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on 7.6 Million Ethereum Smart Contracts
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Abstract—Being the most popular programming language for developing Ethereum smart contracts, Solidity allows using inline
assembly to gain fine-grained control. Although many empirical studies on smart contracts have been conducted, to the best of our
knowledge, none has examined inline assembly in smart contracts. To fill the gap, in this paper, we conduct the first large-scale
empirical study of inline assembly on more than 7.6 million open-source Ethereum smart contracts from three aspects, namely, source
code, bytecode, and transactions after designing new approaches to tackle several technical challenges. Through a thorough
quantitative and qualitative analysis of the collected data, we obtain many new observations and insights. Moreover, by conducting a
questionnaire survey on using inline assembly in smart contracts, we draw new insights from the valuable feedback. This work sheds
light on the development of smart contracts as well as the evolution of Solidity and its compilers.
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1 INTRODUCTION

Smart contracts, a kind of autonomous programs running
on the blockchain, have been used to implement vari-

ous applications due to the advantages inherited from the
blockchain [1]. Ethereum hosts the largest number (more
than 27 million [2]) of smart contracts, which are typically
written in a high-level language (e.g., Solidity [3]) and then
compiled into EVM (Ethereum Virtual Machine) bytecode.
Unfortunately, such high-level languages do not support
all functionalities desired by developers. To address this
issue, Solidity, the most popular high-level language for
developing Ethereum smart contracts [3], allows developers
to embed inline assembly into Solidity source code in order
to implement such functionalities [4].

Developing smart contracts with inline assembly has
attracted great attention. Firstly, inline assembly has been
widely used in smart contracts. For example, we investi-
gate the use of inline assembly in Decentralized Finance
(DeFi) [5] applications, which are currently very popu-
lar and important smart contract based applications in
Ethereum. Defillama [6], a well-known DeFi data platform,
provides a ranking list of the most funded DeFi (showing
the top 295). We crawl the addresses of DeFi smart con-
tracts from this platform and find that 233 of them are
open-source, and 170 (73%) of these open-source DeFi use
inline assembly, which is a very high number / proportion.
Secondly, developers often encounter various problems in

• Z. Liao, S. Song, H. Zhu, Z. He, R. Jiang, T. Chen and X. Zhang are
with the Institute for Cyber Security, University of Electronic Science and
Technology of China, Chengdu 611731, China. (Corresponding Authors:
Xiapu Luo, Ting Chen)
E-mail: brokendragon@uestc.edu.cn

• X. Luo is with the Department of Computing, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong.
E-mail: csxluo@comp.polyu.edu.hk

• J. Chen is with the Monash University, Clayton VIC 3800, Australia.
E-mail: Jiachi.Chen@monash.edu

• T. Zhang is with the Macau University of Science and Technology, Macao.
E-mail: tazhang@must.edu.mo

how to use inline assembly in smart contracts. By crawling
all the posts about inline assembly for Ethereum smart
contracts from two very popular developer forums, Stack
Exchange [7] and Reddit [8], we found 718 questions raised
by 478 users and 1,346 answers, where 676 questions are
from StackExchange and 42 questions are from Reddit. 463
questions concern how to solve the problems encountered
when using inline assembly in smart contracts. Besides, the
answers to some other questions also recommend using
inline assembly to solve their problems. By extracting the
topics from these questions and answers relevant to inline
assembly through the Latent Dirichlet Allocation (LDA)
model [9], we choose five as the number of topics. More
precisely, we select different numbers of topics to create the
LDA models and evaluate the effect of each model accord-
ing to the perplexity score [10]. Finally, we find that the
best result is obtained when the number of topics selected
is five, and these five topics include memory, array, return,
storage and event. In detail, the first topic is related to memory
operations in inline assembly, accounting for 48.1%; the
second topic is related to using arrays in inline assembly,
accounting for 23.5%; the third topic is returning value in
inline assembly, accounting for 14.8%; the fourth topic is
storage operations in inline assembly, accounting for 8.4%;
the fifth topic is event use in inline assembly, accounting for
5.2%.

Although there are many empirical studies and surveys
on smart contracts [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], to the best of our knowl-
edge, none has examined inline assembly in smart contracts.
In addition, a few works mentioned inline assembly [26],
[27], [28], [29], [30], [31], but they did not conduct in-depth
research on inline assembly for design, security or other
reasons (explained in more detail in §8). Although the usage
of inline assembly in C has been investigated [32], its re-
search methodology and the observations cannot be directly
applied to the inline assembly of smart contracts, because
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smart contracts and C programs have significant differences
in instruction sets, running platforms, syntax and semantics
of source code and inline assembly (explained in more detail
in §8).

