

Motivation

• How to measure the fit between a model and a graph? Model ⇔ Graph

Any target functions exhibit a harmonic structure:

value on a vertex \sim weighted average of its neighbors

$$\int_{0}^{0} \int_{0}^{0} f: \mathcal{V} \to \mathbb{R} \quad f(i) \approx \sum_{j \sim i} \frac{w_{ij}}{d_i} f(j)$$
$$\mathcal{G} = (\mathcal{V}, W) \quad W = [w_{ij}] \in \mathbb{R}^{n \times n} \quad d_i = \sum_j w_{ij}$$

• Objectives of this paper

- Analyze the harmonic structure;
- Answer open questions in various graph models;
- Provide guidelines for various applications.

Partially Absorbing Random Walks [3]

- At each move, a walker gets absorbed at current state with probability $p_{ii} = \frac{\alpha \lambda_i}{\alpha \lambda_i + d_i}$ $\alpha > 0$ $\lambda_i > 0$.
- $A = (\alpha \Lambda + L)^{-1} \alpha \Lambda$ absorption probability matrix ;
- $\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ regularization matrix ;
- p first column of $A = [a_{ij}] \in \mathbb{R}^{n \times n}$, i.e., the probabilities starting from every vertex and getting absorbed at the first vertex. Assume $p(1) > p(2) \ge \cdots \ge p(n)$.

Harmonic form:

$$p(1) = \frac{\alpha \lambda_1}{d_1} (1 - p(1)) + \sum_{k \sim 1} \frac{w_{1k}}{d_1} p(k),$$
$$p(i) = -\frac{\alpha \lambda_i}{d_i} p(i) + \sum_{k \sim i} \frac{w_{ik}}{d_i} p(k), \ i = 2, \dots, n$$

1.
$$\mathcal{L}_p(\mathcal{S}_i) = \alpha \lambda_1 \sum_{k \in \bar{\mathcal{S}}_i} a_{1k}, i = 1, \dots, n-1.$$

2. *n* is left-continuous

- **2.** *p* is left-continuous.
- Setting of Λ in [3] is unnecessary;
- A random Λ performs equally well;
- Columns of *A* are informative, not rows;
- [4] is a special case with $\Lambda = D$.

Pseudo-inver

- L^{\dagger} a valid kernel o
- CT fails to capture t
- ℓ first column of
 - $\ell(1) > \ell(2)$

Harmonic form:

$$\ell(1) = \frac{1 - \frac{1}{n}}{d_1} + \sum_{k \sim 1} \frac{1}{d_1} + \sum_{k \sim 1} \frac{1}{d_i}$$
$$\ell(i) = -\frac{\frac{1}{n}}{d_i} + \sum_{k \sim i} \frac{1}{d_i}$$
$$\mathbf{1.} \quad \mathcal{L}_\ell(\mathcal{S}_i) = \frac{|\bar{\mathcal{S}}_i|}{n},$$
$$\mathbf{2.} \quad \ell \text{ is left continues}$$

- \angle \mathcal{L} \mathcal{L} is repr-contra
- $\mathcal{L}_{\ell}(\mathcal{S}_i) < 1$ and dec large graphs, since *L*
- This justifies its su

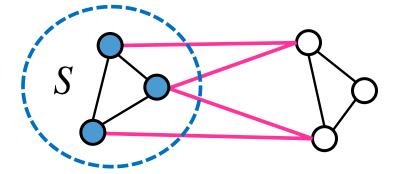
Analyzing the Harmonic Structure in Graph-Based Learning Zhenguo Li² Shih-Fu Chang¹ Xiao-Ming Wu¹ ¹Columbia University ²Huawei Noah's Ark Lab, Hong Kong

Harmonic Structure Analysis

Harmonic Loss

$$\mathcal{L}_f(\mathcal{S}) := \sum_{i \in \mathcal{S}} d_i \left(f(i) - \sum_{j \sim i} \frac{w_{ij}}{d_i} f(j) \right)$$

Lemma 2.2. $\mathcal{L}_f(\mathcal{S}) = \sum_{i \in \mathcal{S}, j \in \bar{\mathcal{S}}} w_{ij}(f(i) - f(j)).$



Quantify discrepancy across the cut. **Definition 2.3 (Superlevel set).** $\{i \mid f(i) \ge c\}$ • Assume $f(1) \ge f(2) \ge \cdots \ge f(n-1) \ge f(n)$. $S_i := \{1, \ldots, i\}$ - superlevel set with level f(i)Lemma 2.4. $\mathcal{L}_{f}(\mathcal{S}_{i}) \geq 0, i = 1, ..., n.$

