once until the tag’s EPC

is changed, which is unlikely to happen often in practice.

Although writing data into memory bank usually takes a

longer time than reading them, the writing is performed in

offline phase thereby its workload is not counted into the

acquisition overhead.

• A possible concern is if today’s RFID tags in the mar-

ket can serve our design in terms of the operability of

MemBank3. We investigate 40 tag chips from ImpinJ [10],

Alien and NXP, whose total market share exceeds 80% [1].

The investigation result suggests that TagMap is completely

compatible with the EPCglobal Gen2 air protocol and can

serve 97.5% types of tags, except those that are read-only.

More details refer to §IV.

D. Answering the Question of Presence

A simple way to obtain a tag’s hash value is to Read

the corresponding sub-bitstring from its MemBank3. However,

keep in mind that our ultimate goal is to acquire a BF across all

tags instead of their hash values. Here, we consider a question,

named question of presence, that is, is there any tag which

can output a wanted hash value? Formally, given the input

pair (r, l) and the hash value v, we determine if
∣∣∣{t|h(l)(t, r) = v}

∣∣∣ > 0

1(·)2 means a value in binary format.

MemBank3

Reader
Tags

Select

0 1 0 1 1 1 0 0

1 1 1 1 0 1 0 0

0 1 1 1 1 1 0 0

0 1 1 1 0 1 1 0

0 1 0 1 1 1 0 0

0 1 0 0 1 0 0 0

1 1 1 0 1 1 0 0

Select

t1

t2
t3

t4
t5

t6 t7

Pointer = 4

Length = 3

Mask = 1102

S(4, 3, 1102)

Select Query RN16Reader

Time

Fig. 5: Illustration of selective reading in Gen2 protocol. 7 tags
are covered by a reader. The reader initiates a Select command
S(4, 3, 1102). As a result, tags of t2, t3, t5 and t6 (highlighted in
red) are only selected to join in the incoming inventory because their
MemBank3s’ sub-bitstring (highlighted in red) within [4, 7) equals
1102. Other tags do not meet the condition and remain silent.

for all t ∈ T , where | · | denotes the cardinality of a set. Since

our hash value is a portion of the real one stored in a tag’s

MemBank3, the question can be converted to a new form as

follows:

Problem 1: Is there any tag whose sub-bistring ∈ [r, r+ l)
in its MemBank3 is equal to v?

Selective Reading. As mentioned in §II-A, any inventory

procedure must be started with a Select command. Gen2

protocol specifies that each tag maintains a flag variable SL.

The reader can use the Select command to turn the SL

flags of tags into asserted (i.e., true) or deasserted (i.e.,

false). Only the asserted tags will respond to a Query (or

QueryAdjust) command, participating the inventory. The

Select command is composed of 8 fields. For simplicity,

we only introduce the four fields, which will be employed in

our design: MemBank, Pointer, Length and Mask.

• Mask: it is a specific bitstring that should match the content

of a specific position in a MemBank.

• Length: it defines the length of the mask in bits.

• MemBank: it specifies which memory bank the mask will

be compared with. We consider MemBank3 only by default

in our scenario.

• Pointer: it specifies the starting position in the MemBank

where the mask will be compared with.

These fields are combined to compose a selection rule. We

formally denote the rule as follows:

S(p
︸︷︷︸

Pointer

,

Length
︷︸︸︷
l , m

︸︷︷︸

Mask

)

which implies that only tags whose MemBank3s’ sub-bitstring

∈ [p, p + l) is equal to m will be selected. Fig. 5 shows an

example in which four tags are selected to join in the inventory.

Note that multiple Selects are allowable (discussed later).

