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Abstract—Existing methods in RFID systems often employ
presence or absence fashion to detect the tags’ motions, so they
cannot meet motion detection requirement in many applications.
Our recent observations suggest that the signal strength backscat-
tered from the tag is hypersensitive to its position, inspiring
us to perceive the tag motion through its radio signal strength
changes. Motion perception is not trivial and challenged by
weak stability of strength in that any other interference or
noise may incur significant changes as well, resulting in high
false positives. To tackle this issue, we propose to model the
strength via the Mixture of Gaussian Model (MoG). The problem
is thus converted to foreground segment in computer vision
with the help of Strength Image, where the technique of MoG
based background subtraction is employed. We then implement a
prototype using commercial off-the-shelf products. The evaluation
results show that the slightest tag motion (∼ 10cm) can be
precisely perceived, and the accuracy is up to 92.34% while the
false positive is suppressed under 0.5%.

Keywords—RFID, Motion detection, Background substraction,
Mixture of Gaussian Model

I. INTRODUCTION

An RFID system typically consists of a large number of
RFID readers and tags. Tags are attached to products for
labeling, and usually have no battery supply so they have to be
activated within the interrogation area of a reader. The reader
interrogates the tags and collects their IDs via continuous RF
waves, without the need of in sight or touch. In contrast to
conventional identification technologies, like barcodes, RFID
systems have many advantages, such as non-optical proximity,
long transmission range, and quick identification.

The initial motivation of RFID is to automatically identify
objects fast and conveniently, but its potential applications
have been widely studied in recent years for areas. Two
classical scenarios are presented as follows. Securing valuable
objects. Museums and art galleries use RFID to track valuable
artifacts, which is treated as a cost-efficient solution when
the price of nowadays RFID tags can be as low as 1 USD
per capita. A key requirement is that any movement of the
tag (and thus the associated item) can be accurately captured,
which might be as slight as centimeters. Mining customer’s
behaviors. To stay competitive, a large number of data mining
techniques have been introduced to help supermarket managers
better understand consumers’ behaviors. Unfortunately, the
techniques are generally confined to the consumers’ purchase
data. The motion of the RFID tags on the products again
implies rich behavioral information of the customer, e.g.,
taking the product from the shelf and returning it back. Again,
precise and accurate detection of tag motion is of essential
importance in this application. At first glance, there is no any

connection between the above two scenarios. Actually, both
focus on the surveillance of tag motions: the first needs an
alert when valuable objects are moved; the second requires
behavior records when the products are taken off the shelf.

To the best of our knowledge, few works have been studied
on the surveillance of tag motion. Most previous works detect
tag motion based on its absence or presence in ranges of
different RFID readers, which gives very coarse granularity but
cannot precisely detect slight tag motion at centimeter level.
The recent RFID tag localization approaches [1]–[3] can work
with better precision, but still at meter level which is not high
enough. Besides, tag localization often incurs high deployment
cost, including the deployment of numerous RFID readers and
anchors.

In this study, we propose and design Frogeye, a system
that exploits the signal strength changes of the backscattered
from moving tags to provide a hypersensitive approach for
tag motion perception. In theory, the power received by the
reader which is backscattered from the tag, goes as the
inverse fourth power of the distance in between. Such a
characteristic makes the signal strength hypersensitive to tag
positions. Our empirical studies validate the hypotheses, and
reveal expected and encouraging results. Strength change based
motion perception approach provides three obvious benefits:
First, no additional devices are required because the radio
signal strength is the most common parameter provided by
the commercial off-the-shelf (COTS) readers. Second, there
is no need for pre-deployed anchors or infrastructures. Third,
open and welcoming surveillance can be offered without line
of sight, which allows persons and objects to move between
the reader and tags.

Motion perception at high accuracy is not trivial because
the signal strength has weak stability in that arbitrary other
interference or noise may incur significant changes. In detail,
the thermal noise enables the signal strength to vibrate in a
small range. Multi-path enhances or weakened the strength. To
address this issue, we utilize the Mixture of Gaussian (MoG)
to model such weak stability. Our approach includes three
steps. In the first step, a preprocessing is applied to divide the
original reading stream into read frames. In the second step,
the frame is projected into a strength image. An improved
MoG based background subtraction (MoG-BS) method from
computer vision is applied to detect the foreground pixels in
the third step. We also design the mechanism to discover the
moved tags through the detected foreground pixels.

Compared with the existing methods, Frogeye advances
the perception in terms of sensitivity and stability. Our major
contributions are summarized as follows.
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• We conduct extensive statistical analysis of strength
collected in a real-life office, showing that the strength are
indeed hypersensitive to tags’ positions, but suffers from weak
stability where the strength values are highly clustered in a
small range due to thermal noise, and enhanced or weakened
due to multi-path effect. We then present a MoG to accurately
characterize the weak stability.