In this paper, we conduct the first large-scale empirical
study of inline assembly on more than 7.6 million open-
source Ethereum smart contracts to answer three research
questions, RQ1: How is the prevalence of inline assembly
in smart contracts? RQ2: What are the differences between
the smart contracts with/without inline assembly in terms
of five metrics detailed in §3.3. and RQ3: Why do smart
contracts use inline assembly? The answers to these ques-
tions are very useful to the development of smart contracts,
the evolution of Solidity, and the optimization of Solidity
compilers. For instance, smart contract developers may be
interested in how to use inline assembly to implement a
functionality that cannot be realized by Solidity. A recent
questionnaire survey shows that the lack of support for
memory management is a limitation of Solidity and de-
velopers have to pay much effort to reduce gas (gas is
explained in §2) consumption [33]. We show in §5 that
inline assembly can overcome such limitation and save gas.
Moreover, Solidity developers can benefit from the answers
to the aforementioned questions to decide whether a new
functionality should be supported by built-in features of
Solidity or inline assembly and learn from inline assembly
examples.

To answer the above research questions, we inspect and
compare the smart contracts with/without inline assembly
from three aspects, including source code, bytecode, and
transactions. However, it is challenging to identify and
extract the bytecode segment that is compiled from inline
assembly from the entire bytecode of a smart contract for
four reasons. First, there are no marks in EVM bytecode
to distinguish such bytecode segment from the remain-
ing bytecode compiled from Solidity. Second, the language
for writing the inline assembly of smart contracts is Yul,
which is an intermediate language that can be compiled
into EVM bytecode [34]. Yul has high-level constructs (e.g.,
switch...case, if, for loops) [34], which cannot be directly
translated into EVM instructions. Third, the optimization
routines of Yul [34] make the generated bytecode very
different from the Yul code. Finally, if the statements in an
inline assembly fragment depend on the Solidity code, they
cannot be compiled separately from the Solidity code. To
address this challenge, we propose a novel approach that
leverages crafted inline assembly statements to determine
the start and the end of such bytecode segment and then
extract it (details in §3.2).

After analyzing more than 7.6 million open-source
Ethereum smart contracts, we obtain the answers to three
RQs as well as new observations and insights. Note that the
answers, new observations and insights in this paper are
derived from the statistics of Ethereum open-source smart
contracts, instead of all smart contracts. Investigating inline
assembly in smart contracts without source code would
be our future work because how to identify the bytecode
generated from inline assembly statements without the help
of source code is still an unsolved challenge.

Our answer to RQ1 shows that inline assembly is preva-
lent in smart contracts because 11.9% of all smart contracts

with unique bytecode (i.e., the smart contracts compiled
into the same bytecode are considered as one) contain inline
assembly and more than 8 million transactions executed the
bytecode segments compiled from inline assembly. More-
over, we find that 90% of inline assembly bytecode segments
contain no more than 31 instructions and about 88% of
inline assembly bytecode segments are executed by no more
than 10 transactions. Our answer to RQ2 reveals that the
smart contracts with/without inline assembly differ in five
metrics detailed in §3.3. Such a comparison study leads
to three insights. First, developers can use some specific
opcodes directly through inline assembly to implement
functionalities unavailable in Solidity. Second, developers
tend to use inline assembly with short length to implement
uncomplicated control flows in long smart contracts. Third,
developers using inline assembly may pay more attention
to the performance of smart contracts than those writing
pure Solidity code. We answer RQ3 by manually examining
the inline assembly in all open-source smart contracts and
discover three major reasons for using inline assembly,
namely realizing functionalities that cannot be implemented
by Solidity, producing gas-efficient bytecode, and easing
smart contract development. To understand the viewpoints
of developers on inline assembly in smart contracts, we
also conduct a survey on it and receive valuable feedback
from 122 smart contract developers in 22 countries. They
are very interested in our study and provide informative
feedback and suggestions. For example, they believe that
inline assembly can complement Solidity and expect So-
lidity to provide built-in support to the functionalities that
can currently only be implemented through inline assembly.
Some practitioners also present concerns for security risks
and maintenance difficulties of inline assembly.

