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ABSTRACT
Medical visual question answering (Med-VQA) aims to accurately
answer a clinical question presented with a medical image. Despite
its enormous potential in healthcare industry and services, the tech-
nology is still in its infancy and is far from practical use. Med-VQA
tasks are highly challenging due to the massive diversity of clini-
cal questions and the disparity of required visual reasoning skills
for different types of questions. In this paper, we propose a novel
conditional reasoning framework for Med-VQA, aiming to automat-
ically learn effective reasoning skills for various Med-VQA tasks.
Particularly, we develop a question-conditioned reasoning module
to guide the importance selection over multimodal fusion features.
Considering the different nature of closed-ended and open-ended
Med-VQA tasks, we further propose a type-conditioned reasoning
module to learn a different set of reasoning skills for the two types
of tasks separately. Our conditional reasoning framework can be
easily applied to existing Med-VQA systems to bring performance
gains. In the experiments, we build our system on top of a recent
state-of-the-art Med-VQA model and evaluate it on the VQA-RAD
benchmark [23]. Remarkably, our system achieves significantly in-
creased accuracy in predicting answers to both closed-ended and
open-ended questions, especially for open-ended questions, where
a 10.8% increase in absolute accuracy is obtained. The source code
can be downloaded from https://github.com/awenbocc/med-vqa.
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1 INTRODUCTION
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Figure 1: Examples of medical visual question answering.
There may be multiple question-answer pairs associated
with one image. There are two types of questions: closed-
ended questions, where the answers are limited to “yes” or
“no”, and open-ended questions, where the answers can be
free-form text. Questions can also be categorized based on
what they are about, such as position, size, or whether there
is any abnormal condition.

Medical visual question answering (Med-VQA) is a domain-
specific visual question answering (VQA) problem that requires to
interpret medical-related visual concepts by taking into account
both image and language information. Specifically, a Med-VQA
system aims to take a medical image and a clinical question about
the image as input and output a correct answer in natural language.
Med-VQA can help patients to get prompt feedback to their in-
quiries and make more informed decisions. It can reduce the stress
on medical facilities so valuable medical resources could be saved
for people with urgent needs. It can also help doctors to get a second
opinion in diagnosis and reduce the high cost of training medical
professionals. Despite the enormous potential of the technology,
the research of Med-VQA is still in its embryonic stage, where the
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literature is rather limited. Therefore, we will start with introduc-
ing general VQA, which, in recent years, has attracted a great deal
of attention from both the computer vision and natural language
processing research communities.

General VQA focuses on visual perceptual tasks that require
common perceptual abilities shared by humans. For instance, given
an image with several eggs in a basket, a child and a doctor can
both easily answer the question “howmany eggs are in the basket?”.
General visual perceptual tasks include simple tasks such as “does
it appear to be rainy?” and difficult tasks such as “what size is the
cylinder that is left of the brown metal thing that is left of the big
sphere?”. Hence, it needs multilevel reasoning skills to solve VQA
tasks. Simple perceptual tasks require skills such as recognizing
specific objects and scene understanding, whereas difficult tasks
require higher-level reasoning skills such as performing compar-
isons, counting, or logical inferring. However, most of existing VQA
methods are designed for either simple tasks or difficult tasks. Solv-
ing the two kinds of tasks in a single model is challenging and only
considered in the high-data regime [32, 39].

Compared with VQA in the general domain, Med-VQA is a much
more challenging problem. On one hand, clinical questions are more
difficult but need to be answered with higher accuracy since they re-
late to health and safety. In general, Med-VQA systems need to deal
with the above-mentioned two kinds of tasks simultaneously. There
are basic perceptual tasks such as recognizing the modality of an im-
age (e.g., CT or MRI) and tasks that require higher-level reasoning
skills such as locating specific lesions or evaluating if the size of an
organ is normal given prior knowledge. As such, domain-specific
expert knowledge and multilevel reasoning skills are indispensable
to infer correct clinical answers. On the other hand, well-annotated
datasets for training Med-VQA systems are extremely lacking, but it
is very laborious and expensive to obtain high-quality annotations
by medical experts. To our knowledge, there is only one manu-
ally annotated dataset available - VQA-RAD [2], which contains
various types of clinical questions but only includes 315 medical
images. Therefore, state-of-the-art VQA models like [3, 17] cannot
be directly applied to solve Med-VQA, since they commonly use
sophisticated objection detection algorithms like Faster R-CNN
with ResNet-101 [36], which contain many parameters and need
to be trained on large-scale annotated datasets. Directly applying
these models will lead to severe overfitting.