• We propose Frogeye, to perceive the slight of tag motion.
This approach takes a snapshot of tags’ positions through their
backscattered strength every several read cycles, producing
a sequence of strength frames. The MoG-BS is leveraged
to detect any foreground pixels, namely moved tags in our
scenario.

• We implement the Frogeye using pure COTS RFID de-
vices, ImpinJ R420 reader, and evaluate it at varying parameter
choices. The evaluation results show that the slightest tag
motion can be precisely perceived (∼ 10 cm on average),
and the accuracy is up to 92.34% while the false positive is
suppressed under 0.5%.

The remainder of the paper is structured as follows. We
introduce and model the weak stability of signal strength in
Section II. The main design of Frogeye is presented in Section
III. The implementation and evaluation are given in Section
IV. The related works about RFID system are overviewed in
Section V. Finally, Section VI concludes this paper.

II. MODELING THE WEAK STABILITY

In this section, we introduce the theoretical background of
the RFID technique and perform several empirical studies to
model the weak stability of strength.

A. Intuition

Passive tags not equipped with batteries do not use a
radio transmitter. Instead, they use modulation of the reflected
power from the tags. Referring to [4], we can construct a
mathematical statement of the power relationships using the
Friis equation. Defining the gains of the reader’s and tag’s
antenna Greader, Gtag, a backscatter transmission loss Tb, we
can describe the power backscattered by the tag as:

PRX,reader = PTX,readerG
2
readerG

2
tag

(

λ

4πr

)4

T 2
b

where λ is the wavelength and r is the distance between reader
and tag. The above equation indicates that the power received
by the reader and backscattered from the tag, goes as the
inverse fourth power of the distance. In other words, the power
backscattered by the tag is hypersensitive to the tag’s positions.
This characteristic inspires and motivates us to perceive the tag
motion by leveraging the changes in its signal strength. But the
intuition becomes reality only when the backscattered strength
behaves relatively stable. Namely, the strength backscattered
from a stationary tag should remain unchanged.

We place a tag in front of the antenna in a quiet lab
without any interference. The strength collected from different
positions are shown in Figure 1, where the d indicates the
distance (cm) between the reader and tag. We observe that
(1) the strength is indeed hypersensitive to the distance. The
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Fig. 1. Strength distribution

strength difference is very noticeable even if the two positions
are very close (∼ 10cm). About the strength sensitivity, we
further conduct evaluation in Section IV. (2) Unfortunately, the
result is not as stable as expected, because the value occupies
several units even when the tag remains in a same distance.
We call this phenomenon weak stability.

In fact, it is still full of challenges to perceive the slightest
tag motion despite the strength backscattered by the tag being
hypersensitive to the motion, because the electronic compo-
nent’s thermal vibration also brings changes. Especially when
the strength is interfered, its changes are as significant as when
the tag is moved. It is easy to mistakenly consider a stationary
object moved. Aiming to distinguish these changes caused by
real motion from the thermal vibration or interference, we next
offer empirical insights into the weak stability and statistical
methods to model them.

B. Modeling the Thermal Noise

As illustrated in Figure 1, the strength of stationary tag
does not always remain constant in the manner we expected.
There is a range of vibration whatever effort we make to enable
environment interference free. Actually, we think such vibra-
tion mainly comes from the thermal noise of the electronic
components rather than the environment. Therefore, we model
the strength using Gaussian distribution N(µ, σ2). We believe
this model is reasonable because a lot of natured phenomena
follows the Gaussian distribution, especially thermal noise
from internal electronic components, which mainly contribute
the vibration. Then the probability that target tag x has strength
value xt at time t is estimated as:

η(xt) =
1

√

2π|σ2|
exp

(

−
(xt − µ)T (xt − µ)

2|σ2|

)

The Gaussian model depends on the tag position and features
of the electronic components. The preview determines the
center of vibration and the latter constrains its range. To
verify the Gaussian model, we first use the Quantile-quantile
plot (QQ plot) to visually display whether the X is from a
Gaussian distribution (Gaussian model). If the distribution of
X is normal, the plot will be linear compared with the ideal
theoretical distribution. We use the interference-free trace from
the first measurement. Figure 2 plots collections from two
different antennas. In the figure, the x-value of the point is the
theoretical quantile and the y-value is the quantile of the data
trace. The dashed line is the straight line connected by the first
and third quartile calculated theoretically. If the traces follow
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the theoretical Gaussian distribution, their quantile is distribut-
ed around the dashed line. As we expect, the points in the
figure are linear and very close to the theoretical line. Second,
we employ Jarque-Bera Test (JB test) of 0.95 significance level
to quantitatively evaluate the goodness-of-fit of the Gaussian
model. The JB test is a widely adopted tool to test whether
the sample data matches a Gaussian distribution. In detail, we
can fit the Gaussian model by maximum likelihood estimation
given a collected samples, {x1, · · · , , xt}, as follows.

