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Abstract

We find that various well-known graph-based models exhibit acommon important
harmonicstructure in its target function – the value of a vertex is approximately
the weighted average of the values of its adjacent neighbors. Understanding of
such structure and analysis of the loss defined over such structure help reveal im-
portant properties of the target function over a graph. In this paper, we show that
the variation of the target function across a cut can be upperand lower bounded by
the ratio of its harmonic loss and the cut cost. We use this to develop an analytical
tool and analyze five popular graph-based models: absorbingrandom walks, par-
tially absorbing random walks, hitting times, pseudo-inverse of the graph Lapla-
cian, and eigenvectors of the Laplacian matrices. Our analysis sheds new insights
into several open questions related to these models, and provides theoretical justi-
fications and guidelines for their practical use. Simulations on synthetic and real
datasets confirm the potential of the proposed theory and tool.

1 Introduction

Various graph-based models, regardless of application, aim to learn a target function on graphs that
well respects the graph topology. This has been done under different motivations such as Laplacian
regularization [4, 5, 6, 14, 24, 25, 26], random walks [17, 19, 23, 26], hitting and commute times
[10], p-resistance distances [1], pseudo-inverse of the graph Laplacian [10], eigenvectors of the
Laplacian matrices [18, 20], diffusion maps [8], to name a few. Whether these models can capture
the graph structure faithfully, or whether their target functions possess desirable properties over
the graph, remain unclear. Understanding of such issues canbe of great value in practice and has
attracted much attention recently [16, 22, 23].

Several important observations about learning on graphs have been reported. Nadler et al. [16]
showed that the target functions of Laplacian regularized methods become flat as the number of
unlabeled points increases, but they also observed that a good classification can still be obtained
if an appropriate threshold is used. An explanation to this would be interesting. Von Luxburg
et al. [22] proved that commute and hitting times are dominated by the local structures in large
graphs, ignoring the global patterns. Does this mean these metrics are flawed? Interestingly, despite
this finding, the pseudo-inverse of graph Laplacian, known as the kernel matrix of commute times,
consistently performs superior in collaborative filtering[10]. In spectral clustering, the eigenvectors
of the normalized graph Laplacian are more desired than those of the un-normalized one [20, 21].
Also for the recently proposed partially absorbing random walks [23], certain setting of absorption
rates seems better than others. While these issues arise from seemingly unrelated contexts, we will
show in this paper that they can be addressed in a single framework.
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Our starting point is the discovery of a common structure hidden in the target functions of various
graph models. That is, the value of a vertex is approximatelythe weighted average of the values
of its adjacent neighbors. We call this structurethe harmonic structurefor its resemblance to the
harmonic function [9, 26]. It naturally arises from the firststep analysis of random walk models,
and, as will be shown in this paper, implicitly exists in other methods such as pseudo-inverse of the
graph Laplacian and eigenvectors of the Laplacian matrices. The target functions of these models
are characterized by their harmonic loss, a quantitative notion introduced in this paper to measure
the discrepancy of a target functionf on cuts of graphs. The variations off across cuts can then be
upper and lower bounded by the ratio of its harmonic loss and the cut cost. As long as the harmonic
loss varies slowly, the graph conductance dominates the variations off – it will remain smooth in
a dense area but vary sharply otherwise. Models possessing such properties successfully capture
the cluster structures, and as shown in Sec. 4, lead to superior performance in practical applications
including classification and retrieval.

This novel perspective allows us to give a unified treatment of graph-based models. We use this tool
to study five popular models: absorbing random walks, partially absorbing random walks, hitting
times, pseudo-inverse of the graph Laplacian, and eigenvectors of the Laplacian matrices. Our
analysis provides new theoretical understandings into these models, answers related open questions,
and helps to correct and justify their practical use. The keymessage conveyed in our results is that
various existing models enjoying the harmonic structure are actually capable of capturing the global
graph topology, and understanding of this structure can guide us in applying them properly.

