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Abstract

We find that various well-known graph-based models exhibitramon important
harmonicstructure in its target function — the value of a vertex isragpnately
the weighted average of the values of its adjacent neighddnslerstanding of
such structure and analysis of the loss defined over suattsteuhelp reveal im-
portant properties of the target function over a graph. isplaper, we show that
the variation of the target function across a cut can be ugpetower bounded by
the ratio of its harmonic loss and the cut cost. We use thigteldp an analytical
tool and analyze five popular graph-based models: absoraimipm walks, par-
tially absorbing random walks, hitting times, pseudo-isecof the graph Lapla-
cian, and eigenvectors of the Laplacian matrices. Our aisagheds new insights
into several open questions related to these models, an@lipstheoretical justi-
fications and guidelines for their practical use. Simulaion synthetic and real
datasets confirm the potential of the proposed theory arld too

1 Introduction

Various graph-based models, regardless of applicatiomt@iearn a target function on graphs that
well respects the graph topology. This has been done unffleratdit motivations such as Laplacian
regularization[[4] 5,16, 14, 25, P6,127], random walks| [17,[24),[27], hitting and commute times
[10], p-resistance distances [1], pseudo-inverse of tlaplgiLaplacian[[10], eigenvectors of the
Laplacian matrices [18, 20], diffusion maps [8], to name\wa. fé&vhether these models can capture
the graph structure faithfully, or whether their targetdtions possess desirable properties over
the graph, remain unclear. Understanding of such issuebeaf great value in practice and has
attracted much attention recently [16] 22}, 24].

Several important observations about learning on grapts haen reported. Nadler et al. [16]
showed that the target functions of Laplacian regularizedhods become flat as the number of
unlabeled points increases, but they also observed thaba gjassification can still be obtained
if an appropriate threshold is used. An explanation to thisilel be interesting. Von Luxburg
et al. [22] proved that commute and hitting times are doneiddty the local structures in large
graphs, ignoring the global patterns. Does this mean theseamare flawed? Interestingly, despite
this finding, the pseudo-inverse of graph Laplacian, knos/itha kernel matrix of commute times,
consistently performs superior in collaborative filter[@]. In spectral clustering, the eigenvectors
of the normalized graph Laplacian are more desired tharetbbthe un-normalized ong [20, 121].
Also for the recently proposed partially absorbing randoatke [24], certain setting of absorption

*This article is the full version of [23].



rates seems better than others. While these issues anmseé&amingly unrelated contexts, we will
show in this paper that they can be addressed in a single frarke

Our starting point is the discovery of a common structureléidin the target functions of various
graph models. That is, the value of a vertex is approximateyweighted average of the values
of its adjacent neighbors. We call this structtine harmonic structuréor its resemblance to the
harmonic function[[9, 27]. It naturally arises from the fissép analysis of random walk models,
and, as will be shown in this paper, implicitly exists in athgethods such as pseudo-inverse of the
graph Laplacian and eigenvectors of the Laplacian matri€ae target functions of these models
are characterized by their harmonic loss, a quantitatit®nantroduced in this paper to measure
the discrepancy of a target functigron cuts of graphs. The variations pfacross cuts can then be
upper and lower bounded by the ratio of its harmonic loss hadtit cost. As long as the harmonic
loss varies slowly, the graph conductance dominates thatiars of f — it will remain smooth in

a dense area but vary sharply otherwise. Models posseasitgpsoperties successfully capture
the cluster structures, and as shown in Skc. 4, lead to supenrformance in practical applications
including classification and retrieval.

This novel perspective allows us to give a unified treatmégtaph-based models. We use this tool
to study five popular models: absorbing random walks, dirtédosorbing random walks, hitting
times, pseudo-inverse of the graph Laplacian, and eigéonseof the Laplacian matrices. Our
analysis provides new theoretical understandings inteeth@odels, answers related open questions,
and helps to correct and justify their practical use. Therkegsage conveyed in our results is that
various existing models enjoying the harmonic structuessatually capable of capturing the global
graph topology, and understanding of this structure cadegus in applying them properly.

2 Analysis

Let us first define some notations. In this paper, we considgtts which are connected, undirected,
weighted, and without self-loops. Denote®y= (1, W) a graph withn vertices) and a symmetric
non-negative affinity matrixV" = [w;;| € R"*" (w;; = 0). Denote byd; = }_, w;; the degree of
vertexi, by D = diag(dy, ds, . .., d,) the degree matrix, and by = D — W the graph Laplacian
[7]. The conductance of a subs8tC V of vertices is defined a®(S) = %, where
w(S,8) = Xics jes wij 1S the cut cost betweef) and its complemers, andd(S) = >, ¢ d; is
the volume ofS. For anyi ¢ S, denote byi ~ S if there is an edge between verteand the sef.