In summary, our work has three major contributions:
• We conduct the first large-scale empirical study on inline
assembly used in smart contracts by analyzing 7.6 million
open-source smart contracts from three aspects, namely,
source code, bytecode, and transactions.
• We design new approaches to collect open-source smart
contracts as many as possible, to extract the genuine byte-
code segment compiled from inline assembly, and to de-
termine transactions that invoke inline assembly efficiently.
The data set for our empirical study is released at https:
//github.com/solassem/solassembly.
• We obtain many new observations and insights, func-
tionalities and patterns that are useful to smart contract
developers and Solidity developers through quantitative
and qualitative analysis on the collected data and a ques-
tionnaire survey.

This paper is organized as follows. §2 introduces some
background knowledge. §3 presents the methodology of the
empirical study. §4 shows the results of the quantitative
analysis. §5 presents the results of the qualitative analysis.
§6 is about the survey. §7 discusses the threats of our
study. §8 briefly retrospects related studies. §9 concludes
this paper.

2 BACKGROUND

Account. Ethereum consists of two kinds of accounts: EOA
(External Owned Account) and smart contract account [35].
The latter has bytecode, but the former does not [35].
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EVM bytecode. A smart contract should be compiled into
bytecode consisting of EVM instructions before being de-
ployed to the blockchain. The Solidity compiler can opti-
mize EVM bytecode if needed. The bytecode consists of two
parts: the constructor bytecode followed by the runtime byte-
code [3]. A smart contract can have a constructor, which will
be compiled into the constructor bytecode. The constructor
bytecode initializes the smart contract during deployment
but itself will not be deployed to the blockchain. After de-
ployment, the runtime bytecode is stored on the blockchain
and associated with a unique address.
Transaction. A transaction is a message that can be used to
deploy or invoke smart contracts [35]. To deploy a smart
contract, the corresponding transaction carries its construc-
tor bytecode and runtime bytecode [35]. To invoke a smart
contract, the transaction should specify the address of the
callee, the function to be called, and the parameters [35].
A transaction will fail if an error (e.g., executing an invalid
instruction) happens.
Gas. A transaction sender should pay transaction fee be-
cause every transaction consumes computing resources of
the blockchain. Ethereum uses the gas mechanism to calcu-
late the amount of transaction fee. Every EVM instruction
has a gas cost, the amount of gas that should be paid for
executing the instruction, which is roughly proportional to
the number of computing resources consumed to execute
the instruction [36]. Hence, different EVM instructions can
have different gas costs.
Solidity, Yul. Being the most popular high-level language
for developing smart contracts, Solidity supports inline
assembly [3] through an intermediate language named
Yul, which supports several high-level constructs (e.g.,
switch...case, if, for loops) [34]. Inline assembly can enjoy
the optimizations for Solidity, which are applied to EVM
bytecode [37], and the optimizations conducted by Yul
optimizer, which operates on Yul code [34]. Hence, the
bytecode resulted from inline assembly undergoes more
optimizations than the bytecode resulted from Solidity code.
Ethereum instruction architecture Ethereum defines more
than 130 EVM instructions [36], which differ from tradi-
tional instruction sets (e.g., x86/x64) in not only their syntax
and semantics but also memory access mode. Specifically,
Ethereum allocates a temporary memory space, named
memory to store temporary values such as local variables,
parameters, return values [35]. Ethereum also allocates a
permanent memory space, called storage to store <key,
value> pairs [35]. Ethereum provides special EVM instruc-
tions to access memory and storage [36].

3 METHODOLOGY

3.1 Research Questions

To characterize the usage of inline assembly in smart con-
tracts, we investigate the following research questions.
RQ1: How is the prevalence of inline assembly in smart
contracts? Besides showing how widespread is inline as-
sembly, the answer inspires the investigation of subsequent
research questions. For example, we find that inline assem-
bly is frequently used to implement some functionalities
that cannot be realized by Solidity. It motivates us to further

examine why inline assembly is used in smart contracts
(RQ3).
RQ2: What are the differences between the smart contracts
with/without inline assembly in terms of five metrics,
including M1 (EVM bytecode length), M2 (frequency
of EVM instructions), M3 (is optimized?), M4 (number
of transactions invoking a smart contract) and M5 (gas
usage)? The answer provides insights for better understand-
ing Ethereum ecosystem and how to help smart contract
developers. For example, we find that the smart contracts
with inline assembly are more likely to be compiled with
optimization, compared to those without inline assembly.
It may suggest that the developers using inline assembly
pay more attention to the performance of smart contracts
than those writing pure Solidity code. With this in mind, we
discover how inline assembly can be used to save gas (§5.2).
The Solidity compiler can be improved accordingly to help
developers reduce gas consumption of their smart contracts.
RQ3: Why do smart contracts use inline assembly? The
answer can help developers understand the capability of in-
line assembly and offer improvement suggestions to Solidity
and its compiler. For example, we identify 12 functionalities
that can only be implemented by inline assembly. Such find-
ings can guide developers to write powerful smart contracts
and are also useful to the designers of Solidity for deciding
which new functionalities should be supported in the new
version of Solidity. We also observe that inline assembly
is used to produce gas-efficient bytecode, which suggests
that there is still much room for compilers to optimize the
bytecode of smart contracts.