2 Analysis

Let us first define some notations. In this paper, we consider graphs which are connected, undirected,
weighted, and without self-loops. Denote byG = (V ,W ) a graph withn verticesV and a symmetric
non-negative affinity matrixW = [wij ] ∈ R

n×n (wii = 0). Denote bydi =
∑

j wij the degree of
vertexi, byD = diag(d1, d2, . . . , dn) the degree matrix, and byL = D −W the graph Laplacian

[7]. The conductance of a subsetS ⊂ V of vertices is defined asΦ(S) = w(S,S̄)
min(d(S),d(S̄))

, where

w(S, S̄) =
∑

i∈S,j∈S̄ wij is the cut cost betweenS and its complement̄S, andd(S) =
∑

i∈S di is
the volume ofS. For anyi /∈ S, denote byi ∼ S if there is an edge between vertexi and the setS.

Definition 2.1 (Harmonic loss). The harmonic loss off : V → R on anyS ⊆ V is defined as:

Lf (S) :=
∑

i∈S

di



f(i)−
∑

j∼i

wij

di
f(j)



 =
∑

i∈S



dif(i)−
∑

j∼i

wijf(j)



 . (1)

Note thatLf (S) =
∑

i∈S(Lf)(i). By definition, the harmonic loss can be negative. However, as
we shall see below, it is always non-negative on superlevel sets.

The following lemma shows that the harmonic loss couples thecut cost and the discrepancy of the
function across the cut. This observation will serve as the foundation of our analysis in this paper.

Lemma 2.2. Lf (S) =
∑

i∈S,j∈S̄ wij(f(i)− f(j)). In particular,Lf (V) = 0.

In practice, to examine the variation off on a graph, one does not necessarily examine on every
subset of vertices, which will be exponential in the number of vertices. Instead, it suffices to consider
its variation on the superlevel sets defined as follows.

Definition 2.3 (Superlevel set). For any functionf : V → R on a graph and a scalarc ∈ R, the
set{i | f(i) ≥ c} is called a superlevel set off with levelc.

W.l.o.g., we assume the vertices are sorted such thatf(1) ≥ f(2) ≥ · · · ≥ f(n − 1) ≥ f(n). The
subsetSi := {1, . . . , i} is the superlevel set with levelf(i) if f(i) > f(i+1). For convenience, we
still call Si a superlevel set off even iff(i) = f(i + 1). In this paper, we will mainly examine the
variation off on itsn superlevel setsS1, . . . ,Sn. Our first observation is that the harmonic loss on
each superlevel set is non-negative, stated as follows.

Lemma 2.4. Lf (Si) ≥ 0, i = 1, . . . , n.
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Based on the notion of superlevel sets, it becomes legitimate to talk about the continuity of a function
on graphs, which we formally define as follows.

Definition 2.5 (Continuity ). For any functionf : V → R, we call it left-continuous ifi ∼ Si−1,
i = 2, . . . , n; we call it right-continuous ifi ∼ S̄i, i = 1, . . . , n − 1; we call it continuous if
i ∼ Si−1 andi ∼ S̄i, i = 2, . . . , n− 1. Particularly, f is called left-continuous, right-continuous,
or continuous at vertexi if i ∼ Si−1, i ∼ S̄i, or i ∼ Si−1 andi ∼ S̄i, respectively.

Proposition 2.6. For any functionf : V → R and any vertex1 < i < n, 1) if Lf (i) < 0, then
i ∼ Si−1, i.e.,f is left-continuous ati; 2) if Lf (i) > 0, theni ∼ S̄i, i.e.,f is right-continuous ati;
3) if Lf (i) = 0 andf(i− 1) > f(i) > f(i+1), theni ∼ Si−1 andi ∼ S̄i, i.e.,f is continuous ati.

The variation off can be characterized by the following upper and lower bounds.

Theorem 2.7(Dropping upper bound). For i = 1, . . . , n− 1,

f(i)− f(i+ 1) ≤
Lf (Si)

w(Si, S̄i)
=

Lf (Si)

Φ(Si)min(d(Si), d(S̄i))
. (2)

Theorem 2.8(Dropping lower bound). For i = 1, . . . , n− 1,

f(u)− f(v) ≥
Lf (Si)

w(Si, S̄i)
=

Lf (Si)

Φ(Si)min(d(Si), d(S̄i))
, (3)

whereu := arg max
j∈Si,j∼S̄i

f(j) andv := arg min
j∈S̄i,j∼Si

f(j).