Definition 2.1 (Harmonic loss). The harmonic loss of : V — R on anyS C V is defined as:

Le(8) =Y di | )= %f(j) =3 dit () =S wif () | - (1)

i€eS jrvi i€eS jrvi
Note thatl;(S) = > ,.s(Lf)(i). By definition, the harmonic loss can be negative. Howewer, a
we shall see below, it is always non-negative on superl@ts! s

The following lemma shows that the harmonic loss couplestheost and the discrepancy of the
function across the cut. This observation will serve as thwadlation of our analysis in this paper.

Lemma2.2. L(S) = 3 s jes wij (f(0) — f(5))- In particular, L¢(V) = 0.

Proof. By definition2.1, we have

Li(S)=> (dz‘f(i) - Zwijf(j)) => (Z wi; (f(i) — f(j)))

i€S jri i€eS \ j

ST wi(£6) = £G) + > wis (F) = £())
i€S \jeS jeS
= > wiy(fi) - £()),

i€S,j€S



where in the last equation we use the fact @:’%SJGS w;; (f(i)— f(4)) = 0, due to the symmetry
of the affinity (w;; = w;;). O

In practice, to examine the variation gfon a graph, one does not necessarily examine on every
subset of vertices, which will be exponential in the numbesestices. Instead, it suffices to consider
its variation on the superlevel sets defined as follows.

Definition 2.3 (Superlevel se}l. For any functionf : V — R on a graph and a scalar € R, the
set{: | f(i) > ¢} is called a superlevel set gfwith levelc.

W.l.o.g., we assume the vertices are sorted suchftfigt> f(2) > --- > f(n—1) > f(n). The
subsetS; := {1, ...,i} is the superlevel set with levgl7) if f(i) > f(: + 1). For convenience, we
still call S; a superlevel set of eveniif f(i) = f(i + 1). In this paper, we will mainly examine the
variation of f on itsn superlevel set§, ..., S,,. Our first observation is that the harmonic loss on
each superlevel set is non-negative stated as follows.

Lemma2.4. L;(S;) >0,i=1,.
Proof. This follows from Lemm&2]2 and the fact th&tk) > f(j), vk € S; andVj € S;. O

Based on the notion of superlevel sets, it becomes legiitoatlk about the continuity of a function
on graphs, which we formally define as follows.

Definition 2.5 (Continuity ). For any functionf : V — R, we caII it left-continuous it ~ S;_1,

i = 2,...,n; we call it right-continuous ifi ~ S;, i = 1,. — 1; we call it continuous if
i~ S andz ~ &, i=2,...,n— 1. Particularly, f is caIIed Igft -continuous, right-continuous,
or continuous at vertexif 7 ~ Si 1,4~ S8;,0ri ~S;_1 andi ~ S;, respectively.

Proposition 2.6. For any functionf : V — R and any verted < i < n, 1)if £L;(i) < 0, then
i~ S8i_1,l1.e.,f isleft-continuous at; 2) if £;(i) > 0, theni ~ S;, i.e., f is right-continuous af;
3)if Lp(i) =0andf(i—1) > f(i) > f(i+1), theni ~ S;_; andi ~ S;, i.e., f is continuous af.

Proof. 1) By Definition[23, if £y (i) < 0, we havef (i) — >=;.; 72 f(j) < 0. Then there must
exist somej ~ i, such thatf(j) > f(i), implyingj € S;,_; and thusi ~ S;_;. Result 2) can be

shown similarly.

3) As we assume the graph is connected, we must haveS;_; ori ~ S;. Supposé ~ S;_;.
Then there exists somee S, such thatf(j) > f(i) sincef(i — 1) > f(i). SinceL;(i) = 0,
i.e., f(i) = >°. . 52 f(4) = 0, there must exist some ~ i such thatf(k) < f(i), i.e.,i ~ S;.