3.2 Data Collection and Preprocessing

We inspect all available open-source smart contracts’ source
code, bytecode, and transactions to answer the above RQs.
Fig. 1 shows the procedure of data collection and pre-
processing.

We first collect all open-source smart contracts, whose
bytecode has been deployed to Ethereum, with the help
of Etherscan [38], which is the most popular Ethereum
blockchain explorer, and BigQuery [39], which is a data col-
lection and analysis platform supporting Ethereum. Then,
we collect all transactions relevant to these smart contracts
by instrumenting EVM. Next, we divide the smart contracts
into two groups depending on whether they use inline
assembly and compile their source code into bytecode with
the same compiler versions and optimization levels as their
deployed bytecode.

Given the source code of a smart contract containing
inline assembly, after compiling it into EVM bytecode, it
is very challenging to recognize the bytecode segments that
are compiled from the inline assembly in the whole byte-
code. To address the challenge, we design a novel approach
to extract such bytecode segments by inserting crafted inline
statements into the start and the end of each inline assembly
fragment in source code. After compiling the source code
into bytecode, we can easily find the locations of the instruc-
tion sequences compiled from the crafted inline statements.
With the help of these locations, we extract the bytecode seg-
ments from the original bytecode without insertion. Since it
is very difficult, if not impossible, to recognize the bytecode
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Fig. 1. Data collection and preprocessing

Fig. 2. The result of a open-source smart contract returned by Etherscan

Fig. 3. The result of a closed-source smart contract returned by Ether-
scan

segments that are compiled from inline assembly without
the help of the aforementioned locations, we did not inspect
closed-source smart contracts.
Contract collection. Although Etherscan maintains lists
of verified (which are also open-source) smart contracts,
the lists just display the latest 10,000 smart contracts that
meet the open-source license [38] or the latest 500 open-
source smart contracts compiled by the specified com-
piler. We propose a new method to download the source
code of all smart contracts whose source code was sub-
mitted to Etherscan (include but are not limited to the
lists maintained by Etherscan). We first get the addresses
of all smart contracts by querying BigQuery through the
statement “SELECT contracts.address FROM ‘bigquery-public-
data.crypto ethereum.contracts’ as contracts”. Then, we invoke
a web API [40] provided by Etherscan to query the informa-
tion of each smart contract.

If the smart contract’s source code is available, the result
contains the source code, the compiler version and the
optimization level (shown in Fig. 2); otherwise, these three
fields are empty (shown in Fig. 3). By this approach, we
obtain the source code of 7,640,317 smart contracts. Note
that Etherscan regards a smart contract as open-source
when it has the same bytecode as another open-source
smart contract. Therefore, although the number of open-
source smart contracts published by Etherscan does not
exceed 160,000 [41], there are more than 7.6 million open-
source contracts, whose addresses are listed in our Github
repository. All fetched source code of smart contracts and
their addresses are stored in ds1 as shown in Fig. 1.

Compilation. We compile each smart contract in ds1 into
EVM bytecode with the same compiler version and op-
timization level as its deployed bytecode (the compiler
version and optimization level are collected in the previous
step, contract collection). The source code and the EVM
bytecode of all open-source smart contracts are stored in
ds2 as shown in Fig. 1.
Inline assembly recognition. A smart contract may have
several fragments of inline assembly statements. Each frag-
ment in the Solidity source code must start with the assem-
bly keyword and encloses its inline assembly statements in a
pair of curly braces after the keyword [4] (as shown in Fig.
5(a)). Therefore, we recognize all inline assembly fragments
in a smart contract by parsing the source code and locating
the assembly{...} construct. If a smart contract has at least
one inline assembly fragment, we place it in ds4, otherwise
we put it in ds3 as shown in Fig. 1.
Bytecode segment extraction. To avoid confusion, we use
two terms, namely inline assembly fragment and bytecode
segment, to refer to the inline assembly statements embed-
ded in Solidity code and the EVM bytecode compiled from
the inline assembly fragment, respectively.