The key observations are two-fold. First, for any functionf on a graph, as long as its harmonic
lossLf (Si) varies slowly on the superlevel sets, i.e.,f is harmonic almost everywhere, the graph
conductanceΦ(Si) will dominate the variation off . In particular, by Theorem 2.7,f(i + 1) drops
little if Φ(Si) is large, whereas by Theorem 2.8, a big gap exists across the cut if Φ(Si) is small (see
Sec. 3.1 for illustration). Second, the continuity (eitherleft, right, or both) off ensures that its varia-
tions conform with the graph connectivity, i.e., points with similar values onf tend to be connected.
It is a desired property because a “discontinuous” functionthat changes alternatively among differ-
ent clusters can hardly describe the graph. These observations can guide us in identifying “good”
functions that encode the global structure of graphs, as will be shown in the next section.

3 Examples

With the tool developed in Sec. 2, in this section, we study five popular graph models arising from
different contexts including SSL, retrieval, recommendation, and clustering. For each model, we
show its target function in harmonic forms, quantify its harmonic loss, analyze its dropping bounds,
and provide corrections or justifications for its use.

3.1 Absorbing Random Walks

The first model we examine is the seminal Laplacian regularization method [26] proposed for SSL.
While it has a nice interpretation in terms of absorbing random walks, with the labeled points being
absorbing states, it was argued in [16] that this method might be ill-posed for large unlabeled data
in high dimension (≥ 2) because the target function is extremely flat and thus seemsproblematic
for classification. [1] further connected this argument with the resistance distance on graphs, point-
ing out that the classification biases to the labeled points with larger degrees. Here we show that
Laplacian regularization can actually capture the global graph structure and a simple normalization
scheme would resolve the raised issue.

For simplicity, we consider the binary classification setting with one label in each class. Denote by
f : V → R the absorption probability vector from every point to the positive labeled point. Assume
the vertices are sorted such that1 = f(1) > f(2) ≥ · · · ≥ f(n−1) > f(n) = 0 (vertex 1 is labeled
positive and vertexn is labeled negative). By the first step analysis of the randomwalk,

f(i) =
∑

k∼i

wik

di
f(k), for i = 2, . . . , n− 1. (4)

Our first observation is that the harmonic loss off is constant w.r.t.Si, as shown below.
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Figure 1: Absorbing random walks on a 6-point graph.

Corollary 3.1. Lf (Si) =
∑

k∼1 w1k(1 − f(k)), i = 1, . . . , n− 1.

The following statement shows thatf changes continuously on graphs under general condition.

Corollary 3.2. Supposef is mutually different on unlabeled data. Thenf is continuous.

Since the harmonic loss off is a constant on the superlevel setsSi (Corollary 3.1), by Theorems
2.7 and 2.8, the variation off depends solely on the cut valuew(Si, S̄i), which indicates that it will
drop slowly when the cut is dense but drastically when the cutis sparse. Also by Corollary 3.2,f is
continuous. Therefore, we conclude thatf is a good function on graphs.

This can be illustrated by a toy example in Fig. 1, where the graph consists of 6 points in 2 classes
denoted by different colors, with 3 points in each. The edge weights are all 1 except for the edge
between the two cluster, which is 0.1. Vertices 1 and 6 (blackedged) are labeled. The absorption
probabilities from all the vertices to vertex 1 are computedand shown. We can see that since the
cut w(S2, S̄2) = 2 is quite dense, the drop betweenf(2) andf(3) is upper bounded by a small
number (Theorem 2.7), sof(3) must be very close tof(2), as observed. In contrast, since the cut
w(S3, S̄3) = 0.1 is very weak, Theorem 2.8 guarantees that there will be a hugegap betweenf(3)
andf(4), as also verified. The bound in Theorem 2.8 is now tight as there is only 1 edge in the cut.

Now let f1 andf2 denote the absorption probability vectors to the two labeled points respectively.
To classify an unlabeled pointi, the usual way is to comparef1(i) andf2(i), which is equivalent to
setting the threshold as 0 inf0 = f1 − f2. It was observed in [16] that althoughf0 can be extremely
flat in the presence of large unlabeled data in high dimension, setting the “right” threshold can
produce sensible results. Our analysis explains this – it isbecause bothf1 andf2 are informative of
the cluster structures. Our key argument is that Laplacian regularization actually carries sufficient
information about the graph structure, but how to exploit itcan really make a difference.
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Figure 2: (a) Two 20-dimensional Gaussians with the first twodimensions plotted. The magenta
triangle and the green circle denote labeled data. The blue cross denotes a starting vertex indexed
by i for later use. (b) Absorption probabilities to the two labeled points. (c) Classification by
comparing the absorption probabilities. (d) Normalized absorption probabilities. (e) Classification
by comparing the normalized absorption probabilities.