J~iod; =
Similarly, we can show that if ~ S; theni ~ S;_;. O

The variation off can be characterized by the following upper and lower bounds
Theorem 2.7(Dropping upper bound). Fori=1,...,n —1,

. , Ly(Si) L:(Si)
SO =T+ < 006780~ B8, min(d(S,), d&0) @
Proof. By Lemmd 2.2, we have
LyS) = Y wr(fG) = fR) = > wp(f) = fi+1))
JES kES; jJES:,JES:
>(fO) = fa+1) Y wip = (FG) = fi+1))w(Si, S),
JES; kES;
which concludes the proof. O
Theorem 2.8(Dropping lower bound). Fori=1,...,n—1,
flw) - fv) = =50 _ L&) ®

w(8;, ;) D(S;) min(d(S;), d(S;))

whereu := arg max _ f(j)andv :=arg min f(j).
JES:,j~S; j€Si,i~S:
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Proof. By Lemmd2.2, we have
LiS)= D> w(f()—fR)< D win(f(w) = f(v)

JESi,kES; JESi,JES;
<) = f@) Y wie = () = F(0)w(Si,S),
jGSi,kEgi
which concludes the proof. O

The key observations are two-fold. First, for any functipion a graph, as long as its harmonic
lossL;(S;) varies slowly on the superlevel sets, i.£.is harmonic almost everywherthe graph
conductanc@(S;) will dominate the variation of . In particular, by Theorem 2.7,(: + 1) drops
little if ®(S;) is large, whereas by Theorém2.8, a big gap exists acrossitlifed®(S;) is small (see
Sec[3.1L forillustration). Second, the continuity (eittedt, right, or both) off ensures that its varia-
tions conform with the graph connectivity, i.e., pointstwgimilar values ory tend to be connected.
It is a desired property because a “discontinuous” fundti@b changes alternatively among differ-
ent clusters can hardly describe the graph. These obsmmgatan guide us in identifying “good”
functions that encode the global structure of graphs, dd@ishown in the next section.

3 Examples

With the tool developed in Seldl 2, in this section, we study fiepular graph models arising from
different contexts including SSL, retrieval, recommemutatand clustering. For each model, we
show its target function in harmonic forms, quantify itsinanic loss, analyze its dropping bounds,
and provide corrections or justifications for its use.

3.1 Absorbing Random Walks

The first model we examine is the seminal Laplacian regudtida method [2]7] proposed for SSL.
While it has a nice interpretation in terms of absorbing mndvalks, with the labeled points being
absorbing states, it was argued[inl[16] that this method tiighll-posed for large unlabeled data
in high dimension ¢ 2) because the target function is extremely flat and thus seeafdematic
for classification.[[1] further connected this argumentwiite resistance distance on graphs, point-
ing out that the classification biases to the labeled poiritls larger degrees. Here we show that
Laplacian regularization can actually capture the globbaph structure and a simple normalization
scheme would resolve the raised issue.

For simplicity, we consider the binary classification sgjtivith one label in each class. Denote by
f 'V — Rthe absorption probability vector from every point to theitie labeled point. Assume
the vertices are sorted such that f(1) > f(2) > --- > f(n—1) > f(n) = 0 (vertex 1 is labeled
positive and vertex is labeled negative). By the first step analysis of the randeaifk,

f(z'):zl‘:;?f(k), fori=2,...n—1 (4)

k~i
Ouir first observation is that the harmonic lossfa$ constant w.r.tS;, as shown below.
Corollary 3.1. L(S;) = > oy wik(l — f(k)),i=1,...,n— 1.

Proof. By Definition[2.1, Eq.[(4), and Lemnia 2.2, we have

L£5(S0) = £5() = £5(1) = > win(1 = f(K)). (5)

k~1
(]

The following statement shows thatchanges continuously on graphs under general condition.
Corollary 3.2. Suppos¢ is mutually different on unlabeled data. Théis continuous.
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Figure 1: Absorbing random walks on a 6-point graph.

Proof. This follows from Proposition 216 sinc&y (i) = 0 for each unlabeled instance O

Since the harmonic loss ¢fis a constant on the superlevel séts(Corollary[3.1), by Theorems
[2.7 and2.B, the variation gf depends solely on the cut valugs;, S;), which indicates that it will
drop slowly when the cut is dense but drastically when theéscsparse. Also by Corollaty 3.Z,is
continuous. Therefore, we conclude thfas a good function on graphs.

This can be illustrated by a toy example in Fi§j. 1, where tlaplrconsists of 6 points in 2 classes
denoted by different colors, with 3 points in each. The edg@tts are all 1 except for the edge
between the two cluster, which is 0.1. Vertices 1 and 6 (bkddred) are labeled. The absorption
probabilities from all the vertices to vertex 1 are compuied shown. We can see that since the
cutw(S2,S2) = 2 is quite dense, the drop betweg(R) and f(3) is upper bounded by a small
number (Theorem 2.7), sf(3) must be very close tg(2), as observed. In contrast, since the cut
w(S3,S3) = 0.1 is very weak, Theorein 2.8 guarantees that there will be a bapdetweerf (3)
andf(4), as also verified. The bound in Theorem| 2.8 is now tight asttseonly 1 edge in the cut.