Previous attempts in designing Med-VQA systems [1, 2, 48] tried
to exploit existing VQA models by using deep architectures pre-
trained on general datasets and fine-tuned with limited medical
data. However, both the image patterns and language styles of med-
ical data are very different from those in the general domain [24].
Due to the large gap between the general domain and medical
domain, knowledge transfer from the general domain by simply
fine-tuning on limited medical data can only offer little benefit [35].
To overcome this problem, [30] proposed to enhance the quality of
multimodal representations. In particular, they used a visual feature
extractor pre-trained on external medical datasets with an unsu-
pervised auto-encoder (CDAE) [29] and a meta-learning algorithm
MAML [9] to learn a domain-specific weight initialization for the
Med-VQA system. While these pioneering works pushed forward
the research front on Med-VQA, they only considered improving
the feature extraction module, whereas the reasoning module that

is critical for solving high-level reasoning tasks remains underex-
plored.

In this paper, we focus on improving the reasoning module of
Med-VQA, where the extracted multimodal features are processed
and analysed to infer a correct answer to the question. To this end,
we devise a novel reasoning framework that endows a Med-VQA
system with task-adaptive reasoning ability. Specifically, we pro-
pose a question-conditioned reasoning (QCR) module to guide the
modulation of multimodal fusion features. In essence, our QCR
module allows the Med-VQA system to learn and apply different
reasoning skills to find the correct answer according to the ques-
tion. This is achieved by not only considering the combination of
multimodal features but also enabling additional transformation
to the fused representations to identify question-specific reason-
ing information. Moreover, we observe that there are two major
types of tasks in Med-VQA, as shown in Figure 1, closed-ended
tasks, where answers are limited multiple-choice options, and open-
ended tasks where answers may be free-form texts. Open-ended
tasks are generally much harder to solve than closed-ended tasks.
Though existing Med-VQA systems can achieve a reasonable per-
formance on closed-ended tasks, they typically perform poorly on
open-ended tasks. Therefore, to further model the disparity of the
required reasoning skills for open-ended and closed-ended tasks,
we propose a task-conditioned reasoning (TCR) strategy to consider
both types of tasks accordingly.

In summary, our contributions are two-fold:
• Methodology. We propose a novel reasoning framework
for Med-VQA by learning reasoning skills conditioned on
both question information and task type information, which
is realized by a question-conditioned reasoning module and
a task-conditioned reasoning strategy.

• Empirical study.We conduct comprehensive evaluations
on the benchmark dataset VQA-RAD [23] to demonstrate
the effectiveness of our framework. The experimental results
show our Med-VQA system consistently and significantly
outperforms state-of-the-art baselines on both closed-ended
and open-ended questions.

The rest of the paper is organized as follows. In Section 2, we
review related works on VQA and Med-VQA. In Section 3, we
discuss the proposed mechanisms of QCR and TCR in detail. In
Section 4, we present experimental evaluation on our framework,
including comparisons with baselines and an ablation study of the
proposed mechanisms. Finally, we conclude this paper in Section 5.

2 RELATEDWORK
In this section, we briefly review the most relevant works in general
VQA and introduce recent development of Med-VQA.

2.1 Visual Question Answering
A typical VQA system consists of a 3-stage pipeline: (1) Features
from the two modalities are extracted by large-scale pre-trained
models such as ResNet or BERT; (2) The extracted features are ag-
gregated to learn a joint representation; (3) The joint representation
is then sent to the inference module, which can be a classifier to
predict the answer. The VQA benchmarks in the general domain
stress on different levels of reasoning skills and can be categorized



into two groups accordingly: the first group with human-annotated
questions [5, 11] and the second group based on sophisticated syn-
thetic questions [15, 18, 44].

A great many VQA systems differ in how they aggregate mul-
timodal features. Early works employed simple mechanisms such
as concatenation and pooling [5]. Later on, inter-modality relation,
which models the connection between visual objects and different
parts of the question, was studied extensively [3, 20, 25, 26, 43]. [3]
proposed a combined bottom-up and top-down visual attention
mechanism that extracts a series of regions of interest at the object
level and aggregates region features using an attention mechanism.
[20] proposed an efficient bilinear attention networks (BAN) to
jointly model the interaction between the modalities. In this pa-
per, BAN is also employed for cross-modal feature fusion in our
proposed framework.