We illustrate this point by using a mixture of two 20-dimensional Gaussians of 600 points, with one
label in each Gaussian (Fig. 2(a)). The absorption probabilities to both labeled points are shown in
Fig. 2(b), in magenta and green respectively. The green vector is well above the the magenta vector,
indicating that every unlabeled point has larger absorption probability to the green labeled point.
Comparing them classifies all the unlabeled points to the green Gaussian (Fig. 2(c)). Since the green
labeled point has larger degree than the magenta one1, this result is expected from the analysis in
[1]. However, the probability vectors are informative, with a clear gap between the clusters in each

1The degrees are 1.4405 and 0.1435. We use a weighted 20-NN graph (see Supplement).
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vector. To use the information, we propose to normalize eachvector by its probability mass, i.e.,
f ′(i) = f(i)/

∑

j f(j) (Fig. 2(d)). Comparing them leads to a perfect classification (Fig. 2(e)).

This idea is based on two observations from our analysis: 1) the variance of the probabilities within
each cluster is small; 2) there is a gap between the clusters.The small variance indicates that
comparing the probabilities is essentially the same as comparing their means within clusters. The
gap between the clusters ensures that the normalization makes the vectors align well (this point is
made precise in Supplement). Our above analysis applies to multi-class problems and allows more
than one labeled points in one class. In this general case, the classification rule is as follows: 1)
compute the absorption probability vectorfi : U → R for each labeled pointi by taking all other
labeled points as negative, whereU denotes the set of unlabeled points; 2) normalizefi by its mass,
denoted byf ′

i ; 3) assign each unlabeled pointj to the class ofj∗ := argmaxi{f
′
i(j)}. We denote

this algorithm as ARW-N-1NN.

3.2 Partially Absorbing Random Walks

Here we revisit the recently proposed partially absorbing random walks (PARW) [23], which gener-
alizes absorbing random walks by allowing partial absorption at each state. The absorption ratepii
at statei is defined aspii = αλi

αλi+di
, whereα > 0, λi > 0 are regularization parameters. Given cur-

rent statei, a PARW in the next step will get absorbed ati with probabilitypii and with probability
(1 − pii) ×

wij

di
moves to statej. Let aij be the probability that a PARW starting from statei gets

absorbed at statej within finite steps, and denote byA = [aij ] ∈ R
n×n the absorption probability

matrix. ThenA = (αΛ + L)−1αΛ, whereΛ = diag(λ1, . . . , λn) is the regularization matrix.

PARW is a unified framework with several popular SSL methods and PageRank [17] as its special
cases, corresponding to differentΛ. Particularly, the caseΛ = I has been justified in capturing the
cluster structures [23]. In what follows, we extend this result to show that the columns ofA obtained
by PARW with almost arbitraryΛ (not justΛ = I) actually exhibit strong harmonic structures and
should be expected to work equally well.

Our first observation is that whileA is not symmetric for arbitraryΛ, AΛ−1 = (αΛ + L)−1α is.

Lemma 3.3. aij =
λj

λi
aji.

Lemma 3.4. aii is the only largest entry in thei-th column ofA, i = 1, . . . , n.

Our second observation is that the harmonic structure exists in the probabilities of PARW from every
vertex getting absorbed at a particular vertex, i.e., in thecolumns ofA. W.l.o.g., consider the first
column ofA and denote it byp. Assume that the vertices are sorted such thatp(1) > p(2) ≥ · · · ≥
p(n− 1) ≥ p(n), wherep(1) > p(2) is due to Lemma 3.4. By the first step analysis of PARW, we
can writep in a recursive form:

p(1) =
αλ1

d1 + αλ1
+

∑

k∼1

w1k

d1 + αλ1
p(k), p(i) =

∑

k∼i

wik

di + αλi

p(k), i = 2, . . . , n, (5)

which is equivalent to the following harmonic form:

p(1) =
αλ1

d1
(1− p(1)) +

∑

k∼1

w1k

d1
p(k), p(i) = −

αλi

di
p(i) +

∑

k∼i

wik

di
p(k), i = 2, . . . , n. (6)

The harmonic loss ofp can be computed from Eq. (6).
Corollary 3.5. Lp(Si) = αλ1(1−

∑

k∈Si
a1k) = αλ1

∑

k∈S̄i
a1k, i = 1, . . . , n− 1.