Intercepted Inventory. The function of selective reading

offers an opportunity to select the tags based on a mask. If

the reader broadcasts the following Select,

S(r, l, v)

, then only the tags whose sub-bitstring ∈ [r, r + l) in its

MemBank3 is equal to v, are selected to participate in the

incoming inventory. Interestingly, the set of selected tags

0 2 4 6 8 10 12 14 16 18

Time (ms)

0

0.2

0.4

0.6

0.8

1

1.2

A
m

p
lit

u
d
e
 (

v
)

Intercepted inventory

Select Query RN16

Preamble

τ2 τ3τ1

READER

TAG RN16P

Select Query Select

Time slot

Fig. 6: Baseband signals of an intercepted inventory. The inventory
contains a Select, a Query and an RN16 reply. τ1, τ2 and τ3 are
key timing parameters, which are specified in the Gen2 protocol.
The reader detects the presence of RN16 reply to determine if any
tag responds.

500 1000 1500 2000 2500

Samples#

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

A
m

p
lit

u
d

e

Samples Offset

1

(a) RN16

500 550 600 650 700 750 800 850

Samples#

-2

-1

0

1

2

A
m

p
lit

u
d
e

Acuqired Desired

(b) Preamble

Fig. 7: Baseband signals of RN16 reply. (a) shows the signals
of a RN16 reply, which is composed of a 5-bit preamble and 16
random bits. (b) shows zoomed-in preamble and its comparison with
the desired template.

exactly fit the question of presence! To know if its cardinality

is greater than zero, we let the reader afterwards broadcast

a Query command to start a single-slot frame, by setting

the field of frame length to 1. All selected tags are forced to

reply in the following slot immediately. As aforementioned,

a tag must transmit an RN16 reply firstly before sending its

EPC reply. Our trick here is that the RN16 reply is regarded

as the presence evidence of a tag, which has the given hash

value. As long as the reader detects any RN16 reply signal,

the answer to the question of presence is negative. Finally,

the reader ignores the request of long reply even if a single

tag responds and terminates the inventory procedure. We call

the above procedure intercepted inventory. The inventory is

“intercepted” because an intact inventory is supposed to ACK

the tag’s RN16 reply and request the long reply subsequently

(see Fig. 2). In contrast to the entire inventory, the interval

of an intercept inventory is kept constant regardless of how

many tags participate the procedure. Fig. 6 shows the baseband

signals of an intercepted inventory acquired by USRP N210.

Detecting Presence Signals. Each 22-bit RN16 reply con-

tains a 6-bit preamble and 16 random bits. The reader can

detect an RN16 reply by correlating its preamble template

with the received signals. Considering that the 16-bit random

signals are independent of the preamble, their correlation is

nearly zero except when the preamble is perfectly aligned with

the beginning of an RN16. One or multiple spikes appearing at

the correlation result indicate the presence of one or multiple

tags possessing the given hash value. Fig. 7(a) shows an

example of RN16 reply sent from a single tag. Fig. 7(b) zooms

0 5 10 15 20 25 30

Time(ms)

0.35

0.4

0.45

0.5

A
m
p
li
tu
d
e

1 1 0 0 1 0 0 0

0 1 2 3 4 5 6 7

t3 t2

Query

Select

RN16 t1, t4

BF

Index

Fig. 8: Baseband signals of acquiring an 8-bit BF across 3 tags. The bitmap totally contains 8 bits, each of which corresponds to an
intercepted inventory. The three tags reply in the 1st, 2nd and 5th inventory respectively, so the final BF equals [1, 1, 0, 0, 1, 0, 0, 0].

into its preamble compared with the template.

E. Acquiring a Bloom Filter

So far, we have discussed how the TagMap reader deter-

mines if any tag outputs a given hash value. Now, we start to

acquire a whole BF by considering three cases progressively:

1) Case 1: Acquisition with a Single Hash: We firstly

consider a simplified case, namely, acquiring a 2l-bit BF using

a single hash function: h(l)(t, r). Correspondingly, the bitmap

size M = 2l. The definition of hash bitmap indicates that: a

tag t is hashed into the mth bit of the bitmap if and only if

h(l)(t, r) = m for t ∈ T , where m = 0, . . . ,M − 1.

Namely, the index of the bitmap actually implies the hash

value. We build a BF bit by bit, traversing the index from 0
to M − 1. When building the mth bit, we ask the question of

presence like this: is there any tag whose hash value is equal

to m? To do so, the reader initiates an intercepted inventory

with the Select command of S(r, l,m). If the answer is

positive, the mth bit of the BF is set to ‘1’; otherwise, ‘0’.

