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Abstract

This is the supplemental material for our main paper

titled “Locally Linear Hashing for Extracting Non-Linear

Manifolds”. In the main paper, we propose a new hashing

method named Locally Linear Hashing (LLH) and report a

set of extensive experimental results to demonstrate its su-

periority over the state-of-the-art methods. In this supple-

mental material, we provide additional results to emphasize

its effectiveness, scalability, and efficiency.

Introduction

In our main paper, we experimentally compare our LLH

to several state-of-the-art methods including ITQ [1], PQ-

RR [4], SH [9], AGH [6], and IMH-tSNE [7], and demon-

strate the significant superiority of our LLH over these

methods (see Sec. 3 of our main paper). In this supplemen-

tal material, we show some additional results which cannot

be presented in the main paper due to space limit.

Also, we compare our LLH to some other state-of-the-art

methods including K-means Hashing (KMH) [2], Multidi-

mensional Spectral Hashing (MDSH) [8], Spherical Hash-

ing (SPH) [3], and Kernelized Locality Sensitive Hash-

ing (KLSH) [5]. To run each method, we use the pub-

licly available Matlab code provided by each author group

with suggested parameter settings (if given) in each orig-

inal paper. Specifically, for KMH which internally uses

Product Quantization technique [4], the number of bits per

sub-space is chosen from {2, 4, 8} based on some prelim-

inary tests1. For KLSH, we use the Gaussian RBF ker-

nel κ(xi, xj) = exp(−||xi − xj ||
2/2σ2) and sample 300

training points to form the kernel Gramian. For KLSH and

MDSH, the kernel (or affinity matrix) parameter σ is set to

the average distance between data points in the training set.

1On the two synthetic datasets, Two-TrefoilKnots and Two-SwissRolls,

the number of sub-spaces is set as 1 when c = 1, c being the number of

bits.

For convenience, we hereafter call one set {ITQ, PQ-

RR, SH, AGH, IMH-tSNE} Group-A and the other set

{KMH, MDSH, SPH, KLSH} Group-B. For visibility, we

show the comparative results with these two groups in sep-

arated figures.

For further details on experimental setup, protocols and

datasets, please refer to our main paper.

Additional Results on Synthetic Datasets

Fig. 1 (Group-A) and Fig. 2 (Group-B) show the re-

sults on Two-TrefoilKnots. First, for every code length,

our LLH outperforms all the methods in Group-B with sig-

nificant performance gain (Fig. 2(a)). Note that our LLH

also outperforms the methods in Group-A (see Fig. 6(b) in

our main paper). Second, for each fixed {16, 32, 64}-bit

code, our LLH shows significantly better performance than

all the other methods at any number of top retrieved points

(Fig. 1(b-d) and Fig. 2(b-d)). Notably our LLH obtains al-

most perfect precision in all the cases.

Fig. 3 (Group-A) and Fig. 4 (Group-B) show the results

on Two-SwissRolls. For this dataset, no previous methods

achieve reasonable performance, and only LLH (or LLH0)

works well and shows strong superiority to the other meth-

ods including the exhaustive l2-scan. These results are clear

evidences that our LLH can effectively capture and preserve

the locally linear structures of the non-linear manifolds in

the final Hamming space after hashing, which is indeed vi-

tal to the performance.

Additional Results on Face Images

We next show the results on Yale in Fig. 5 (Group-A) and

Fig. 6 (Group-B). Note that the results for Group-A with 64-

bit codes are presented in Fig. 8(b) in the main paper.

Our LLH is consistently better than all the other methods

at every code length, and LLH0 is the second best. The best

competitive methods to ours are KMH and SPH, both aim-
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ing to preserve Euclidean neighborhood in the Hamming

space. They outperform the exhaustive l2-scan with rela-

tively longer codes such as 24-bit or more (Fig. 6(a)). How-

ever, our LLH, and even LLH0, are much better than these

two methods at every code length and at every number of

top retrieved points (Fig. 6(b-d)). The gain is also remark-

able, ranging from 38% to 356%. These results suggest

that our LLH successfully extracts the non-linear manifold

structures on the Yale face dataset.