Now let f; and f» denote the absorption probability vectors to the two ladb@leints respectively.
To classify an unlabeled pointthe usual way is to compar& (i) and f2(4), which is equivalent to
setting the threshold as 0 jfig = f1 — f2. It was observed iri [16] that although can be extremely
flat in the presence of large unlabeled data in high dimensetiing the “right” threshold can
produce sensible results. Our analysis explains this -biétsuse botlf; and f» are informative of
the cluster structures. Our key argument is that Lapla@gnlarization actually carries sufficient
information about the graph structure, but how to explatih really make a difference.

1 6
]
0.5 *
Go' : '3Aoc‘) 600
(b) () (d)

Figure 2: (a) Two 20-dimensional Gaussians with the first tioensions plotted. The magenta
triangle and the green circle denote labeled data. The bhssdenotes a starting vertex indexed
by i for later use. (b) Absorption probabilities to the two ladzblpoints. (c) Classification by
comparing the absorption probabilities. (d) Normalizedaption probabilities. (e) Classification
by comparing the normalized absorption probabilities.

We illustrate this point by using a mixture of two 20-dimersl Gaussians of 600 points, with one
label in each Gaussian (FiIg. 2(a)). The absorption proiialito both labeled points are shown in
Fig.2(b), in magenta and green respectively. The greemrexivell above the the magenta vector,
indicating that every unlabeled point has larger absonppimbability to the green labeled point.
Comparing them classifies all the unlabeled points to therg@&aussian (Fi¢l 2(c)). Since the green
labeled point has larger degree than the magentd, dinis result is expected from the analysis in
[1]. However, the probability vectors are informative, i clear gap between the clusters in each
vector. To use the information, we propose to normalize e&chor by its probability mass, i.e.,
f(@) = f(i)/ 22, f(5) (Fig.[2(d)). Comparing them leads to a perfect classificatigg.[2(e)).

The degrees are 1.4405 and 0.1435. We use a weighted 20-I9N @ee Se€l4).



This idea is based on two observations from our analysielyariance of the probabilities within
each cluster is small; 2) there is a gap between the clusfEnge small variance indicates that
comparing the probabilities is essentially the same as eoimg their means within clusters. The
gap between the clusters ensures that the normalizatiorsribk vectors align well. LemrbaB.3
makes this point precise. Our above analysis applies ta4tlaks problems and allows more than
one labeled points in one class. In this general case, thsifitation rule is as follows: 1) compute
the absorption probability vectg : &/ — R for each labeled point by taking all other labeled
points as negative, whetédenotes the set of unlabeled points; 2) normafizay its mass, denoted
by f/; 3) assign each unlabeled pointo the class ofi* := argmax;{f/(j)}. We denote this
algorithm as ARW-N-1NN.

Lemma 3.3.Letf; : V = R, f2 : V — R be non-negative, and let, : V — R, f; : V — R,
where (i) = f1(i)/ 3, f1(j), f3() = f2(i)/ S, f2(j). SupposdCr, Cs} is a 2-partitioning of
V,ie,CiUCy =V, CiNCy = ), and denotey; = \c_ll\ Yice, J1(@), v1 = ‘0—12‘ Yice, J1(0),
Uz = ﬁ Yicc, fa(1), vz = |clz| Yicc, fa(i), uy = ﬁ Yicc, f1(1), v = ﬁ Yicc, f1(1),
uy = 1o Liee, [2(0), V5 = g5 ice, f5(0). I ur > v andup < va, thenuy > uh and
V) < vh.

Proof. Note that we have) > v andu), < v} sinceu; > vy andus < vy. Assume, to the contrary,
thatu) < wh. Thenvl > uh > u) > v]. Thusl = uj|C1| + v{|Ca] < uh|Cy| + v4|Ce| = 1,
implying that the assumption is not correct. So we haye> u}. The case fow] < v} can be
shown similarly. O

3.2 Partially Absorbing Random Walks

Here we revisit the recently proposed partially absorbarmglom walks (PARW) [24], which gener-
alizes absorbing random Walks by allowing partial absorpét each state. The absorption rate

at statei is defined ag;; = o +d , Wherea > 0, \; > 0 are regularization parameters. Given cur-
rent state, a PARW in the next step will get absorbed atith probability p;; and with probability
(1 —pii) % “’” moves to statg. Leta;; be the probability that a PARW starting from statgets
absorbed at statjawnhm finite steps, and denote by = [a,;] € R™*™ the absorption probability
matrix. ThenA = (aA + L)~ 'aA, whereA = diag(\1, . .., \,) is the regularization matrix.