µ ≈ x̄ =
1

t

t
∑

i=1

xi and σ2 ≈
1

t

t
∑

i=1

(xi − x̄)2

Since the trace is recorded according to the time flow, we
divide the whole time recorded into equal size windows. The
JB test is then applied for each window to test the goodness-of-
fit for the estimated Gaussian model. The pass rate is calculated
every 100 windows. The test is performed on 100 tag traces.
Figure 3 illustrates the pass rate using the JB test. If points are
clustered at the top and right-hand corner, then the fitness is
good. We observe that the modelability of the strength using
Gaussian model is rather convincing.

C. Modeling the Interference

In the second experiment, we bring an inference object
when collecting the strength from the target stationary tag.
We let one interference object (a person) work slowly through
the intermediate region between the reader and target tag. In
the experiment, a total of 13,797 strength values are recorded.
Figure 4 plots the tag’s ‘strength cloud’ in which the point
is scattered using one strength value in a random direction.
The point in the polar origin has the strongest strength. It
is evident that: (1) being different from the case without the
inference, the strength vibration does not concentrate on a sole
level any more. Instead, there are three clear levels which
correspond to three cloud layers in the figure. Clearly, the
strength is enhanced or decayed by the person’s movement.
(2) the thickness of each layer is equally likely. Essentially,
the vibration ranges are very similar. This indicates that the
thermal noise is still the leading factor contributing to the
vibration whether the tag is interfered with or not.

These phenomenons can be explained by the multipath
effect. There exist several paths for the backscattered signal
propagating from tag to reader. The signal strength propagating
through different paths varies a lot due to the path length. The
reader prefers to resolve the strongest signal from all paths.
Note that the strongest does not always come from the shortest

path because two signal propagation may either cancel out or
reinforce each other. When the interference object gets close
to the tag, it may block some propagation paths and lead to
the propagation jumping among the multiple paths, resulting
in the strength migrates from one level to another.

From a long-term perspective, the strength exhibits multi-
modal characteristics where the distribution is likely composed
of multiple Gaussian models. For example, Figure 5(a) shows
the strength changes in the above measurement over a short
period of time (20s). Some of the time the strength regularly
vibrates without interference while some of the time it may be
weakened. Figure 5(b) shows the fitted Gaussian curve for this
tag’ strength. It is clear that the strength distribution is multi-
modal containing more than one peak, so a single Gaussian
model cannot exactly depict the truth. Actually, the multi-
modal model is comprised of three single Gaussian models
in the example, as shown in Figure 5(c), 5(d), and 5(e). The
final distribution can be considered as a weighted mixture of
three, G = w1G1 + w2G2 + w3G3. To cope with such a
complicated scenario, the Mixture of Gaussian Model (MoG)
based approach is employed here. We present a generalization
to this approach. The strength is modeled by a mixture of K
Gaussian models. The probability that the tag x has strength
xt at time t is estimated as:

η(xt) =
K
∑

i=1

wiηi(xt, µi,Σi)

=
K
∑

i=1

wi

(2π)−
d

2 |Σi|
1

2

exp

(

1

2
(xt − µi)

TΣi(xt − µi)

)

where wi is the weight, µi is the mean and d is the reader’s
antenna number. Σi is the covariance for the ith Gaussian
model. Actually, the parameter xt and µt are vectors with d
dimension, explained later in Section III. Since the strengths
are independently captured by d antennas, we set Σi = σ2

i I

where I is an identify matrix with d dimension. Then proba-
bility is reduced to

η(xt) =
K
∑

k=1

d
∏

j=1

wk
√

2πσ2
j

exp

(

−
(xt − µi)

2

2σ2
j

)

(1)

The K is determined by the potential number of prop-
agation paths. Usually, from 3 to 10 are used according to
our experience. We can see the weak stability of strength
is actually mainly determined by the environment, e.g. the
propagation paths, instead of the interference object. In theory,
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Fig. 5. The tag was captured for 20 seconds when a person randomly walked around the tag. (a) Strength values over 20 seconds. (b) Gaussian model fitted
with the values over 20 seconds. (c) The model G1 fitted over [10s, 14s]. (d) The model G2 fitted over [4s, 8s]. (e) The model G3 fitted over [14s, 18s].

the peaks in MoG are as many as the potential propagation
paths. Each Gaussian model in MoG corresponds a potential
signal propagation and its weight is related to the time interval
that the propagation takes effect in this path. Note that unlike
the active communication, the backscattered signals from tag
are too weak to penetrate the interference objects to generate a
new vibration level. In addition, despite the interference object
may create a new path to backscattered the signals, their effects
are very limited on the MoG, as will be shown in Section IV.
This fact motivates us to build the model through the history
of strength and leverage the model to perceive tag motions.