Some other VQA systems stress on higher-level reasoning skills [4,
8, 13, 14, 28, 34]. [4] proposed neural module networks (NMN) that
decompose questions by a semantic parser and trigger different
pre-defined modules accordingly. NMN is fancy but heavily relies
on complex annotations and pre-defined structures. [8] proposed
fast parameter adaptation for image-text modeling (FPAIT) that
controls the image feature extraction layers by generating dynamic
normalization parameters from textual features. Neural-symbolic
(NS) approaches [27, 45] exploit executable symbolic programs to
mimic the human reasoning process.

To solve image understanding tasks and complex reasoning tasks
in a unified framework, [39] employed recurrent aggregation to
capture interactions among bi-modal embeddings and validated
the algorithm across different tasks. Further, to enable the system
to perform sophisticated reasoning, [32] proposed to add a trinary
relation attention layer to learn trinary relations among objects.

2.2 Medical Visual Question Answering
Existing studies attempted to adapt advanced general VQAmethods
based on large-scale pre-trained models for Med-VQA [1, 2, 38, 42,
48]. These studies are mostly reports of the ImageCLEF VQA-Med
Challenge [2, 16]. Typically, visual features are extracted by deep
pre-trained architectures such as ResNet or VGGNet, and textual
features are extracted by stacked RNN-based layers. In [48], the
authors concatenated features from both modalities and employed
Bi-LSTM to decode answers. [1] exploited stacked attention net-
work (SAN) [43] and compact bilinear pooling (MCB) [10]. [42] and
[38] both employed multimodal factorized bilinear pooling [46]
for feature fusion. In addition, [38] extracted question topic repre-
sentations by using embedding-based topic model and predicted
question categories with SVM.

However, due to the large discrepancy between medical data
and data in the general domain, such straightforward adaptations
severely suffer from data scarcity and lack of multilevel reason-
ing ability. To overcome data limitation, [30] proposed mixture
of enhanced visual features (MEVF) that utilizes external medical
datasets to learn a domain-specific weight initialization for the Med-
VQA model, which is realized by using the unsupervised convolu-
tional denoising auto-encoder (CDAE) [29] and the meta-learning
method MAML [9]. Nevertheless, it only employs a bilinear atten-
tion mechanism as the reasoning module for multimodal feature

fusion. In this work, we follow MEVF [30] to initialize the visual
feature extractor of our Med-VQA system but focus on improving
the reasoning module.

3 METHODOLOGY
3.1 Problem Formulation
In this paper, we consider VQA as a classification problem with 𝐶
candidate answers where 𝐶 is usually a large number. Denote by
D = {(𝑣𝑖 , 𝑞𝑖 , 𝑎𝑖 )}𝑛𝑖=1 the training dataset for a VQA model, where
𝑛 is the number of training examples, and 𝑣 , 𝑞, and 𝑎 denote the
image, question and answer of a task respectively. A typical VQA
model aims to learn a function 𝑓 that maps each (𝑣𝑖 , 𝑞𝑖 ) pair to
a score vector 𝒔 ∈ R𝐶 where the 𝑖-th element 𝑠𝑖 is the score for
the 𝑖-th class. The probability for the 𝑖-th class is obtained by the
softmax function, i.e., 𝑝 (𝑖) = 𝑒𝑠𝑖∑𝐶

𝑗=1 𝑒
𝑠𝑗
, 1 ≤ 𝑖 ≤ 𝐶 . The function

𝑓 is usually instantiated by a neural network with parameters 𝜃 .
The training is conducted by maximizing the log likelihood of the
correct answer 𝑎𝑖 across all training tasks:

𝜃 = argmax
𝜃

𝑛∑
𝑖=1

log𝑝 (𝑎𝑖 ; 𝑓𝜃 (𝑣𝑖 , 𝑞𝑖 )) . (1)

3.2 General VQA Model
A VQA model usually consists of three components: a multimodal
feature extraction module, an attention-based feature fusion mod-
ule, and a classifier. From the architecture perspective, there is no
conspicuous difference between general VQA and Med-VQA. We
elaborate on each component below.

Multimodal feature extraction. On one hand, visual features
of images are usually extracted by an intermediate feature map of
convolution neural networks (CNNs) such as simple CNNs [47] or
faster RCNN [36]. On the other hand, semantic features of ques-
tions are commonly extracted by a recurrent neural network (e.g.,
LSTM [12] or GRU [7]) which takes a padded word embedding
sequence as input.