PARW is a unified framework with several popular SSL methau$RageRank [17] as its special
cases, corresponding to differekt Particularly, the cas& = I has been justified in capturing the
cluster structure$ [24]. In what follows, we extend thisutet show that the columns of obtained
by PARW with almost arbitrar\\ (not justA = I) actually exhibit strong harmonic structures and
should be expected to work equally well.

Our first observation is that whilé is not symmetric for arbitrarj, AA™! = (aA + L) tais.

Lemma 3.4. Q5 = %aﬁ.

Proof. AA™! = (aA + L)'« is symmetric. Sdyt = (AA1);; = (A1) = 52, O

Lemma 3.5. a;; is the only largest entry in theth column of4,i =1,...,n.

Proof. Since@ = (g;;) := AA™! = (aA + L)' is symmetric and each column df is the
corresponding column iy multiplied by a positive scale, it suffices to prove thatis the largest
in the row: of Q.

Note thatB = (b;;) := oA + D — W is symmetric and strictly diagonally dominant, i.&; >
Z#k |bxe| for any k. Assume, to the contrary, there existg, ¢ # j, such thay;; < ¢;;. Denote
k = argmaxy»; ¢;c. Note that) > 0 sinceA > 0. Then byBQ = oI, we haved = B(k,:)Q(:
v0) = >0 bkeqei = brrqri + D0y, Dkedqei = brrri — D gz, |brelari = (brk — Dz |bre|)qri > 0.
This contradicts the assumption, and thus completes thad.pro O

Our second observation is that the harmonic structuressxisihe probabilities of PARW from every
vertex getting absorbed at a particular vertex, i.e., inablemns ofA. W.l.o.g., consider the first



column of A and denote it by. Assume that the vertices are sorted suchiggt > p(2) > --- >
p(n — 1) > p(n), wherep(1) > p(2) is due to Lemma3]5. By the first step analysis of PARW we
can writep in a recursive form:

o\
! =2,... 6
p() dl“l‘Oé)\l Zdl+0&)\1 Zd +O[A ) ,n, ()
which is equivalent to the following harmonic form:
A (2 .
p(l):adll +Zw1k ) +Zwk —o...m (7)
k~1 ki

The harmonic loss gf can be computed from Ed.l(7).
Corollary 3.6. ﬁp(Sl) = a/\l(l — Zkesi alk) = a)\ Zke& aig,t=1,....,n—1.

Proof. By Definition[2.1 and Eq[{7), we have

L,(Si) = Z,cp( =aX(1— Za)\kp
k=1
= Oé)\l — a/\1a11 - Za)\kakl = OéAl — oz)\lau — Z OéAlalk = OéAl Z a1k,
k=2 k=2 keS;
where we have used Leminal3.4 and the fact¥hatu, = 1. O

Corollary 3.7. p is left-continuous.
Proof. This follows from£, (i) = —aX;p(i) < 0. O

Now we are ready to examine the variationzof Note that) ", a1, = 1 andaix - A/ Yo
asa — 0 [24]. By Theoreni 2J7, the drop of() is upper bounded by, /w(S;, S;), which is
small when the cutv(S;, S;) is dense and is small. Now letk be the largest number such that
d(Sk) < 3d(V),and assumg_, s A > 5>, Ai. By Theoreni 2B, fot < i < k, the drop ofp(i)
across the cufS;, S;} is lower bounded b%a/\l/w(si, S:), if ais sufficiently small. This shows

thatp(i) will drop a lot when the cuty(S;, S;) is weak. The comparison between the corresponding
row and column ofd is shown in Figs13(a—B) which confirms our analysis.

It is worth mentioning that our analysis substantially extethe results in [24] by showing that the
setting ofA is not really necessary — a randdntan perform equally well using the columns instead
of the rows ofA. In addition, our result includes the seminal local clusigmodel [2] as a special
case, which corresponds A= D in our analysis.