Corollary 3.6. p is left-continuous.

Now we are ready to examine the variation ofp. Note that
∑

k a1k = 1 anda1k → λk/
∑

i λi

asα → 0 [23]. By Theorem 2.7, the drop ofp(i) is upper bounded byαλ1/w(Si, S̄i), which is
small when the cutw(Si, S̄i) is dense andα is small. Now letk be the largest number such that
d(Sk) ≤

1
2d(V), and assume

∑

i∈S̄k
λi ≥

1
2

∑

i λi. By Theorem 2.8, for1 ≤ i ≤ k, the drop ofp(i)
across the cut{Si, S̄i} is lower bounded by13αλ1/w(Si, S̄i), if α is sufficiently small. This shows
thatp(i) will drop a lot when the cutw(Si, S̄i) is weak. The comparison between the corresponding
row and column ofA is shown in Figs. 3(a–b)2, which confirms our analysis.

2λi’s are sampled from the uniform distribution on the interval[0, 1] andα = 1e− 6, as used in Sec. 4.
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Figure 3: (a) Absorption probabilities that a PAWR gets absorbed at other points when starting from
i (see Fig. 2). (b) Absorption probabilities that PAWR gets absorbed ati when starting from other
points. (c) Thei-th row ofL†. (d) Hitting times fromi to hit other points. (e) Hitting times from
other points to hiti. (f) and (g) Eigenvectors ofL (mini{di} = 0.0173). (h) An eigenvector of
Lsym. (i) and (j) Eigenvectors ofLrw. The values in (f–j) denote eigenvalues.

It is worth mentioning that our analysis substantially extends the results in [23] by showing that the
setting ofΛ is not really necessary – a randomΛ can perform equally well if using the columns
instead of the rows ofA. In addition, our result includes the seminal local clustering model [2] as a
special case, which corresponds toΛ = D in our analysis.

3.3 Pseudo-inverse of the Graph Laplacian

The pseudo-inverseL† of the graph Laplacian is a valid kernel corresponding to commute times
[10, 12]. While commute times may fail to capture the global topology in large graphs [22],L†, if
used directly as a similarity measure, gives superior performance in practice [10]. Here we provide
a formal analysis and justification forL† by revealing the strong harmonic structure hidden in it.

Lemma 3.7. (L†L)ij = − 1
n

, i 6= j; and (L†L)ii = 1− 1
n

.

Note thatL† is symmetric sinceL is symmetric. W.l.o.g., we consider the first row ofL† and denote
it by ℓ. The following lemma shows the harmonic form ofℓ.

Lemma 3.8. ℓ has the following harmonic form:

ℓ(1) =
1− 1

n

d1
+

∑

k∼1

w1k

d1
ℓ(k), ℓ(i) = −

1
n

di
+
∑

k∼i

wik

di
ℓ(k), i = 2, . . . , n. (7)

W.l.o.g., assume the vertices have been sorted such thatℓ(1) > ℓ(2) ≥ · · · ≥ ℓ(n − 1) ≥ ℓ(n)3.
Then the harmonic loss ofℓ on the setSi admits a very simple form, as shown below.

Corollary 3.9. Lℓ(Si) =
|S̄i|
n

, i = 1, . . . , n− 1.

Corollary 3.10. ℓ is left-continuous.

By Corollary 3.9,Lℓ(Si) < 1 and decreases very slowly in large graphs sinceLℓ(Si)−Lℓ(Si+1) =
1
n

for anyi. From the analysis in Sec. 2, we can immediately conclude that the variation ofℓ(i) is
dominated by the cut cost on the superlevel setSi. Fig. 3(c) illustrates this argument.