This procedure continues until M bits are all traversed.

Fig. 8 shows the baseband signals of acquiring an 8-bit BF

across 3 tags. From the figure, we can observe 8 intercepted

inventories. Zooming into any one of them, three distinct

segments - Select, Query and RN16 - can be observed,

exactly as same as a single intercepted inventory shown in

Fig. 6.

2) Case 2: Acquisition with K Hashes: Secondly, we

consider to acquire a 2l-bit BF using K hash functions:

h(l)(t, r1), . . . , h
(l)(t, rK). In this case, the mth bit is set to

‘1’ when any one tag is hashed into the bit by any one of these

K hash functions. Correspondingly, the question of presence

turns to∣∣∣{t|h(l)(t, r1) = m|| . . . ||h(l)(t, rK) = m}
∣∣∣ > 0

for all t ∈ T . With regard to our hash function, the question

can be expressed as follows:

Problem 2: Is there any tag whose sub-bitstring ∈ [r1, r1+
l − 1), . . . , or ∈ [rK , rK + l − 1) in its MemBank3 is equal

to m?

Since each range corresponds to a Select, answering the

above question requires K Selects.

Interestingly, Gen2 allows the reader to broadcast multiple

Selects before the Query. The result of multiple Select

commands is a union of the selected tags: if a tag’s SL

variable is asserted multiple times, then the final value remains

asserted. The consequence is equivalent to combining the sets

of selected tags. This is exactly the answer to the above

question of presence. Therefore, for the mth bit, the reader

initiates an intercepted inventory, which contains K Selects

as follows:

S(r1, l,m), S(r2, l,m), . . . , S(rK , l,m) (2)

Similarly, if any RN16 signal is detected after the Query, the

corresponding bit is set to ‘1’.

3) Case 3: Acquisition with Arbitrary Size: The first two

cases consider to generate BFs with size of M = 2l bit.

The size M is a key parameter that directly determines

acquisition overhead, and thereby should be well optimized.

Lemma 1 implies the minimal (and optimal) size. Apparently,

the minimal size of BF might not be exactly an exponent of

2. On the other hand, the hash values are stored in a binary

format in the memory bank, so l must be an integer. As a

result, the actual size M has to be set to 2l and l = ⌈log2 M̂⌉

suppose M̂ is the optimal size, such that M ≥ M̂ and l is

an integer. This setting is valid but might be extremely costly.

For example, suppose the optimal size M̂ = 257, we have to

set actual size M = 2⌈log2
257⌉ = 512, which is almost double

than the optimal one.

To enable an arbitrary size, we define the operation of

modulo to shrink the size, as used in other applications [8].

Apparently M ≥ M̂ . Traversing the mth hash value where

m = 0, . . . ,M − 1, the reader forces tags hashed into mth

bits to reply at the

h
l(t, r) mod M̂ (3)

-th intercepted inventory. In other words, if a tag is supposed

to be hashed into the bit greater than or equal to M̂ , then

the tag is moved to reply at (m mod M)th bit-inventory. As

illustrated in Fig. 9, the modulo moves the replies at the bits

equal to or greater than M̂ ahead to align with the first bits.

Correspondingly, the question of presence turns to:

Problem 3: Is there any tag whose sub-bitstring ∈ [r1, r1+
l), . . . , or ∈ [rK , rK + l) in its MemBank3 is equal to m,

m+ M̂ , m+ 2M̂ , . . . , or m+ ⌊M

M̂
⌋M̂?

Therefore, for the mth bit, the reader initiates an intercepted

inventory, which contains multiple Selects as follows:

S(r1, l,m), S(r2, l,m), . . . , S(rK , l,m)

.