Attention-based feature fusion. The attention mechanism
constitutes an essential part in existing state-of-the-art VQA mod-
els [6, 20, 41, 43]. It models the interactive relationship between
visual and textual representations to produce multimodal fusion
features, which can be readily used for predicting answers to the
questions. Hence, the attention mechanism can be considered as
the reasoning module of VQA.

Making predictions with a classifier. VQA is usually formu-
lated as a classification problem, where distinct answers are consid-
ered as different categories. A common choice of the classifier is
multilayer perceptron (MLP).

3.3 Our Proposed Conditional Reasoning
Framework

Figure 2 provides an overview of our proposed conditional reason-
ing framework. Our central idea is to learn task-adaptive reasoning
skills for different types of Med-VQA tasks. Current approaches
commonly adopt neural attention as a simple reasoning module to
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Figure 2: Our proposed question-conditioned reasoning model for Med-VQA.

combine multimodal information for visual reasoning. In compari-
son, our proposed reasoning module learns an additional question-
conditioned modulation for the fused multimodal representations.
Moreover, to further model multilevel reasoning skills required by
complex Med-VQA tasks, we propose to learn a separate reasoning
module for closed-ended and open-ended tasks respectively based
on a question type classifier.

3.3.1 QCR: Question-Conditioned Reasoning Module. Recent stud-
ies in Med-VQA have shown that multimodal feature fusion as a
simple reasoning module could perform relatively well for closed-
ended questions, but the performance for open-ended questions is
considerably poorer [23, 30]. To devise a more powerful reasoning
module for Med-VQA, we propose to improve the standard reason-
ing module by adding a question-conditioned modulation compo-
nent. The motivations are two-fold. First, similar to human reason-
ing processes, dealing with different tasks requires corresponding
task-specific skills. Second, it has been shown that the question
itself contains abundant task information for VQA tasks [19]. As
such, our reasoning module aims to extract task information from
the question sentence to guide the modulation over multimodal
features. In this process, high-level reasoning skills are learned by
imposing importance selection over the fusion features.

The details of QCR are illustrated on the right side of Figure 2
within the orange dashed rectangle. First, a question string 𝑞, with
𝑙 words in it, is converted into a sequence of word embeddings
pre-trained by Glove [33]. Let𝒘𝑖 ∈ R𝑑𝑤 denote the corresponding
word vector for the 𝑖-th word:

𝑸𝑒𝑚𝑏 =𝑊𝑜𝑟𝑑𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑞) = [𝒘1, ...,𝒘𝑙 ] . (2)

The word embedding sequence 𝑸𝑒𝑚𝑏 ∈ R𝑑𝑤×𝑙 is further pro-
cessed by a 𝑑𝐺 -dimensional Gated Recurrent Unit (GRU) to obtain
the embedding of the question:

𝑸 𝑓 𝑒𝑎𝑡 = 𝐺𝑅𝑈 ( [𝒘1, ...,𝒘𝑙 ]) = [𝜼1, ...,𝜼𝑙 ], (3)

where 𝑸 𝑓 𝑒𝑎𝑡 ∈ R𝑑𝐺×𝑙 , and 𝜼𝑖 denotes the embedding at the 𝑖-th
position.

Now, the question embedding𝑸 𝑓 𝑒𝑎𝑡 does not have any emphasis
on different words. To further highlight the important parts of each
question, e.g., “how many lesions are in the spleen?”, we design an
attention mechanism to impose importance weights on different
words:

˜𝑸 = 𝑸𝑒𝑚𝑏 ⊗ 𝑸 𝑓 𝑒𝑎𝑡 , (4a)

𝒀 = 𝑡𝑎𝑛ℎ(𝑾1˜𝑸), (4b)
˜𝒀 = 𝜎 (𝑾2˜𝑸), (4c)
G = 𝒀 ◦˜𝒀 . (4d)

Here, ⊗ denotes feature concatenation in the feature dimension, ˜𝑸 ∈
R(𝑑𝑤+𝑑𝐺 )×𝑙 ,𝑾1,𝑾2 ∈ R𝑑𝐺×(𝑑𝑤+𝑑𝐺 ) are trainable weights, 𝜎 and
𝑡𝑎𝑛ℎ are the sigmoid activation function and the gated hyperbolic
tangent activation respectively, and ◦ is the Hadamard product. In
this step, we take the advantages of both context-free (Glove) and
contextual embeddings (GRU) to form ˜𝑸 , which has been shown
useful for many tasks in natural language processing [22, 37]. ˜𝒀
acts as a gate on the intermediate activation 𝑌 to control the output
G ∈ R𝑑𝐺×𝑙 [40].