3.3 Pseudo-inverse of the Graph Laplacian

The pseudo-inversg of the graph Laplacian is a valid kernel corresponding to marte times
[10,[12]. While commute times may fail to capture the glologidlogy in large graphs [22F,, if
used directly as a similarity measure, gives superior perémce in practice [10]. Here we provide
a formal analysis and justification fdr by revealing the strong harmonic structure hidden in it.

Lemma3.8. (LTL);; = —L1,i#j;and(LTL);; =11

Proof. Denote byL = UAU " the eigen-decomposition éf ThenL'L = UATAUT = 1—-2111T,
where we have used the fact thatt,/n is the eigenvector of associated with eigenvalue zerd]

Note thatZ! is symmetric sincd. is symmetric. W.l.0.g., we consider the first rowlof and denote
it by ¢. The following lemma shows the harmonic forméf

2)\;'s are sampled from the uniform distribution on the inteffgall] anda: = 1e — 6, as used in SeEl 4.
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Figure 3: (a) Absorption probabilities that a PAWR gets abed at other points when starting from
i (see Fig[R). (b) Absorption probabilities that PAWR getsabed at when starting from other
points. (c) Thei-th row of L. (d) Hitting times fromi to hit other points. (e) Hitting times from
other points to hit. (f) and (g) Eigenvectors of (min;{d;} = 0.0173). (h) An eigenvector of

Lgym. (i) and (j) Eigenvectors of,.,. The values in (f—j) denote eigenvalues.

Lemma 3.9. ¢ has the following harmonic form:

1
n W1k . " Wik .
(1) = no4 — k), L(i) = —2 + Uk),i=2,....,n
(1) = 52+ 3 G0 £6) =~ + 52 e
Proof. By Lemmd 3.8, we have
1
1- E = (LTL)ll = LT(lv :)L(:v 1) = Zé(k)L(ku 1) = g(l)dl - Zg(k")wklu
k k~1
giving /(1) = —= . D ko1 ‘g2 L(k) using symmetryvy; = wiy.
Similarly, for: > 1, we have
1
—— =(L'L)y;, =L'(1 i)d; — ;
which yields((i) = —z + >, ; g% €(k) using symmetryoy; = wiy.

(8)

9)

(10)

O

W.l.o.g., assume the vertices have been sorted suct(that> ¢(2) > --- > ¢(n — 1) > {(n)a.

Then the harmonic loss dfon the setS; admits a very simple form, as shown below.
Corollary 3.10. £4(S;) = SL,i=1,... ,n—1.

Proof. By Definition[Z.1, we have

M@zZ@KW—Zﬁ%)—m
k=1

ok

1 )
)+ Y- - 5L

Corollary 3.11. /s left-continuous.

Proof. By Lemm& 3.9, the harmonic loss for each vertex 2, ..., n is negative (i.e.--1). Thus¢

is left-continuous according to Proposition]2.6.

O

By Corollany{3.10.£,(S;) < 1 and decreases very slowly in large graphs sifges;) — L¢(Si+1) =
L'for anyi. From the analysis in Seldl 2, we can immediately concludethieavariation of/(i) is

dominated by the cut cost on the superlevel$%efFig.[3(c) illustrates this argument.

30(1) > £(2) since one can show that any diagonal entry.Iris the only largest in the corresponding row.



3.4 Hitting Times

The hitting timeh;; from vertex; to j is the expected number of steps it takes a random walk sjartin
from i to reachj for the first time. While it was proven in [22] that hitting tems are dominated by
the local structure of the target, we show below that thénlgitimes from other points to the same
target admit a harmonic structure, and thus are still abafiure the global structure of graphs.
Ourresultis complementary to the analysis in [22], and plewa justification of using hitting times
in information retrieval where the query is taken as thedtig be hit by others [15].

Leth : V — R be the hitting times from every vertex to a particular verté%l.o.g., assume the
vertices have been sorted such thét) > h(2) > --- > h(n — 1) > h(n) = 0, where vertex: is
the target vertex. Applying the first step analysis, we obtia¢ harmonic form of.:

h(i):1+z“j’“h(k), fori=1,...,n— L. (12)
k~i

The harmonic loss on the s8t turns out to be the volume of the set, as stated below.

Corollary 3.12. £4(8;) = Y diyi=1,...,n—1.
1<k<i

Proof. By Definition[2.1, we have

La(8) =D di | (k) =D EhG) | = 3T die
2 _ .

Corollary 3.13. A is right-continuous.