S(r1, l,m+ ⌊
M

M̂
⌋M̂), S(r2, l,m+ ⌊

M

M̂
⌋M̂), . . . , S(rK , l,m+ ⌊

M

M̂
⌋M̂)

0 1 0 0 1 0 0 1 0 1 0

1

0 1 2 3 4 5 6 7 8 9 10

0 1 0

11 12 13 14

1 0 1 0 0

11 12 13 14 15

0

15

Moving forward

Truncated bits

M bits

M̂ bits

Fig. 9: The design of modulo. Suppose the optimal size of the BF

is 11, the reader builds 2⌈log2 11⌉ = 16 bit BF and moves the last 5
bits to align with the first five.

It is worthing noting the modulo operation would increase

the number of tags hashed into the head bits, breaking the

randomness of BF. If the upper-layer application requires a

strong randomness, a good way is to move truncated bit (i.e.,

indexes ≥ M̂) forward to a random index less than M̂ while

the reader labels the mapping between the tags and bits so the

application can predicate the hashing.

IV. SYSTEM IMPLEMENTATION

We implement a prototype of TagMap reader by using

a USRP N210 software defined radio equipped with SBX

daughterboard and two directional antennas. The implemen-

tation is based on [11] and integrates TagMap’s design into

the EPC Gen2 protocol. The TagMap reader consists of the

following components: USRP Source, Gate, Tag Decoder,

Reader Encoder and USRP Sink.

• USRP Source: The first block is to acquire samples from

the USRP hardware. In our experiment, the ADC is set to

2MS/s, resulting in 50 samples for each tag bit.

• Gate: The reader always provides continuous signals to

tags, thus is full duplex (i.e., transmitting and receiving

simultaneously). This block is used to track the Query and

Ack commands, and trigger the processing of tags’ replies.

• Tag Decoder: This block is to detect tags’ RN16 reply sig-

nals like preamble correlation, synchronization and channel

estimation.

• Reader Encoder: This block is to implement the reader

commands. Depending on the output of the tag decoder

block, the reader create the next commands. Although this

work only requires the commands of Select and Query,

we implement all other Gen2 commands (i.e., QueryRep,

QueryAdust, Ack), as well as the Q-adaptive algorithm.

• USRP Sink: This block is to propagate the reader command

to the USRP hardware. The USRP transmits at 30 dBm

at a frequency during 902 ∼ 928 MHz. The ADC rate is

configured to 2 MS/s.

V. EVALUATION

Our experiments are performed in our office lounge. A total

of 1000 tags are densely attached to plastic panels 2. The office

section has a size of 3×3×2.5m3, as shown in Fig. 10. Many

sofas and tables are in the lounge. To fully cover numerous

2The deployment mode (like grid) does not affect the performance as long
as each tag can be identified.

USRP Reader

ImpinJ Reader
Antenna

Tags

Antenna

Fig. 10: Experimental scenario

TagMap

ImpinJ

0 1 2 3 4 5 6 7 8 9 10

Time(s)

Fig. 11: Ten-second reading trace

tags, we use a 12 dBi large antenna. The transmitting power

is fixed at 30 dBm. The USRP reader is connected to a 64-bit

MacBook with 2.8GHz Intel Core i7 for running GNURadio.

Test Suite. We begin with a group of microbenchmark ex-

periments to provide insights into the performance of TagMap

with comparison with commercial readers. All EPCs are stored

in database and known to upper applications. This assumption

is reasonable and necessary because identifying if a tag is

missing or under tracking without any prior knowledge of its

existence is impossible. The tolerance of BF is set to 0.25 by

default.

Baselines. To be fair to TagMap, we only focus on

practical techniques without considering previous simulation-

driven evaluation. We compare TagMap against two baseline

schemes: a commercial reader (i.e., ImpinJ reader) [10] and

Tash [7]. As the commercial reader collects all tags in the

range, its inventory results are used as the ground truth.

A. Reading Rate

To better understand how TagMap reader improves the

reading rate, Fig. 11 shows a 10-second reading trace of a

tag. We totally deploy 140 tags in the surveillance region and

randomly select one tag to show it reading trace. These tags are

inventoried by an ImpinJ and a TagMap reader respectively.

In the figure, the red (higher) and gray (lower) bars indicate

the tag is identified by the ImpinJ and TagMap reader re-

spectively. We can visually observe that the tag is much more

frequently identified by TagMap reader than the ImpinJ reader.