III. FROGEYE

In this section, we introduce the technique of MoG based
background subtraction to perceive the tag motion via strength
image. We call our approach Frogeye, because the natural con-
struction of a frog retina enables its eyes to be hypersensitive
to the moved objects but blind to static ones.

A. Overview

Our basic idea is to detect the ‘significant’ changes of
the backscattered signal for perception of tag motion. There
is a high probability that the tag moved when its strength
changed significantly. The naive method is to compare the
latest strength with the last one. If their difference exceeds a
threshold, the motion is reported. However, the weak stability
may trigger the significant changes as well. For example, the
strength may migrate from one vibration level to another level
far away when the original propagation path is blocked by
the interference object. In this situation, the strength changes
exhibit significant as the tag moves, giving rise to mistakenly
determination, the false positive.

We find our problem is very similar to the foreground
segmentation in computer vision, which is to segment the
foreground pixels that “significantly differ” between the latest
image of sequence and the previous images. To associate these
two issues, we project the target tags into a strength image in
which the strengthes of each tag are mapped to a row of pixels.

The fact is that the values of these related pixels significantly
change and these pixels become to foreground when the related
tag moves. Therefore, as long as the foreground is detected,
the moved tags are discovered. A lot of methods are proposed
for foreground segmentation. We adopt the most popular one,
MoG based background subtraction (MoG-BS), due to two
reasons. First, MoG-BS well tackles illumination vibration and
background motion. These two problems resemble our chal-
lenges incurred by the weak stability. Second, both strength
and pixel value can be modeled using the MoG. In detail, the
history of each a pixel is applied to build a MoG composing
of K Gaussian models. When a new pixel value is captured,
the value is compared with the built K models. If the value
matches any one of the K models, the pixel is consider as
background. Otherwise the foreground. After the foreground
are segmented, we can easily reverse them to moved tags since
the projection remains unchanged during the process.

B. System Architecture

Our goal is to determine whether the tag is really moved
when its strength changes. We describe the high level flow of
information through its architecture, and present the internal
details later. Our approach contains four components. The
reader repeatedly interrogates tags using multiple antennas and
produces a stream of readings in its detection field. The first
component is to split the original reading stream into many
read cycles by time. Then the preprocessing aggregates m read
cycles into a read frame. The read frame is the processing unit
fed into the following components. In the second component,
a strength image is constructed using the readings in one read
frame. In the third component, we model each pixel using MoG
to determine whether the pixel belongs to the foreground. This
component outputs a serials of labels that indicates each pixel
is either a foreground or background. In the last component,
the system identifies the moved tags through the foreground
and outputs the motion event with a specific probability to
upper applications.
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Fig. 6. The strength image

C. Preprocessing

The reader circularly scans the target space. Therefore, the
input of our system is a stream of readings. A commercial
reader usually contains d antennas successively scheduled by
a time division algorithm. Therefore each read cycle can be
further divided into small parts denoted as antenna cycles.
The reader uses each antenna to collect one set of readings
from the target tags during an antenna cycle. If the tag is
located within the overlapping region by multiple antennas, it
will be collected many times. We define a higher kernel term,
denoted as read frame. The read frame is a set of readings
collected during m consecutive read cycles where m is a user
specific parameter. The main task of preprocessing is to split
the strength flow into a sequence of read frames.

D. Constructing Strength Image

After separating the frames from the strength flow, we
project the readings in one read frame to a strength image.
Suppose the reader monitors n tags, {T1, T2, · · · , Tn}, in the
target space and all of them are known in advance. Then each
read frame should contains n×m×d readings. Note some tags
may be beyond the range of some antenna. In this situation,
the system creates a default reading for the tag, whose strength
is set to the default value, e.g.-90. We project a read frame of
readings into a strength image I as follows:

I =









x1,1 x1,2 · · · x1,m

x2,1 x2,2 · · · x2,m

...
...