Proof. By Eqg. (12), the harmonic loss at each vertex is positive.sThis right-continuous accord-
ing to Proposition 216. O

Now let us examine the variation éfacross any cufS;, S;}. Note that
Ln(Si) o d(S;)

Y — herea; = —. 13
w(S, 8 BE) N T m(d(S:), d(S)) 13)

First, by Theorerh 218, there could be a significant gap betwee target and its neighbors, since
p_1 = ”lé—v — 1 could be quite large. As decreases from(S;) > %d(v), the variation ofo;

n

becomes slower and slower,(= 1 whend(S;) < %d(v)), so the variation ok will depend on the
variation of the conductance 6%, i.e., ®(S;), according to Theorenis 2.7 and]2.8. Fig. 3(e) shows
thath is flat within the clusters, but there is a large gap presebéddeen them. In contrast, there
are no gaps exhibited in the hitting times from the targeth®overtices (Fid.13(d)).

3.5 Eigenvectors of the Laplacian Matrices

The eigenvectors of the Laplacian matrices play a key rafgaph partitioning [20]. In practice, the
eigenvectors with smaller (positive) eigenvalues are rdesired than those with larger eigenvalues,
and the ones from a normalized Laplacian are preferred thasetfrom the un-normalized one.
These choices are usually justified from the relaxation efribrmalized cut< [18] and ratio cuts
[11]. However, it has been known that these relaxations eaarbitrarily loose[[20]. It seems more
interesting if one can draw conclusions by analyzing themigctors directly. Here we address
these issues by examining the harmonic structures in thgsevectors.

We follow the notations in[[20] to denote two normalized dramplacians:L,., := D~'L and

Lgym = D—3LD~3. Denote byu andv two eigenvectors of. and L,.,, with eigenvalues,,, > 0
and\, > 0, respectively, i.e.Lu = A\ ,u andL,.,v = \,v. Then we have
. Wik . Wik .

’LL(’L) = di . )\uu(k)a U(Z) - ; mv(k), for 1= 1, ceey N (14)

k~i




We can see that the smalligf and),, the stronger the harmonic structuresi@ndv. This explains
why in practice the eigenvector with the sedgsdwallest eigenvalues gives superior performance.
As long as\,, <« min;{d;}, we are safe to say thatwill have a significant harmonic structure, and
thus will be informative for clustering. However X, is close tomin;{d; }, no matter how smal\,,

is, the harmonic structure afwill be weaker, and thus is less useful. In contrast, from E@.{14),

v will always enjoy a significant harmonic structure as long\ass much smaller than 1. This
explains why eigenvectors df,,, are preferred than those bffor clustering. These arguments are
validated in Figd.13(f—j), where we also include an eigetweaf L,,,, for comparison.

4 Experiments

In the first experiment, we test absorbing random walks (ARW)SSL, with the class mass nor-
malization suggested ih [27] (ARW-CMN), our proposed ndizagion (ARW-N-1NN, Sec[3]1),
and without any normalization (ARW-1NN) — where each unlaiénstance is assigned the class
of the labeled instance at which it most likely gets absorb&d also compare with the local and
global consistency (LGC) method [25] and the PARW with= 1 in [24], where the regulariza-
tion parameters are set as 0.9 drd- 6, respectively. We use 9 real data sets for this experiment,
including USPS, YaleB, and 7 frequently used UCI datasstsuenmarized in Tablg 1.

We construct a weighte20-NN graph for each data set, except for the YaleB, imagesetd)jras
data sets, where we build 50-NN, 50-NN, and 25-NN graphseesly to ensure the graphs are
connected. The similarity between verticemd; is computed as;; = exp(—d;; /o) if i is within

j’s k nearest neighbors or vice versa, ang = 0 otherwise, wherer = 0.2 x r with r as the
average square distance between each point Bditsnearest neighbor. For USPS and YaleB, we
randomly sample 20 instances as labeled data; while forgtie randomly sample 10 instances.
The sampling process makes sure at least one label is safopledch class. Each classification
accuracy is averaged over 100 trials.

The results are summarized in Table 2. We can see that ARWHNI-dnd PARW (A = I) con-
sistently perform the best, which verifies our analysis ic.& The results of ARW-1NN are
unsatisfactory due to its bias to the labeled instance wighdrgest degreel[1]. While ARW-CMN
does improve over ARW-1NN in many cases, it does not perfamwell as ARW-N-1NN, mainly
because of the artifacts induced by estimating the clagsoption from limited labeled data. The
results of LGC are not comparable to ARW-N-1NN and PARW-=£ 7), which is probably due to
the lack of a harmonic structilite

Table 1: The 9 datasets tested in the experiments.