Additional Results on Handwritten Digits

Fig. 7 (Group-A) and Fig. 8 (Group-B) show the results

on the USPS handwritten digits dataset. Our LLH shows

the best performance on this dataset, and LLH0 follows

(Fig. 8(a)). While AGH is slightly better than LLH0 in some

cases (Fig. 7(a)), LLH is consistently better than AGH for

all the cases.

Fig. 9 (Group-A) and Fig. 10 (Group-B) show the results

on MNIST. Again, our LLH achieves the best performance

in most cases. The best competitive method is AGH, and the

performances of Group-B are relatively poor. For 16-bit (or

less), LLH0 performs better than LLH (Fig. 9(a)). This may

be because 16 (or less) dimensional Hamming space is too

low to preserve the locally linear structures of the multiple

manifolds which is captrued by LLSR. In contrast, for 32-

bits or more, LLH outperforms LLH0 and AGH, especially

when we retrieve 900 or less data points (Fig. 9(b)).

Additional Results on Natural Images

Fig. 11 (Group-A) and Fig. 12 (Group-B) show the re-

sults on CIFAR. Our LLH outperforms all the other meth-

ods in most cases. The best competitive method is ITQ, and

SPH follows (Fig. 12(a)). Note that our LLH is the only

method which is comparable to or even better than l2-scan.

Fig. 13 (Group-A) and Fig. 14 (Group-B) show the re-

sults on ImageNet-200K. Our LLH is still the best on this

dataset. LLH0, KMH, SPH, and ITQ, are highly competi-

tive on this dataset. With 64-bit codes, SPH is slightly bet-

ter than our LLH when we retrieve more than 500 points

(Fig. 14(d)). However, for shorter codes (from 16- to 48-bit

codes), our LLH achieves higher precision (Fig. 14(a-c))

than SPH.

Lastly, Fig. 15 shows qualitative results on

MIRFLICKR-1M. For every query, our LLH returns

more semantically consistent images and shows better

retrieval results than Group-B.

Computation Time

In this supplemental material, we focus on the scalability

of the out-of-sample binary code generation time w.r.t. the

database size n and K (see Sec. 2.3 in our main paper). All

results are obtained on MIRFLICKR-1M dataset and with

MATLAB on a workstation with 2.53 GHz Intel Xeon CPU

and 64GB RAM.

Fig. 16(a) shows the binary code generation time for var-

ied database sizes from n = 50K to 1M (in these experi-

ments, we fix m = 100K). As analyzed in Sec. 2.4 in our

main paper, the binary code generation time is independent

of n. Fig. 16(b) shows the binary code generation time for

varied K. We find that K does not really affect the code

generation time in practice. This is because, as K increases,

the number of data points within each cluster decreases (see

Sec. 2.1 and Sec. 2.3), leading to almost constant time for

code generation. Based on these results, our out-of-sample

algorithm is scalable to both the database size n and K.

Parameter Study

We report some additional results on the parameter sensi-

tivity of our LLH. Fig. 17(a-b) show the averaged precision

on CIFAR with different settings of λ and η. Similar to the

results on MNIST (repoted in Fig. 16 of our main paper),

the performance is slightly sensitive to λ and η, but the re-

trieval quality is still much better than l2-scan in most cases,

especially when using longer codes such as 32-bit or more.

Fig. 17(c-d) show the performance of LLH with varied K
on CIFAR and MNIST datasets, respectively. We find that

the performance of our LLH is quite stable w.r.t. K.