...
...

xn,1 xn,2 · · · xn,m









In the image, each row is uniquely mapped to a same tag. The
mapping fashion between the tags and rows is arbitrary as long
as their mapping remains constant during the processing. Each
column represents a read cycle. The whole image contains
a total of m columns. Formally, given a strength image, the
element xi,j represents a reading strength from the ith tag (Ti)

collected in the jth read cycle of the frame. Since the tag is
read multiple times by d antennas in one read cycle, the xi,j is
indeed a vector. We consider them as the color values coming
from different color channels (related to different antennas),
such as red, green, blue, and alpha channels. Namely, xi,j is a
vector with d dimension. Actually, our approach is independent
on the dimension of pixel. Even if there are more than four

Fig. 7. Rationale behind

strengths captured, they will be fully considered. An example
is shown in Figure 6. There are 9 tags in the target space and
three antennas are deployed. After a read frame, each antenna
creates an image with 9 × 8 resolution (m = 8). These three
images are synthesized to a final image, which is going to be
fed into the next step (foreground detection). Through image
construction, the original reading stream eventually becomes a
sequence of strength images, denoted as I = {I1, I2, · · · , It}.

Why would we project the strength into an image? At the
first glance, there is no connection between an optical image in
computer vision and tag’s signal strength. Actually, we think
the physical rationale behind them are similar. As shown in
Figure 7, (i) both of them focus on capturing the projections
of objects. In optics, the light wave coming from the flashlight
is reflected by the object and then captured by the camera. In
our scenario, the wave becomes an electromagnetic wave. The
wave is reflected by the tag and captured by the antenna. (ii)
the optical image is an optical projection of the object while the
backscattered strength can be considered as an electromagnetic
projection of the tag. (iii) hence, the reader antenna can be
considered a special ‘camera’ producing the tags’ imaging. The
optical camera outputs optical images while the RFID antenna
provides a strength image. (iv) when the objects are moved
in the real target space, the pixels reflected from the objects
significantly change in the images. The similar thing occurs
in our scenario. The pixels reflected from the tags change
when the tag moves. Therefore, we think the strength image
represents a snapshot of current tags’ positions. Part of the
images change when the tags move. (v), importantly, as we
model the weak stability of tag’s strength, the pixel’ intensity
can be modeled by the MoG as well.

E. Foreground Detection

Foreground detection from a sequence of images is a
fundamental problem in computer vision, which has been well
studied for many years [5]–[7]. Its goal is to segment the
foreground pixels corresponding to moving objects, such as ve-
hicles and humans, from the rest of an image, i.e. background.
The foreground is the set of pixels that “significantly differ”
between the latest image of the sequence and the previous
images, given a set of images of the same scene taken at several
different times.

Background subtraction is the most popular method for
foreground segmentation, especially under those circumstances
with a relatively dynamic background. It detects the foreground
in an image by taking the difference between the current image
and the reference background. The main idea behind it is to
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automatically generate and maintain a representation of the
background that is then used to classify the pixels as back-
ground or foreground. The MoG-BS has been one of the most
popular background subtraction techniques in the computer
vision because of its robustness to subtle illumination changes
and background motions. Here we employ and improve the
MoG-BS from [8]. This algorithm is able to fast model the
MoG using the training set and adaptively update the models
during applying.

Modeling background with history : To make the problem
more precise, we generally denote a sequence of strength
images as I = {I1, I2, · · · , It}. For any pixel I(x) in an image
I , x ∈ R

l and I(x) ∈ R
d. l is the dimension of the image.

Typically, when l = 1 , the image is one dimension and can
be represented as a vector. When l = 2, the image is a matrix.
Typically, d = 1 for a gray-scale image or d = 3 for RGB
color images, but other values are allowed. At any time t, the
history of a particular pixel x is

{x1, · · · , xt} = {Ii(x, ), 1 ≤ i ≤ t}

The history of such a pixel is applied to model the pixel
values using the mixture of K Gaussian models. Initially,
the K Gaussian models are given by an initial large variance
ωk and low prior weight σk. These K Gaussian models are
ordered by the criterion of rk = ωk/|σk|. This order supposes
that a background pixel corresponds to a high weight with a
small variance because the background is more present than
foreground. On the next frame, we have a new pixel value
xt+1. We say the Gaussian model is ‘matched’ if xt+1 is within
λ× standard deviation of this Gaussian model. Here, we use
the Mahalanobis distance to compare two vectors. Suppose the
matched model N(µk,t, σ

2
k,t), the match rule is formulated as

follows:

(xt+1 − µk,t)
T · (xt+1 − µk,t) < λ2 · |σ2

k,t|

Considering each pixel, there are two results:

Case 1: A match is found with one of the K Gaussian
models, termed as Gk. In this case, the pixel is classified as
background.

Case 2: No match is found with any of the K Gaussian
models. In this case, the pixel is classified as foreground.