Then, the attention vector 𝜶 ∈ R𝑙×1 for the question embedding
𝑸 𝑓 𝑒𝑎𝑡 can be obtained by

𝜶 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ((𝑾𝑎G)T), (5)

where𝑾𝑎 ∈ R1×𝑑𝐺 are trainable weights.
Finally, with the attention vector 𝜶 , we obtain the final output

of QCR as:
𝒒𝒂𝒕𝒕 = 𝑸 𝑓 𝑒𝑎𝑡𝜶 , (6)

𝑄𝐶𝑅(𝑞) = 𝑀𝐿𝑃 (𝒒𝑎𝑡𝑡 ), (7)
where 𝒒𝑎𝑡𝑡 is the aggregated question representation, and MLP is a
multilayer perceptron network that provides additional non-linear
transformation for importance selection.

On the whole, the mapping function 𝑓𝜃 of a general VQA model
is composed of two modules, a multimodal feature fusion module
𝐴𝜃𝑚 and a classification module 𝐷𝜃𝑐 , i.e.,

𝑓𝜃 (𝑣, 𝑞) = 𝐷𝜃𝑐 (𝐴𝜃𝑚 (𝑣, 𝑞)).



In this paper, we propose to impose the proposed QCR module
on the multimodal feature fusion module 𝐴𝜃𝑚 by an element-wise
multiplication between their outputs: 𝑄𝐶𝑅(𝑞) and 𝐴𝜃𝑚 (𝑣, 𝑞). The
final representations are then fed to the classifier 𝐷𝜃𝑐 , and the
prediction scores are given by

s = 𝐷𝜃𝑐 (𝐴𝜃𝑚 (𝑣, 𝑞) ◦𝑄𝐶𝑅(𝑞)), (8)

where ◦ denotes element-wise product.

3.3.2 TCR: Type-Conditioned Reasoning. It has been observed that
the closed-ended questions are usually easier to answer than open-
ended questions. For example, the question “is the aorta visible
in this section?” can be answered by basic image understanding,
whereas the open-ended question “what vascular problem is seen
above?” usually requires multi-step reasoning. As such, Med-VQA
systems need to be endowed with multilevel reasoning abilities,
which are lacking in current VQA models [39].

To this end, we propose to use a separate reasoning module
for closed-ended questions and open-ended questions respectively,
where each module is instantiated by the QCR module proposed
in Section 3.3.1. Particularly, we want to train a task type classifier
𝐺 that takes a question as input and output the question type, i.e.,
closed-ended or open-ended. We observe that different types of
questions put emphasis on different words. For example, closed-
ended questions usually start with “Is\Dose\Are\etc.”, and open-
ended questions often start with “What\How many\Where\etc”.
The differences of the two types of questions can captured by ques-
tion embeddings, whichmakes it possible to train a reliable classifier
that divides Med-VQA tasks into two subbranches as shown by the
rhombus module in Figure 2.

Similar to Section 3.3.1, we use Equations (2) - (6) to compute
the question embedding and denote the mapping as Φ. We then
employ a multilayer perceptron𝑀𝐿𝑃𝑇 to map question embeddings
into classification scores. The binary classification probabilities are
computed by p𝑡 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑀𝐿𝑃𝑇 (Φ(𝑞))), and 𝑝𝑡0 and 𝑝𝑡1 are the
probabilities for closed-ended and open-ended respectively. The
binary question type classifier 𝐺 is then formulated as:

𝐺 (𝑞) =
{
0, if 𝑝𝑡0 > 𝑝𝑡1,

1, else.
(9)

Hence, the predicted scores 𝒔 of candidate answers for a task
(𝑣, 𝑞) can be obtained by

s =

{
𝐷𝜃𝑐 (𝐴𝑐𝑙

𝜃𝑚
(𝑣, 𝑞) ◦𝑄𝐶𝑅𝑐𝑙 (𝑞)), if 𝐺 (𝑞) = 0,

𝐷𝜃𝑐 (𝐴
𝑜𝑝

𝜃𝑚
(𝑣, 𝑞) ◦𝑄𝐶𝑅𝑜𝑝 (𝑞)), if 𝐺 (𝑞) = 1,

(10)

where 𝑐𝑙 and 𝑜𝑝 stand for closed-ended and open-ended respec-
tively.