In particular, TagMap reader achieves a mean reading rate of

16Hz, outperforming ImpinJ (i.e., 0.8Hz) by 18× higher. Such

outperformance is achieved because TagMap reader removes

the time-consuming processing for anti-collision. In addition,

it can be seen that the tag is identified in a random manner by

the ImpinJ reader but regularly by the TagMap reader. This is

because ImpinJ reader’s anti-collision processing uses a ran-

domized algorithm (an ALOHA variant), while our approach

is a deterministic algorithm (discuss later).

0 200 400 600 800 1000

Number of Tags(#)

0

0.5

1

1.5

2

2.5

3

T
im

e
(s

)

Case1

Case2

Case3

Fig. 12: Overheads across three cases

B. Acquisition Overhead

We are interested in evaluating the acquisition overhead as

function of tag number (i.e., n). The overhead is defined as

the time consumed in acquiring tags or a data structure like

BF for representing them.

TagMap overhead across three cases. Although BF is a

randomized data structure, the acquisition overhead is deter-

ministic. The overhead depends on the bitmap size M and

the number of hashes K. Let TS , TQ and TRN denote the

time consumed on transmitting the Select, Query and

RN16. As shown in Fig. 3, each intercepted inventory takes

K ·(TS+τ1)+TQ+τ2+TRN +τ3 where τ1, τ2 and τ3 are the

constant spaces specified in Gen2. Thus, the total overhead C
is given by

C = M (K · (TS + τ1) + TQ + τ2 + TRN + τ3)

Thus, as long as two parameters are certain, the acquisition

overhead of BF is a constant. This is why the tag is always

regularly identified by TagMap reader in Fig. 11. Next, we

measure the overhead with respect to the three cases discussed

in §III-E. The results are shown in Fig. 12 and understood as

follows:

• In the first case, the minimal size M̂ = ⌈n/ ln 2⌉ when

keeping K = 1 (see Lemma 1) without using modulo. It

seems that the overhead should be linearly proportional to

n, i.e., C ∼ ⌈n/ ln 2⌉. Actually, the figure shows that the

overhead increases step by step. This is because the hash value

is represented in a binary form, we have to set the actual size

M = 2⌈log2
M̂⌉ = 2⌈log2

(n/ ln 2)⌉, making C ∼ 2⌈log2
(n/ ln 2)⌉.

We can exactly observe the turning points appearing at n =
⌈2 ln 2⌉, ⌈4 ln 2⌉, ⌈8 ln 2⌉, · · · = . . . , 89, 178, 355, 719,

• The second case considers using multiple hash func-

tion to lower the false positives. The Lemmas suggest

that M̂ = ⌈n log2 e · log2(1/0.3)⌉ = ⌈2.5n⌉ and K =
⌈ln 2 log2(e) log2(1/0.25)⌉ = 2. Thus, the actual size

M = 2⌈log2
(2.5n)⌉. Similar to the first case, many steps

are observed when n = ⌈2/2.5⌉, ⌈4/2.5⌉, ⌈8/2.5⌉, · · · =
. . . , 103, 205, 410, 820, Compared with the first case, this

case consumes about double time. These the extra time is

consumed on two Selects in each bit-driven intercepted

inventory.

• The third case adopts modulo to fit the optimal size.

Since this case adopts the same settings as that of the second

case (i.e., M = 2⌈log2
(2.5n)⌉ and K = 2), the turning points

are exactly observed as in the second case. However, we

200 400 600 800 1000

Number of Tags(#)

0

5

10

15

20

T
im

e
(s

)

ImpinJ Tash TagMap

Fig. 13: Overheads across solutions

could observe that the time consumed in this case is far less

than the second case. This is because the modulo moves the

truncated bits ahead, reducing the total number of intercepted

inventories. However, the overhead is still higher than the

first case because two or four Selects must be broadcasted

in each intercepted inventory. This case has a good linearity

because it adopts the optimal size which is proportional to

n. Hereafter, we use modulo by default unless it should be

noted.