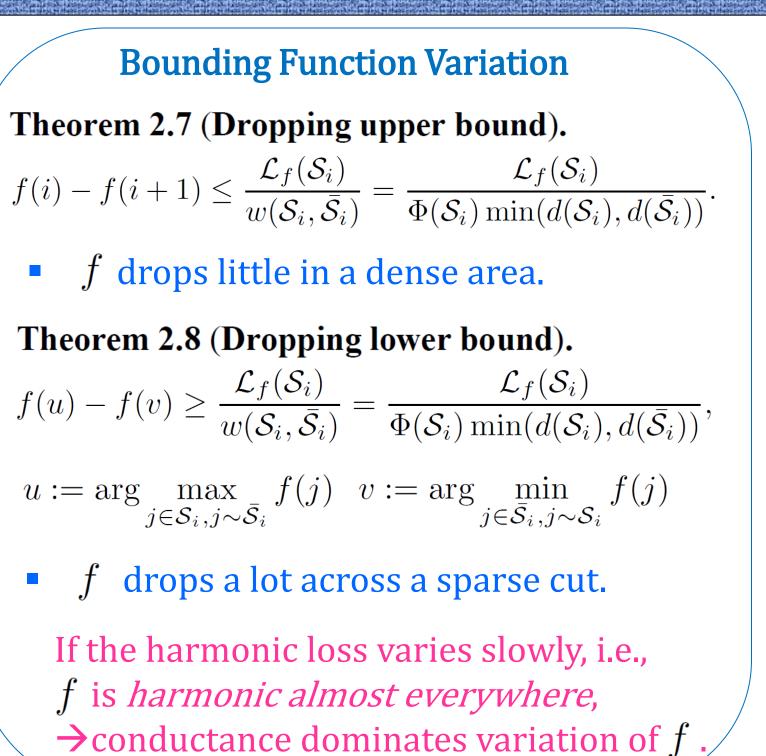
Continuity $f: \mathcal{V} \to \mathbb{R}$ left-continuous if $i \sim \mathcal{S}_{i-1}$, right-continuous if $i \sim \overline{S}_i$, continuous if $i \sim S_{i-1}$ and $i \sim \overline{S}_i$ Left-continuous Right-continuous Vertices of similar values are connected. **Proposition 2.6.**

 $\mathcal{L}_f(i) < 0 \implies \text{left-continuous};$

 $\mathcal{L}_{f}(i) > 0 \implies \text{right-continuous;}$

 $\mathcal{L}_f(i) = 0 \Longrightarrow$ continuous.

rse of Laplacian	Hitting Times	Eie
of commute times (CT); the graph topology [6]; L^{\dagger} . Assume $2 \ge \cdots \ge \ell(n)$ $\sum_{i=1}^{\infty} \frac{w_{1k}}{d_1} \ell(k),$ $\frac{w_{ik}}{d_i} \ell(k), i = 2, \dots, n.$ $\frac{1}{d_i}$, $i = 1, \dots, n-1.$ muous. ecreases very slowly in $\sum_{\ell \in \mathcal{L}_{\ell}(\mathcal{S}_i) - \mathcal{L}_{\ell}(\mathcal{S}_{i+1}) = 1/n.$ uperiority in practice [5].	 The expected number of steps starting from one vertex to hit others is dominated by the local structure around the targets [6]; h: V → R - hitting times (HT) from every vertex to a particular target; Assume vertex n is the target, and h(1) ≥ h(2) ≥ ··· ≥ h(n - 1) > h(n) = 0 Harmonic form: h(i) = 1 + ∑_{k~i} w_{ik}/d_i h(k), for i = 1,,n - 1. 1. L_h(S_i) = ∑_{1≤k≤i} d_k, i = 1,,n - 1. 2. h is right-continuous. L_h(S_i) is the volume of S_i. Variation of h only depends on Φ(S_i). Our result is complementary to [6]. 	$Lu = \lambda_u u$ Harmonic • The close • If $\lambda_v <$ • This exp • $\int_{0}^{4} \int_{0}^{10^{-3}} \int_{0}^$