In summary, as depicted in Figure 2, our proposed framework
with QCR and TCR reasoning modules solves a Med-VQA task by
the following steps. First, visual features and the textual features
are extracted by a shared feature extracting module for both closed-
ended and open-ended tasks as indicated by the yellow and blue
rectangles respectively. Second, these multimodal features are fed
into respective reasoning modules (indicated by the two grey dash
rectangles) based on the judgement of the question type classi-
fier (TCR module). Third, in each reasoning module, the output is
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Figure 3: The backbone framework [30] used in our experi-
ments.

produced by element-wise multiplication between the fusion repre-
sentation and the modulation vector obtained by the QCR module.
Finally, the predicted scores for candidate answers are produced by
an MLP classifier.

3.4 A Case Study
Our proposed conditional reasoning framework including QCR
and TCR can be applied to most of the attention-based Med-VQA
models that use multimodal fusion features to find answers.

In this paper, we conduct a case study on a state-of-the-art Med-
VQA system [30] and implement our proposed framework upon it.
As shown in Figure 3, the model in [30] extracts visual features by
a mixture of enhanced visual features (MEVF) module that consists
of two parallel sub-modules: MAML [9] and convolutional unsuper-
vised auto-encoder CDAE [29], whose parameters are initialized
by pre-training on some external medical datasets respectively. On
the other hand, the question is encoded by an LSTM encoder.

The model uses bilinear attention (BAN) [20] for multimodal
feature fusion, and the fusion features f are given by

f = 𝑽A𝑸, (11)

where 𝑽 and 𝑸 are the extracted visual and textual feature matrices
respectively, andA is the bilinear attention matrix derived from a
low-rank bilinear pooling function that takes 𝑽 and 𝑸 as inputs.

We then implement our framework by applying the proposed
QCR modulation on the fusion features f and train a pair of par-
allel reasoning modules for closed-ended and open-ended tasks
respectively as illustrated in Figure 2. The experimental results are
presented in Section 4.

4 EXPERIMENTS
In this section, we conduct comprehensive experiments to evaluate
the performance of our proposed conditional reasoning framework
including the QCR and TCR components proposed in Section 3.3
on the recently published benchmark VQA-RAD [23]. We compare
our approach with current state-of-the-art baselines [23, 30] for
Med-VQA. Moreover, we validate the rationality of our model by an
ablation study and provide a qualitative evaluation by visualizing
some Med-VQA tasks and answers. All the experimental results
reported in this paper can be reproduced by the provided code (can
be downloaded from https://github.com/awenbocc/med-vqa).

https://github.com/awenbocc/med-vqa


Table 1: Test accuracies of our proposed question-conditioned reasoning model and baselines on VQA-RAD [23] . * indicates
our re-implementation of MEVF+BAN [30].

SAN [23, 43]
(baseline)

MCB [10, 23]
(baseline)

BAN [20, 30]
(baseline)

MEVF+SAN [30]
(baseline)

MEVF+BAN [30]
(baseline)

MEVF+BAN (*)
(re-implemented) Ours

Open-ended (%) 24.2 25.4 27.6 40.7 43.9 49.2 60.0
Closed-ended (%) 57.2 60.6 66.5 74.1 75.1 77.2 79.3

Table 2: Statistics of the VQA-RAD dataset [23].

Training Set (Total: 3064) Test Set (Total: 451)

Open-ended Closed-ended Open-ended Closed-ended

MODALITY 77 77 16 17
PLANE 47 47 14 12
ORGAN 34 15 8 2

ABNORMAL 126 191 18 38
PRESENCE 267 965 45 122
POSITION 439 67 52 8
ATTRIBUTE 70 79 4 14

COLOR 17 67 0 3
COUNT 22 17 2 4
SIZE 25 244 5 41

OTHER 119 52 15 11
Total 1243 1821 179 272

4.1 Dataset
We experiment on the well-composed benchmark VQA-RAD [23],
which is specially designed to train and evaluate Med-VQA systems.
VQA-RAD contains 315 radiology images and 3515 question - an-
swer pairs generated by clinicians. There may be multiple questions
associated with one image. Some examples of the dataset are shown
in Figure 1. Specifically, the clinicians could ask different kinds of
questions about one image, e.g., questions about “organ system”,
“abnormality”, or “object/condition presence”. More generally, the
questions can also be categorized into two types: “closed-ended”
questions whose answers are “yes/no” or other limited choices,
and “open-ended” questions whose answers can be free-form texts.
Table 2 shows a detailed summary of the VQA-RAD dataset. In our
experiments, we use the processed version of VQA-RAD as in [30],
where there are 3064 tasks for training and 451 tasks for testing.