3.4 Hitting Times

The hitting timehij from vertexi to j is the expected number of steps it takes a random walk starting
from i to reachj for the first time. While it was proven in [22] that hitting times are dominated by
the local structure of the target, we show below that the hitting times from other points to the same
target admit a harmonic structure, and thus are still able tocapture the global structure of graphs.
Our result is complementary to the analysis in [22], and provides a justification of using hitting times
in information retrieval where the query is taken as the target to be hit by others [15].

3ℓ(1) > ℓ(2) since one can show that any diagonal entry inL† is the only largest in the corresponding row.
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Let h : V → R be the hitting times from every vertex to a particular vertex. W.l.o.g., assume the
vertices have been sorted such thath(1) ≥ h(2) ≥ · · · ≥ h(n− 1) > h(n) = 0, where vertexn is
the target vertex. Applying the first step analysis, we obtain the harmonic form ofh:

h(i) = 1 +
∑

k∼i

wik

di
h(k), for i = 1, . . . , n− 1. (8)

The harmonic loss on the setSi turns out to be the volume of the set, as stated below.

Corollary 3.11. Lh(Si) =
∑

1≤k≤i

dk, i = 1, . . . , n− 1.

Corollary 3.12. h is right-continuous.

Now let us examine the variation ofh across any cut{Si, S̄i}. Note that

Lh(Si)

w(Si, S̄i)
=

αi

Φ(Si)
, whereαi =

d(Si)

min(d(Si), d(S̄i))
. (9)

First, by Theorem 2.8, there could be a significant gap between the target and its neighbors, since
αn−1 = d(V)

dn
− 1 could be quite large. Asi decreases fromd(Si) > 1

2d(V), the variation ofαi

becomes slower and slower (αi = 1 whend(Si) ≤
1
2d(V)), so the variation ofh will depend on the

variation of the conductance ofSi, i.e.,Φ(Si), according to Theorems 2.7 and 2.8. Fig. 3(e) shows
thath is flat within the clusters, but there is a large gap presentedbetween them. In contrast, there
are no gaps exhibited in the hitting times from the target to other vertices (Fig. 3(d)).

3.5 Eigenvectors of the Laplacian Matrices

The eigenvectors of the Laplacian matrices play a key role ingraph partitioning [20]. In practice, the
eigenvectors with smaller (positive) eigenvalues are moredesired than those with larger eigenvalues,
and the ones from a normalized Laplacian are preferred than those from the un-normalized one.
These choices are usually justified from the relaxation of the normalized cuts [18] and ratio cuts
[11]. However, it has been known that these relaxations can be arbitrarily loose [20]. It seems more
interesting if one can draw conclusions by analyzing the eigenvectors directly. Here we address
these issues by examining the harmonic structures in these eigenvectors.

We follow the notations in [20] to denote two normalized graph Laplacians:Lrw := D−1L and
Lsym := D− 1

2LD− 1

2 . Denote byu andv two eigenvectors ofL andLrw with eigenvaluesλu > 0
andλv > 0, respectively, i.e.,Lu = λuu andLrwv = λvv. Then we have

u(i) =
∑

k∼i

wik

di − λu

u(k), v(i) =
∑

k∼i

wik

di(1− λv)
v(k), for i = 1, . . . , n. (10)

We can see that the smallerλu andλv, the stronger the harmonic structures ofu andv. This explains
why in practice the eigenvector with the second4 smallest eigenvalues gives superior performance.
As long asλu ≪ mini{di}, we are safe to say thatu will have a significant harmonic structure, and
thus will be informative for clustering. However, ifλu is close tomini{di}, no matter how smallλu

is, the harmonic structure ofu will be weaker, and thusu is less useful. In contrast, from Eq. (10),
v will always enjoy a significant harmonic structure as long asλv is much smaller than 1. This
explains why eigenvectors ofLrw are preferred than those ofL for clustering. These arguments are
validated in Figs. 3(f–j), where we also include an eigenvector ofLsym for comparison.