According to the above results, the parameters of each
model must be updated to make next foreground detection.
Using the match result, two cases can occur such as in the
foreground detection:

Case 1: A match is found with one of the K Gaussian
models. For the matched model Gk, we increase its weight,
adjust the mean closer to xt, and decrease the variance as
follows.

ωk,t+1 = (1− α)× ωk,t + α

where α is a learning rate.

µk,t+1 = (1− γ)× µk,t + γ × xt+1

σ2
k,t+1 = (1− γ)× σ2

k,t + γ × (xt − µt+1)
2

where γ = α × η (xt+1|(µk, σk)) and η(·) refers to Equation
1. For the unmatched models, we decrease their weights:

ωi,t+1 = (1− α)× ωi,t

Fig. 8. Stationary scene Fig. 9. Mobile scene

Case 2: No match is found with any of K Gaussian models.
In this case, the model with least order is replaced by a new
model with a mean equals to the new pixel value xt+1, and
initial large variance and low prior weight.

Foreground detection : Above algorithm is an adaptive
process. In the training phase, we cloud set a bigger learning
rate. The training phase ends when the K models become
stable. In applying phase, we stop learning by setting the
learning rate to zero. With regard to the dynamical situation in
which the environment slightly changes, the smaller learning
rate, e.g. 0.001, is allowed to let the system self-adaptively
update. Especially it is able to accommodate the influence of
the new few propagation paths produced by the interference
objects. The foreground detection outputs a set of pixels
labeling as foreground.

F. Motion Refinement

Since we have a row of pixels mapping to one tag, the
results of foreground detection are a mixture of background
and foreground for each row. Suppose there are f pixels
belonging to the foreground out of m values in a particular
row. We define the probability of tag motion as p = f/m.
Therefore, the outputs of foreground detection for each read
frame are reversely mapped to a vector:

{< T1, p1 >,< T2, p2 >, · · · , < Tn, pn >}

where Ti is a reversely mapped tag and pi denotes the
probability that this tag moves. The simple method is to
use majority voting to fuse the mixture in which the tag is
determined moved only when p ≥ 0.5.

IV. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation and also
conduct performance evaluation on the prototype.

A. Implementation

Hardware: In our implementation, we employ R420 reader
from ImpinJ. Total 100 tags with 4 kind of models are used.
Four reader antennas polarized in horizontal direction are
deployed in a line. The transmission power is adjusted at
30mW .

Software: We adopt LLRP protocol to communicate with
the reader. This protocol was ratified by EPCglobal in April
2007. We adjust the configuration of reader to immediately
report reading whenever tag is detected. The client code is
implemented by Java language with help of Apache Math
library.
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Parameter choices: Frogeye comes with a number of
different parameters. Four key parameters are employed as
follows. Frame size is set to m = 10. The learning rate α
is set to 0.1 for training phase but 0.001 when detecting.
The number of Gaussian K is a user estimated parameter,
which really depends on the environment. In experiment, we
set K = 10 to adapt potential propagation paths. Note that it
does not matter to use large K because the redundant models
will be naturally ignored according to our algorithm. Since
we use the ROC curve to measure the accuracy, the match
threshold λ is considered as the operating parameter varying
from 0.01 to 2.0.

B. Evaluation Methodology

In terms of the false positives, we deploy a white board on
which 100 tags are attached, in the office, as shown in Figure
8. There are 20 persons staying in the room. These persons,
whose weights and heights vary in 60kg ∼ 90kg and 1.6m ∼
1.8m, may interfere the signal strength when getting close
to the board. We use four antennas continuously reading these
tags for 24 hours. A total of 1, 130, 997 readings are collected.
The traces collected in the first 6 hours are employed as the
training set to model background models for each tag, and the
left 18-hour traces are fed for testing the false positives. On the
other hand, to measure the true positives, we attach tags on a
toy train which moves along an oval track in a constant speed
(0.7m/s). The track illustrated in Figure 9 has a decimeter
of 1m. We collect traces for 5 minutes as training set before
the train takes movements. The number of true positive rate
equals the number of perceived motions divided by the total
read times when the tag moves.

Metrics: We express the perception accuracy by using the
Receiver Operating Characteristic (ROC) curve. The vertical
axis of the ROC curve is the true positive rate (TPR) which
is the total number of perceived true positives divided by the
number of real positives in ground truth. The horizontal axis
of the ROC curve is the rate of false alarms, e.g. false positive
rate (FPR), divided by the number of negative events in ground
truth.