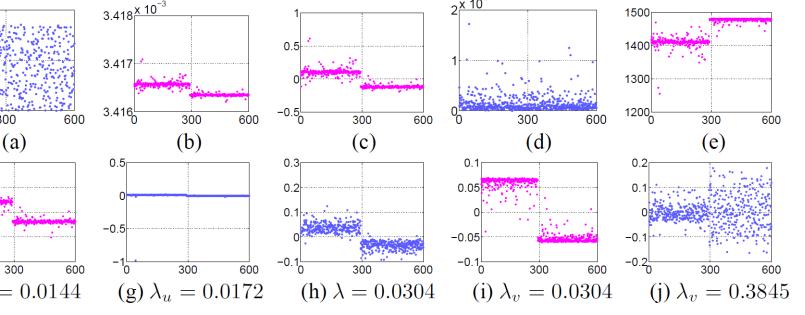


genvectors of the Laplacian Matrices

$$L_{rw}v = \lambda_{v}v \qquad L_{rw} := D^{-1}L \qquad L_{sym} := D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$$

ic form: $u(i) = \sum_{k \sim i} \frac{w_{ik}}{d_{i} - \lambda_{u}}u(k), \quad v(i) = \sum_{k \sim i} \frac{w_{ik}}{d_{i}(1 - \lambda_{v})}v(k)$

oser λ_u to $\min_i \{d_i\}$, the weaker of harmonic structure of u; << 1, v will enjoy a significant harmonic structure; xplains why eigenvectors of L_{rw} are preferred than those of L .



RW – from one to others; (b) PARW – from others to one; row of L^{\dagger} ; (d) HT – from one to others; (e) HT – from others to one; igenvectors of $L (\min_i \{d_i\} = 0.0173);$ eigenvector of L_{sym} ; (i-j) Eigenvectors of L_{rw} .

Table 1: Classification accuracy on 9 datasets.										
	USPS	YaleB	satimage	imageseg	ionosphere	iris	protein	spiral	soybean	
ARW-N-1NN	.879	.892	.777	.673	.771	.918	.589	.830	.916	
ARW-1NN	.445	.733	.650	.595	.699	.902	.440	.754	.889	
ARW-CMN	.775	.847	.741	.624	.724	.894	.511	.726	.856	
LGC	.821	.884	.725	.638	.731	.903	.477	.729	.816	
$\operatorname{PARW}\left(\Lambda=I\right)$.880	.906	.781	.665	.752	.928	.572	.835	.905	

Digits	0	1	2	3	4	5	6	7	8	9	All
$\Lambda = R \text{ (column)}$.981	.988	.875	.892	.647	.780	.941	.918	.746	.731	.850
$\Lambda = R \text{ (row)}$.169	.143	.114	.096	.092	.076	.093	.093	.075	.086	.103
$\Lambda = I$.981	.988	.876	.893	.646	.778	.940	.919	.746	.730	.850

Table 3: Classification accuracy on USPS.									
k-NN unweighted graphs	10	20	50	100	200	500			
$\operatorname{HT}(\mathcal{L} \to \mathcal{U})$.8514	.8361	.7822	.7500	.7071	.6429			
$\operatorname{HT}(\mathcal{U} \to \mathcal{L})$.1518	.1454	.1372	.1209	.1131	.1113			
L^{\dagger}	.8512	.8359	.7816	.7493	.7062	.6426			

- al., NIPS'09

Absorbing Random Walks [1]

• Laplacian regularization seems problematic for classification [2]; • Labeled data - absorbing states; f - absorption probabilities. $1 = f(1) > f(2) \ge \dots \ge f(n-1) > f(n) = 0$ Harmonic form: $f(i) = \sum \frac{w_{ik}}{d_i} f(k)$, for i = 2, ..., n-1. **1.** $\mathcal{L}_f(\mathcal{S}_i) = \sum_{k \sim 1} w_{1k} (1 - f(k)), i = 1, \dots, n-1$, is a constant. **2.** *f* is continuous if *f* is mutually different on unlabeled data. -5 f(5) = 0.03Lemma 3.3. Normalize each function by its mass before comparison. (b) (a) (c) (e) ____`í _____ ARW-1NN ARW-N-1NN

Experimental Results

Table 2: Ranking results (MAP) on USPS.

[1] "Semi-supervised learning using Gaussian fields and harmonic functions." Zhu et al., ICML'03.
 [2] "Statistical analysis of semi-supervised learning: The limit of infinite unlabelled data", Nadler et

[3] "Learning with Partially Absorbing Random Walks." Wu et al., NIPS'12.
[4] "Local graph partitioning using pagerank vectors." Anderson et al., FOCS'06.
[5] "Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation." Fouss et al., TKDE, 2007. [6] "Getting lost in space: Large sample analysis of the commute distance." Luxburg et al., NIPS' 2010.

ARW-CMN – [1]

- LGC "Learning with local and global consistency", Zhou et al., NIPS'04.
- $\Lambda = R$ A random positive diagonal matrix.
- $\operatorname{HT}(\mathcal{L} \to \mathcal{U})$ From all labeled points to hit one unlabeled point.
- $\operatorname{HT}(\mathcal{U} \to \mathcal{L})$ · From one unlabeled point to hit all labeled points.