References

[1] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantiza-

tion: A procrustean approach to learning binary codes for large-scale

image retrieval. IEEE Trans. PAMI, 35(12):2916–2929, 2013. 1

[2] K. He, F. Wen, and J. Sun. K-means hashing: an affinity-preserving

quantization method for learning binary compact codes. In CVPR,

2013. 1

[3] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical hash-

ing. In CVPR, 2012. 1

[4] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE Trans. PAMI, 33(1):117–128, 2011. 1

[5] B. Kulis, P. Jain, and K. Grauman. Kernelized locality-sensitive hash-

ing. IEEE Trans. PAMI, 34(6):1092–1104, 2012. 1

[6] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In

ICML, 2011. 1

[7] F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang. Inductive

hashing on manifolds. In CVPR, 2013. 1

[8] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hash-

ing. In ECCV, 2012. 1

[9] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS, 2008.

1



10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−ASD
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(a)

10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−ASD
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(b)

10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−ASD
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(c)

Figure 1. Comparison to Group-A on Two-TrefoilKnots. Averaged precision vs. the number of top retrieved points for (a) 16-bit, (b)

32-bit, and (c) 64-bit codes.
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Figure 2. Comparison to Group-B on Two-TrefoilKnots. (a) Averaged precision at top 500 retrieved points vs. the number of bits;

Averaged precision vs. the number of top retrieved points for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 3. Comparison to Group-A on Two-SwissRolls. Averaged precision vs. the number of top retrieved points for (a) 16-bit, (b) 32-bit,

and (c) 64-bit codes.
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Figure 4. Comparison to Group-B on Two-SwissRolls. (a) Averaged precision at top 500 retrieved points vs. the number of bits; Averaged

precision vs. the number of top retrieved points for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 5. Comparison to Group-A on Yale. Averaged precision vs. the number of top retrieved images for (a) 16-bit and (b) 32-bit codes.
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Figure 6. Comparison to Group-B on Yale. (a) Averaged precision at top 10 retrieved points vs. the number of bits; the number of top

retrieved images for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 7. Comparison to Group-A on USPS; Averaged precision vs. the number of top retrieved images for (a) 16-bit and (b) 32-bit codes.
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Figure 8. Comparison to Group-B on USPS; (a) Averaged precision at top 500 retrieved points vs. the number of bits; the number of top

retrieved images for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.



10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−RR
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(a)

10
1

10
2

10
3

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# retrieved points

pr
ec

is
io

n

 

 

ITQ
PQ−RR
SH
AGH
IMH−tSNE

LLH0

LLH
l2−scan

(b)

Figure 9. Comparison to Group-A on MNIST; Averaged precision vs. the number of top retrieved images for (a) 16-bit and (b) 32-bit

codes.
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Figure 10. Comparison to Group-B on MNIST; (a) Averaged precision at top 500 retrieved points vs. the number of bits; the number of

top retrieved images for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 11. Comparison to Group-A on CIFAR; Averaged precision vs. the number of top retrieved images for (a) 16-bit and (b) 32-bit

codes.
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Figure 12. Comparison to Group-B on CIFAR; (a) Averaged precision at top 500 retrieved points vs. the number of bits; the number of

top retrieved images for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 13. Comparison to Group-A on ImageNet-200K; Averaged precision vs. the number of top retrieved images for (a) 16-bit and (b)

32-bit codes.
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Figure 14. Comparison to Group-B on ImageNet-200K; (a) Averaged precision at top 500 retrieved points vs. the number of bits; the

number of top retrieved images for (b) 16-bit, (c) 32-bit, and (d) 64-bit codes.
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Figure 15. Top retrieved images on MIRFLICKR-1M using 64-bit codes. Red border denotes false positive.
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(b)

Figure 16. Scalability of the proposed out-of-sample extension algorithm on MIRFLICKR-1M; Averaged binary code generation time

per query vs. (a) database size n and (b) K.
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Figure 17. Parameter sensitivity; (a) λ, (b) η, and (c) K on CIFAR and (d) K on MNIST.