USPS| YaleB | satimage| imageseg| ionosphere| iris | protein | spiral | soybean
# examples | 9298 | 5760 6435 2310 351 150 116 100 47
# classes 10 10 6 7 2 3 6 2 4
# dimensions| 256 | 1200 36 19 34 4 20 3 35

Table 2: Classification accuracy on 9 datasets.

USPS| YaleB | satimage| imageseg| ionosphere| iris | protein | spiral | soybean
ARW-N-1NN .879 .892 77 673 71 918 .589 .830 916
ARW-1NN 445 733 .650 .595 .699 .902 440 754 .889
ARW-CMN 775 .847 741 .624 724 .894 511 .726 .856
LGC .821 | .884 725 .638 731 903 | .477 729 .816
PARWA =17) | .880 | .906 781 .665 752 928 | 572 .835 .905

In the second experiment, we test PARW on a retrieval taskiemhole USPS dataset (Table 1).
We compare the cases with= I andA = R, whereR is a random diagonal matrix with positive
diagonal entries sampled from the uniform distribution loa interval[0, 1]. For A = R, we also
compare the uses of columns and rows for retrieval. Follg24], we seto = 1le — 6, use each
instance in USPS as a query for the entire dataset, and riéygomiean average precision (MAP).
The graph construction is the same as in the first experiment.

“Note that the smallest one is zero in eittieor L,.,,.
SOur arguments are still valid for other values of the regatgiion parameter for LGC.
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The results are shown in Talile 3. We observe that the columfiss R gives significantly better
results compared with rows, implying that the harmonicdtrte is vital to the performancd. = R
(column) andA = I perform very similarly. This suggests that it is not the splesetting of
absorbing rates but the harmonic structure that dominhéesverall performance.

Table 3: Ranking results (MAP) on USPS.
Digits 0 1 2 3 4 5 6 7 8 9 All
A= R(column) | 981 | 988 | .875| .892 | .647 | .780 | .941 | 918 | .746 | .731 | .850
A = R (row) 169 | .143| .114 | .096 | .092 | .07/6 | .093 | .093 | .075 | .086 | .103
A=1 981 | 988 | 876 | .893| .646 | .778 | .940 | .919 | .746 | .730 | .850

In the third experiment, we test hitting times and pseudeiise of graph Laplacian for SSL on
the whole USPS dataset (Taljle 1). We compare two differezd 0§ hitting times, the case of
starting from the labeled daté to hit the unlabeled datd (HT(L — U)), and the case of the
opposite direction (HZ{ — £)). Each unlabeled instangas assign to the class of labeled instance
j*, wherej* = argmin;ec{h;;} in HT(L — U), j* = argmin;es{h;;} in (HT(U — £)), and

j* = argmax;e{¢;;} in LT = (¢;;). Following [20], we use undirected and unweighted graphs fo
this experiment. We vary the number of neighblofsom 10 to 500, where there is an edge between
points: andj if 7 is within j's k nearest neighbors or vice versa. The labeled data areeglzsin
the first experiment.

The results averaged over 100 trials are shown in Table 4renlie see that HI{ — /) performs
much better than HT{ — £), which is expected as the former admits a desired harmtmictare.
Note that HTC — U) is not lost as the number of neighbors increases (i.e., thphgbecomes
more connected). The slight performance drop is due to tblesion of more noisy edges. In
contrast, HT{Y — L) is completely lost[[20]. We also observe tHat produces very competitive
performance, which again supports our analysis.

Table 4: Classification accuracy on USPS.

k-NN unweighted graphg 10 20 50 100 200 500
HT(L — U) .8514 | .8361 | .7822 | .7500 | .7071 | .6429
HTU — L) 1518 | .1454 | 1372 | .1209 | .1131| .1113

LT .8512 | .8359 | .7816 | .7493 | .7062 | .6426

5 Conclusion

In this paper, we exploréhe harmonic structurehat widely exists in graph models. Different
from previous research|[3, 13] of harmonic analysis on gsapihere the selection of canonical
basis on graphs and the asymptotic convergence on mandaddstudied, here we examine how
functions on graphs deviate from being harmonic and devietamds to analyze their theoretical
behavior. The proposed harmonic loss quantifies the diaopof a function across cuts, allows a
unified treatment of various models from different conteatsd makes them easy to analyze. Due
to its resemblance with standard mathematical conceptsasiclivergence and total variation, an
interesting line of future work is to make their connectiolesar. Other future works include deriving
more rigorous bounds for certain functions and extendingaoalysis to more graph models.
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