4.2 Training Setup
All our experiments are conducted on a Ubuntu 16.04 server with
Titan XP GPU using PyTorch [31]. The training details are provided
below.

As shown in Figure 3, the backbone of our Med-VQA system
is our re-implementation of [30] with bilinear attention networks
(BAN) [20]. To achieve a fair comparison, we follow the training set-
tings in [30]. Specifically, for visual representations, we use the pre-
trained initialization from [30] for the MAML [9] and CDAE [29]
modules. For semantic textual features, we use Glove [33] to ini-
tialize word embeddings and employ a 1024𝐷 - LSTM to extract
semantic information from questions.

All the GRUs used in QCR and TCR are set to have 1024 - di-
mensional hidden states. The 𝑀𝐿𝑃 in Equation (7) and 𝑀𝐿𝑃𝑇 in
Equation (9) are instantiated with hidden units [2048, 1024] and
[256, 64] respectively. We pre-train the task type classifier 𝐺 with
the label “answer_type” in the training set of VQA-RAD [23], using

Adam [21] optimizer with learning rate 0.0001 for 150 epochs. The
trained classifier reaches 99.33% classification accuracy on the test
set of VQA-RAD, which demonstrates the effectiveness of our pro-
posed pipeline (Equations (2) - (6)) for extracting semantic textual
features as well as the usefulness of the question type classifier 𝐺 .
In training our reasoning modules, we use Adam optimizer with
learning rate 0.005.

Lastly, the model accuracy is computed by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑐

𝑆𝑎𝑙𝑙
× 100, (12)

where 𝑆𝑐 and 𝑆𝑎𝑙𝑙 denote the number of correctly answered ques-
tions and the total number of questions respectively.

4.3 Comparison with the State-of-the-arts
We compare our approachwith state-of-the-artmethods used in [23]
and [30]. Specifically, [23] directly employed existing VQA models
in the general domain to solve Med-VQA, e.g., the stacked attention
networks (SAN) [43] and the multimodal compact bilinear pooling
(MCB) [10]. To develop a specialized Med-VQA system, [30] pro-
posed a mixture of enhanced visual features (MEVF) framework
and combined it with different attention mechanisms such as bi-
linear attention networks (BAN) [20] and SAN. Below we briefly
introduce each baseline.

• SAN [43] tried to model the multi-step reasoning process of
question answering. It proposed a stacked attention model
that takes the question as a query to progressively search
for corresponding regions in an image.

• MCB [10] argued that using outer product to fuse visual
and textual feature vectors is computationally expensive.
It proposed a multimodal compact bilinear pooling (MCB)
mechanism that projects outer product to a lower dimen-
sional space to reduce the computational cost of feature
fusion.

• BAN [20] was motivated by the same concern of [10], and it
also used bilinear multimodal fusion. Differently, it proposed
to utilize low-rank bilinear pooling to reduce the rank of
weight matrix so as to reduce the computational overhead. A
detailed description of this method is provided in Section 3.4.

• MEVF+SAN [30] used the proposed MEVF framework to
extract image features that can generalize better on medical
images. The details of the MEVF framework is illustrated in
Figure 3. In addition, it used the attention mechanism SAN
proposed in [43] to fuse the features of images and questions.

• MEVF+BAN [30] used the attention mechanism BAN pro-
posed in [20] to fuse the visual features extracted by the
MEVF framework and the semantic textual features.



Figure 4: Visualization of results of our proposal and the baselineMEVF+BAN (*). The examples include three radiology images
of differentmodalities on different body parts with open-ended questions. Red and blue boxes locate the corresponding region
of each answer. ✓and × indicate the correctness of the answer given by each model.

Table 1 shows the results of our method and the baselines. For
SAN and MCB, we cite the results from [23]. For BAN, MEVF+SAN,
and MEVF+BAN, we cite the results from [30]. Our re-implemented
version MEVF+BAN (*) shows slightly higher results than the origi-
nal implementation in [30]. It can be seen that our method achieves
the best performance and significantly outperforms all the base-
lines. Compared with the best baseline MEVF+BAN (*), our method
achieves 10.8% and 2.1% increases in absolute accuracy for the “open-
ended” and “closed-ended” questions respectively. This shows the
effectiveness of our proposed conditional reasoning framework for
solving Med-VQA tasks.

4.4 Ablation Study
In this subsection, we conduct an ablation study to verify the effec-
tiveness of the QCR and TCR components (described in Section 3.3)
in our proposal. The results are summarized in Table 3. To ensure
a fair comparison, we use MEVF+BAN (*), the re-implemented
version of [30] as reported in Section 4.3, as the base model.