We define the sensitivity to measure the sensibility of
backscattered signals. This metric is defined as the absolute
the ratio of RSS difference to the distance of two positions,
formulated as follows:

Sensitivity =
|RSSA −RSSB |

√

(XA −XB)2 + (YA − YB)2

where RSSA and RSSB are the strength values respectively
collected from position A(XA, YA) and position B(XB , YB).

The unit is rss/m, namely, the strength changes (rss) in unit
distance (m).

The minimum perception displacement (MPD) is used as
the second metric to measure the system sensibility. MPD is
the distance from the position where tag is trained to the one
that the tag is firstly perceived in motion,

Baseline: For comparison, we also employ other three
methods to perform the evaluation.

(1) Localization. There are many localization methods
proposed in the literature. We use the most popular one in
RFID system, LANDMARC [2]. Its basic idea is to calculate
the weighted average of the four nearest tags’ locations. The
weights are determined by the rss values. (2) The minimum
variance (MV). In this method, the latest 50 strengths are
buffered to dynamically compute the current mean value. If
the new strength deviates from the mean over than a threshold,
the tag is determined in motion. (3) Frame differencing based
subtraction (FD-BS). The simplest method used for foreground
segmentation in computer vision. The foreground is deter-
mined if the continuous two frame image difference is greater
than a threshold.

C. Perception Similarity

Intuitively, the individual differentiation may incur differ-
ent interference impacts. Can we use the interference impacts
from one object to model the others? To answer this ques-
tion, we let four persons independently impose interference
on the strength. These persons’ weights and heights are
P1(74.5kg, 173cm), P2(58.5kg, 164cm), P3(64kg, 170cm),
and P4(69kg, 171cm). Figure 10 plots the fitted probability
densities of strength interfered by these four persons. Visual
inspection shows that the four curves nearly have the same
shape. All of them can be modeled by two Gaussian models.
The only difference is that the individual Gaussian model has
different weights. As discussed in Section II, the weight of
every individual Gaussian model in MoG is highly related to
the time interval that the model takes effect. In our algorithm,
the weight only affects the matching order rather than the
result. Our experiment fully shows the interference object takes
very limited impacts on the models.

Figure 11 plots seven-hour data containing 57, 603 × 4
readings for a stationary tag collected by four antennas. In
the figure, four histograms represent the strength statistics
respectively collected by the four antenna A1 ∼ A4. The
scatter matrix illustrates the strength results collected by any
two antennas. From the figure, we observe that either the
strength readings from one antenna or the combination from
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any two antennas are highly clustered. There are little points
beyond the clusters. Although the four antennas are deployed
in a line and very close (interval of ∼ 30cm for each other),
the shape of cluster exhibits a little difference. This shows the
strength distribution depends on the space relationship between
reader antennas and tags. It further validates our hypothesis
that the Gaussian model can depict the tags’ positions is
reasonable.

D. Perception Sensitivity

To verify the sensibility, we change the distance between
the antenna and tags from 30cm to 300cm. The strength
results are plotted in Figure 12. In total, the curve decreases
as the distance increases and the slope of the curve equals
0.25 approximately, which well follows the theory (Note that
the RSS is the log-scale presentation of power). On the other
hand, we also calculate the sensitivity of any two points out of
30 points in the curve. The CDF of the sensitivity results are
shown in Figure 13. We observe that 50% sensitivity achieves
about 7rss changes and about 10% cases have 13rss above
changes in the unit distance. Correspondingly, the received
powers have 5× ∼ 20× difference because of the following
equation.

PA

PB

= 10
1

10
(10 logPA−10 logPB) = 10

1

10
(RSSA−RSSB)

Such differences are so noticeable that any commercial device
is able to detect them.

Considering the toy train, we can calculate its read posi-
tions according to the read time and the train’s speed. Figure
14 plots the tracked strength along the track. We can see
that the strength changes in a rather wide range (∼ 15rss)
even when the neighboring positions are very close. We think
the tag’s orientation also contributes a lot to these changes
during the movement, because it is a well-known fact that the
orientation seriously affects the strength. The tag’s orientation
is defined by the angle between reader and tags. Note that
the tag orientation does not influence our approach because
the stationary tag does not change its orientation. By contrary,
it may help motion perception when the tag moves with the
orientation changes.

To measure the sensitivity without orientation’ influence,
we keep the tag orientation unchanged and move the tag
deviating from the trained position. Figure 15 shows the MPD
in various directions where the antennas locate in the north.
We can see that (1) the MPDs in different direction are not

the same. (2) The directions between (−60◦ ∼ 60◦) are the
most sensitive in which the average MPD equals 6cm. This
is because the tag in our experimental room is closer to the
west wall. The more complex environment introduces more
potential propagation paths of signal, requiring more Gaussian
models to describe. Obviously, the sensitivity decreases when
more models are used, because the real motion may be
mistakenly determined as being interfered. (3) The average
MPD is 10cm, which means the motion can be perceived by
the system as long as the tag moves away by 10cm. The result
is rather hypersensitive.