4 Experiments

In the first experiment5, we test absorbing random walks (ARW) for SSL, with the classmass nor-
malization suggested in [26] (ARW-CMN), our proposed normalization (ARW-N-1NN, Sec. 3.1),
and without any normalization (ARW-1NN) – where each unlabeled instance is assigned the class of
the labeled instance at which it most likely gets absorbed. We also compare with the local and global

4Note that the smallest one is zero in eitherL or Lrw.
5Please see Supplement for parameter settings, data description, graph construction, and experimental setup.
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Table 1: Classification accuracy on 9 datasets.
USPS YaleB satimage imageseg ionosphere iris protein spiral soybean

ARW-N-1NN .879 .892 .777 .673 .771 .918 .589 .830 .916
ARW-1NN .445 .733 .650 .595 .699 .902 .440 .754 .889
ARW-CMN .775 .847 .741 .624 .724 .894 .511 .726 .856

LGC .821 .884 .725 .638 .731 .903 .477 .729 .816
PARW (Λ = I) .880 .906 .781 .665 .752 .928 .572 .835 .905

consistency (LGC) method [24] and the PARW withΛ = I in [23]. The results are summarized in
Table 1. We can see that ARW-N-1NN and PARW (Λ = I) consistently perform the best, which
verifies our analysis in Sec. 3. The results of ARW-1NN are unsatisfactory due to its bias to the
labeled instance with the largest degree [1]. Although ARW-CMN does improve over ARW-1NN in
many cases, it does not perform as well as ARW-N-1NN, mainly because of the artifacts induced by
estimating the class proportion from limited labeled data.The results of LGC are not comparable to
ARW-N-1NN and PARW (Λ = I), which is probably due to the lack of a harmonic structure.

Table 2: Ranking results (MAP) on USPS.
Digits 0 1 2 3 4 5 6 7 8 9 All

Λ = R (column) .981 .988 .875 .892 .647 .780 .941 .918 .746 .731 .850
Λ = R (row) .169 .143 .114 .096 .092 .076 .093 .093 .075 .086 .103

Λ = I .981 .988 .876 .893 .646 .778 .940 .919 .746 .730 .850

In the second experiment, we test PARW on a retrieval task on USPS (see Supplement). We compare
the cases withΛ = I andΛ = R, whereR is a random diagonal matrix with positive diagonal
entries. ForΛ = R, we also compare the uses of columns and rows for retrieval. The results are
shown in Table 2. We observe that the columns inΛ = R give significantly better results compared
with rows, implying that the harmonic structure is vital to the performance.Λ = R (column) and
Λ = I perform very similarly. This suggests that it is not the special setting of absorbing rates but
the harmonic structure that determines the overall performance.

Table 3: Classification accuracy on USPS.
k-NN unweighted graphs 10 20 50 100 200 500

HT(L → U) .8514 .8361 .7822 .7500 .7071 .6429
HT(U → L) .1518 .1454 .1372 .1209 .1131 .1113

L† .8512 .8359 .7816 .7493 .7062 .6426

In the third experiment, we test hitting times and pseudo-inverse of the graph Laplacian for SSL on
USPS. We compare two different uses of hitting times, the case of starting from the labeled dataL
to hit the unlabeled dataU (HT(L → U)), and the case of the opposite direction (HT(U → L)).
Each unlabeled instancej is assigned the class of labeled instancej∗, wherej∗ = argmini∈L{hij}
in HT(L → U), j∗ = argmini∈L{hji} in (HT(U → L)), andj∗ = argmaxi∈L{ℓji} in L† = (ℓij).
The results averaged over 100 trials are shown in Table 3, where we see that HT(L → U) performs
much better than HT(U → L), which is expected as the former admits a desired harmonic structure.
Note that HT(L → U) is not lost as the number of neighbors increases (i.e., the graph becomes
more connected). The slight performance drop is due to the inclusion of more noisy edges. In
contrast, HT(U → L) is completely lost [20]. We also observe thatL† produces very competitive
performance, which again supports our analysis.

5 Conclusion

In this paper, we explorethe harmonic structurethat widely exists in graph models. Different
from previous research [3, 13] of harmonic analysis on graphs, where the selection of canonical
basis on graphs and the asymptotic convergence on manifoldsare studied, here we examine how
functions on graphs deviate from being harmonic and developbounds to analyze their theoretical
behavior. The proposed harmonic loss quantifies the discrepancy of a function across cuts, allows a
unified treatment of various models from different contexts, and makes them easy to analyze. Due
to its resemblance with standard mathematical concepts such as divergence and total variation, an
interesting line of future work is to make their connectionsclear. Other future works include deriving
more rigorous bounds for certain functions and extending our analysis to more graph models.
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