We first study the impact of QCR and TCR independently. As
shown in Table 3, QCR improves the overall accuracy from 66.1%
to 67.8%; for TCR, there is a large improvement, i.e., the overall

Table 3: Ablation study of our proposed QCR and TCRmod-
ules on VQA-RAD [23]. * indicates our re-implemented ver-
sion of [30].

VQA Accuracy (%)
Base Model QCR TCR Overall Open-ended Closed-ended

MEVF+BAN (*) 66.1 49.2 77.2
MEVF+BAN (*) ✓ 67.8 51.4 78.7
MEVF+BAN (*) ✓ 70.1 56.7 79.0
MEVF+BAN (*) ✓ ✓ 71.6 60.0 79.3

accuracy increased from 66.1% to 70.1% (the “open-ended” accu-
racy increased from 49.2% to 56.7% and “closed-ended” accuracy
increased from 77.2% to 79.0%). These results show that: (i) Both
QCR and TCR can improve the performance of a Med-VQA system,
which validates that it is reasonable and effective to exploit ques-
tion information to learn task-adaptive reasoning skills for different
tasks; (ii) The fact that TCR improves the performance by a large
margin validates that it is necessary to learn multi-level reasoning
skills for different types of Med-VQA tasks.



Finally, we incorporate both QCR and TCR in the base model, and
observe further improvements. The overall accuracy is increased
from 66.1% to 71.6%, the open-ended accuracy is increased from
49.2% to 60.0%, and the closed-ended accuracy is increased from
77.2% to 79.3%. Remarkably, combining QCR and TCR leads to a
huge improvement on the open-ended tasks. Since the open-ended
tasks are generally much harder than the closed-ended tasks, the
large performance gain suggests that our method is capable of
learning higher-level reasoning skills to deal with difficult tasks.

4.5 Qualitative Evaluation
In this subsection, we provide a qualitative comparison of our
method and the best baseline MEVF+BAN (*). Figure 4 shows the
visualization of the results of our method and the baseline on three
open-ended tasks from VQA-RAD, which cover three modalities of
radiology images on different parts of human body.

The first task (top row) is about a chest X-Ray image. While the
baseline model wrongly predict the relevant region and answer
to the question, our method correctly locates the relevant region
and gives the right answer. Note that an radiology image should
be read in a laterally inverted fashion. Therefore, “right” in the
question means the right side of the body which corresponds to
the left region of the image. For the second task (middle row), a
head MRI image is presented. Although the baseline method can
locate the relevant region in the image, it fails to provide a specific
and concrete answer. In contrast, our model gives a concrete and
accurate answer. The third task (bottom row) is about an abdomen
CT image. The baseline model gives a wrong answer that mistakes
the liver as the right kidney. In comparison, our model correctly
figures out that there is actually no kidney in the image.

The examples show that our model is capable of providing rea-
sonable answers to complex Med-VQA tasks, by learning advanced
reasoning skills such as locating and recognizing specific objects
or detecting the mismatch between an image and a question.

4.6 Efficiency Evaluation
In Figure 5, we evaluate the time efficiency of our reasoningmodules
QCR and TCR, and compare with the base model MEVF+BAN
(*) (our re-implementation of [30]). The results are obtained by
averaging the training time and test time of 10 epochs respectively.
Compared with the base model, it can be seen that our reasoning
modules only slightly increase the computational time for training,
while the overhead for testing is negligible. These results show that
our method can be efficiently applied to existing Med-VQA systems
in practice.

5 CONCLUSION
In this paper, we have proposed an effective conditional reasoning
framework for Med-VQA, which endows a VQA system with task-
specific reasoning ability. This is realized by the use of an attention
mechanism conditioned by task information to guide the impor-
tance weighting of multimodal fusion features. Our framework
is lightweight and can be applied to existing Med-VQA systems
in a plug-and-play manner. Empirical evaluation on the recently
published benchmark dataset VQA-RAD shows that our approach

Figure 5: Time efficiency of our method. BASE represents
the base model MEVF+BAN (*).

achieves superior performance compared with state-of-the-art Med-
VQA models. Particularly on open-ended tasks where high-level
visual reasoning skills are needed, our approach improves the accu-
racy of answers by a wide margin, demonstrating the effectiveness
of the proposed conditional reasoning modules. In future work,
we plan to further improve the reasoning ability of our model and
conduct more evaluation on Med-VQA tasks.
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