Overhead comparison to the-art-of-state. Next, we show

the overhead of TagMap compared with ImpinJ reader and

Tash. The results are shown in Fig. 13. From the figure, we

obtain the following findings:

• Since no Truncate-supportable tags are available on

the market, the improvement that Tash can make is very

limited. Specifically, Tash can reduce the overhead by 20%
on the average and achieve maximum overhead of 37% when

n = 1000. Real outperformance is lower than that in the

simulations shown in [7] due to the unavailability of the

Truncate command.

• TagMap can reduce the overhead by 74.73% and 66.22%
to ImpinJ and Tash on the average respectively. The reduction

is almost linear to the number of tags. This is reasonable

because more tags introduce more collisions. In particular,

the outperformance is 86.69% and 83.96% when n = 1000.

This superior outperformance is achieved mainly due to two

unique techniques of TagMap: physical-layer acquisition (i.e.,

intercepted inventory) and being free of anti-collision. In addi-

tion, another distinct feature of TagMap is that its overhead is

unbiased, i.e., the overhead is certain without fluctuation even

facing numerous collisions. In contrast, both ImpinJ and Tash

have about 10% dynamics in time because of the uncertain

anti-collision processding.

VI. CASE STUDY: FINDING MISSING TAGS

Finally, we consider the effectiveness of TagMap in finding

missing tags. We present the results of three cases, which are

discussed in §III-E. We consider the application in view of the

detection accuracy where the tolerance is set to 0.25. We wish

to know the percentage of missing tags that are not found out,

i.e., defined as Error Rate. Accuracy is evaluated as a function

of the missing rate. In the experiment, a total of 1000 tags are

placed in the surveillance region and 5%, 10%, 15% and 20%
of tags are randomly taken away. We run 50 experimental trials

and plot the detection accuracy in Fig. 14.

5 10 15 20

Missing Rate(%)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
rr

o
r

R
a
te

Case1

Case2

Case3

Fig. 14: Detection accuracy

• Case 1: Using a single hash function. From the figure, it is

seen that 0.79% ± 0.3% to 5.2% ± 1.2% missing tags are

falsely detected when the missing rate increases from 5%
to 20%. All results are lower than the predefined tolerance

of 25%. None of the false negatives are reported since the

nature of the Bloom filter yields zero false negative.

• Case 2: Using 3 hash functions. Lemma 1 suggests the

appropriate number of hash functions k = 3. In this case, we

use 3 hash functions to create a 212-bit BF so that more ‘1’s

can be found in the bitmap to prove the presence of tags.

This is confirmed by our tests: the error rate is reduced to

2.4% ± 0.5% even the missing rate equals 20%, removing

almost half (41.65%) false detections in Case 1.

• Case 3: Using modulo operation. We use the modulo

operation to reduce the bitmap length from 4096 bits to 2396
bits. The accuracy for Case 3 is quite similar to that for Case

2 (e.g., 2.9%±0.4% vs. 2.4%±0.5% given missing rate of

20%) because both adopt same number of hash functions.

The about 0.5% difference derives from the fact that the

modulo operation disturbs the randomness of bitmap, i.e.,

moving trail bits to head bits.

Summary. Three acquisition overheads have been compared

in Fig. 13 (i.e., the scenario when n = 1000), which implies

that TagMap and an ImpinJ reader takes 1.9s and 15s to

acquire a BF or identify 1000 tags respectively. In other

words, TagMap can accurately find out 1− (2.9%± 0.4%) =
97.1%± 0.4% of missing events within 2 seconds, whereas a

commercial reader requires 15 seconds to know these events.

VII. RELATED WORK

TagMap is related to previous work in three areas.

Design of Hash Function: Feldhofer and Rechberger [6]

stated that current common hash functions (e.g., MD5, SHA-1,

etc.), are not hardware friendly and are unsuitable for RFID

tags, which possess a constrained computing capability. Such

difficulty has spurred considerable research [6], [12]. De-

spite these optimized designs, the majority of them are still

presented in theory and none is available for COTS RFID

tags. Our work explores hash functions by leveraging selective

reading to emulate equivalent hash functions.