E. Perception Accuracy

In this section, we apply the four methods to data traces
and measure their perception accuracy. The ROC curves by
these methods are plotted in Figure 16. We can see that any
of strength changes enabled methods has a better performance
compared with localization. In detail, given a FPR of 0.5%,
MoG-BS achieves 92.34% TPR while FD-BS and MV respec-
tively have 75.6% and 3% FPR. The accuracy of MoG-BS is
far better than two others. The MV uses several of the latest
strength history to predict the tag motion. However, when the
tag moves in a regular mode like the train, its changes is easy
to be hidden by the latest history. So there are two obvious
steps in the figure. In the first step, the threshold is too large to
detect the motion, but the motion is suddenly detected when
the threshold drops to a special value. Being different with
MV, FD-BS only uses the last one history strength, hence its
accuracy is higher than MV from the beginning because it has
ability to resist the regular motion. However, FD-BS has a
fata drawback that there is a chance to find a movement way
enabling the same strength changes in any two adjacent read
positions. In this situation, FD-BS fails to detect the motion.
MoG-BS conquers the above weakness because it learns from
the environment instead of the tag’s current status. As long as
the environment is unchanged, its perception accuracy always
remains in a high level. LANDMARC is the worst method
behaving as a random coin because its localization accuracy
is around 2m but our movement is confined in 1m.

V. RELATED WORK

Localization: Early work on localization relied on RSS and
proximity [2], [3], [9]–[11]. Zhu et al. propose a fault-tolerant
localization approach for RFID reader [3]. Shangguan et al. [9]
study on the problem of tag order under mobile environment.
Sen et al. [10] offers a new localization algorithm using
the PHY layer information. Liu et al. [11] propose a novel
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localization approach that utilizes the interference to position
the target. Detection of missing tags: The existing work
[12]–[16] utilize the presence-or-absence fashion to monitor
the tag’s situation. Tan [12] et al. is the first to address this
problem . In practice, it is necessary to report the missing
ones without collecting all tags, because the later must stay in
the range by default. Li [13] et al. further study the issue but
propose a deterministic algorithm which reduces the time by
88.9% more. Luo [14] et al. consider the energy perspective
for battery-powered active tags when detecting the missing
tags. Zheng [15] et al. presents a physical layer missing
tag identification scheme which effectively makes use of the
lower layer information and dramatically improves operational
efficiency. Gong [16] et al. propose a accurate approximation
scheme for large-scale RFID cardinality estimation. As stated
before, our work has a futher fine-grained surveillence on the
target. Fast identification: Anti-collision is another important
topic in RFID area which aims to conduct the fast identification
[17]–[24]. Chen [17] et al. address the problem of collecting
information from sensor-augmented tags. They use multi-hash
to spread the transmission slots. Xie et al. consider how to
efficiently identify tags on the moving conveyor [18]. Jeffery
[19] et al. design a statistical method to clean the uncertain tag
readings. Yang [20] et al. and Tang [21] et al. discuss how to
improve the throughput by avoiding the reader collision. Yang
[22] et al. introduce the fast identification in anti-counterfeiting
for a batch of rfid tags. Liu [23] et al. presents a new method
to conduct adaptive continuous ccanning in large-scale RFID
systems. Polling query: Assuming all tag IDs in the range are
known in advance, these papers [25]–[27] design protocols
of polling queries to identify concerned tags with no need
to collect them all. Shen et al. is one of the earliest works
abandoning collecting all tags but designing polling query to
the target tags whose categories are popular [25]. Qiao et al.
propose tag-ordering polling protocol that can reduce per-tag
energy consumption by more than an order of magnitude [26].
Gong et al. [27] present batch authentication by informative
counting. Foreground segmentation: Detecting regions of
change in multiple images of the same scene taken at different
times is of widespread interest in computer vision [5], [8].
The basic adaptive model is used in [5]. Chris and Grimson
[8] discuss modeling each pixel as a mixture of Gaussians and
using an online approximation to update the model.

VI. CONCLUSION

Real-time object surveillance is an important task in RFID
system. Existing methods in RFID systems often employ
presence or absence fashion to detect the tags motions, so they
cannot meet motion detection requirement in many applica-
tions. In this paper, we offer an innovate approach to explore
the tag motion through its backscattered signal changes. We
believe this is a step forward in the area of real-time monitoring
using RFID technique.
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