Design of Communication Protocols. Plenty of work focus

on designing communication protocols to improve the effi-

ciency. Buzz [13] decodes tag collisions bit by bit. It assumes

the linear combination of the static channel coefficients of

reflecting tags independent of coexisting tags. BiGroup [14]

recovers collisions without modifying COTS tags, but instead,

changes the readers. However, these works either require

modifying tags or work under specific conditions.

BF Applications: The traditional inventory interrogates all

the tags, which makes it time-inefficient. These works [4], [15]

proposed continuous reading protocols that can incrementally

collect tags in each step by using a BF. TagMap provides a

fundamental service to boost these works.

VIII. CONCLUSION

This work provides a fundamental service to today’s com-

mercial RFID Gen2 tags, which is dispensable for prior Bloom

filter-based applications. A key innovation of this work is

the physical-layer acquisition approach, which is a significant

step in overcoming the performance bottleneck of current

RFID systems. Our work provides new exciting avenues for

exploration in RFID system and its applications.

ACKNOWLEDGMENTS

The research is supported by NSFC General Program (NO.

61572282), UGC/ECS (NO. 25222917), Shenzhen Basic Re-

search Schema (NO. JCYJ20170818104855702), and Alibaba

Innovative Research Program.

REFERENCES

[1] R. Das, “RFID Forecasts, Players and Opportunities 2018-
2028: The complete analysis of the global RFID industry
Brand new for 2018,” https://www.idtechex.com/research/reports/
rfid-forecasts-players-and-opportunities-2018-2028-000642.asp.

[2] D. M. Dobkin, The RF in RFID: UHF RFID in Practice. Newnes,
2012.

[3] D.-H. Shih, P.-L. Sun, D. C. Yen, and S.-M. Huang, “Taxonomy
and survey of rfid anti-collision protocols,” Computer communications,
vol. 29, no. 11, pp. 2150–2166, 2006.

[4] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in rfid
systems,” in Proc. of IEEE INFOCOM, 2010.

[5] A. Poschmann, G. Leander, K. Schramm, and C. Paar, “New lightweight
des variants suited for rfid applications,” in FSE, vol. 4593, 2007, pp.
196–210.

[6] M. Feldhofer and C. Rechberger, “A case against currently used hash
functions in rfid protocols,” in On the move to meaningful internet

systems 2006: OTM 2006 workshops. Springer, 2006, pp. 372–381.
[7] L. Yang, Q. Lin, C. Duan, and Z. An, “Analog on-tag hashing: Towards

selective reading as hash primitives in gen2 rfid systems,” in MobiCom.
ACM, 2017, pp. 301–314.

[8] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[9] “EPCglobal Gen2 Specification,” www.gs1.org/epcglobal, 2004.
[10] “ImpinJ, Inc,” http://www.impinj.com/, 2017.
[11] N. Kargas, F. Mavromatis, and A. Bletsas, “Fully-coherent reader with

commodity sdr for gen2 fm0 and computational rfid,” IEEE Wireless

Communications Letters, vol. 4, no. 6, pp. 617–620, 2015.
[12] H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, H. Wu, Ö. Küçük,

and B. Preneel, “Mame: A compression function with reduced hardware
requirements,” in International Workshop on Cryptographic Hardware

and Embedded Systems. Springer, 2007, pp. 148–165.
[13] J. Wang, H. Hassanieh, D. Katabi, and P. Indyk, “Efficient and reliable

low-power backscatter networks,” in Proc. of ACM SIGCOM. ACM,
2012, pp. 61–72.

[14] J. Ou, M. Li, and Y. Zheng, “Come and be served: Parallel decoding
for cots rfid tags,” in MobiCom. ACM, 2015, pp. 500–511.

[15] L. Xie, Q. Li, X. Chen, S. Lu, and D. Chen, “Continuous scanning with
mobile reader in rfid systems: An experimental study,” in Proc. of ACM

MobiHoc. ACM, 2013, pp. 11–20.