Our approach first inserts crafted inline assembly state-
ments into the start and the end of each inline assembly
fragment in source code and then uses their bytecode as
marks to locate the bytecode segments in the bytecode of
the smart contract. The inserted inline assembly statements
should meet three requirements. R1: they should not af-
fect the data flow and control flow of the original smart
contract. Otherwise, our analysis will be biased, because
the program logic of the inline assembly fragment may be
changed. R2: they must make explicit changes to the state
of the blockchain. Otherwise, they may be removed by the
compiler through optimization. R3: their operands should
be distinctive so that we can quickly locate the marks among
numerous instructions.

After locating the marks in the bytecode, an intuitive
way to collect a bytecode segment is to extract the EVM
instructions from the bytecode with insertion between the
beginning mark and the end mark. However, we find that
with the inserted inline assembly statements the bytecode
segments may change slightly, because the inserted state-
ments may modify the stack or change the program counters
of jump targets although the program logic of the original
inline assembly statements is unchanged. To tackle this
issue, our approach records the program counters of the two
marks in the bytecode with insertion, and then extracts the
EVM instructions located by these two program counters
from the original bytecode without insertion. By doing so, we
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can collect the genuine bytecode segments compiled from
the inline assembly fragments, and store them in ds5 as
shown in Fig. 1.

We use an example shown in Fig. 5 to illustrate the
process of bytecode segment extraction. Fig. 5(a) shows the
Solidity source code. Lines 4 - 10 are the embedded inline
assembly fragment. Please ignore Lines 5 and 9 at this mo-
ment. Fig. 5(b) displays the EVM bytecode compiled from
Fig. 5(a), which is 150 bytes long. The bytecode segment
compiled from the inline assembly is underlined. We can see
that there are no marks in the EVM bytecode to recognize
the bytecode segment. Fig. 5(c) presents part of the 89 EVM
instructions disassembled from the bytecode in Fig. 5(b).
The number inside [...] before each instruction is the value
of the program counter (PC). The instructions compiled
from the inline assembly fragment are also underlined. The
Program Counter (PC) refers to the byte offset of a statement
in the smart contract bytecode. It is worth noting that in
EVM all instructions except PUSH instruction do not have
immediate data, and the length of each instruction is one
byte. Note that the PUSHx family of instructions pushes x (1
to 32) bytes elements immediately following the instructions
to the top of the stack. For example, PUSH2 will push two
bytes data to the stack. Since the immediate data of the
PUSH2 instruction at 111 is 0x1998, the immediate data takes
2 bytes (i.e., 112 and 113). Therefore, the PC of the next
instruction (i.e., PUSH2 0x1111) should be 114. Similarly,
since the immediate data of the PUSH2 instruction at 114
is 0x1111, the immediate data takes 2 bytes (i.e., 115 and
116), and thus the PC of the next instruction (i.e., SSTORE) is
117.

Line 5 in Fig. 5(a) refers to the assembly statement in-
serted to the beginning of the inline assembly fragment. This
inserted statement satisfies three requirements. R1: it writes
data to the storage but the original smart contract does not
access the storage, and hence the crafted statement does
not affect the program logic of the original smart contract.
R2: it makes explicit changes to the state of the blockchain
because the storage is permanent memory space. R3: it
has two distinctive operands, e.g., 0x1111 and 0x1998. We
choose 0x1111 as the storage space randomly. In particular,
we collected the address used by the SSTORE and SLOAD
instructions in all smart contracts with inline assembly and
found that none of them used the 0x1111 storage space.
Moreover, since we only extract the bytecode, we don’t need
to care about whether the smart contract will occupy the
address in future transactions.

Fig. 5(d) and Fig. 5(e) show the bytecode after inserting
Line 5 and the corresponding EVM instructions, respec-
tively. The bytecode and the instructions compiled from the
inserted statement can be easily located, which are shaded in
Fig. 5(d) and Fig. 5(e). In this example, the bytecode and the
instructions corresponding to the original inline assembly
statements which are modified after insertion are in red.
The reason for the modification is that the inserted statement
changes the program counters of two jump targets which are
pushed onto the stack by Line 125 and Line 135, as shown in
Fig. 5(e). We record the starting program counter, i.e., 111,
of the inserted instructions. Similarly, we insert the same
statement into the end of the inline assembly fragment (Line
9 in Fig. 5(a)). We can see that the starting program counter

func opJumpi(pc *uint64, ...) ([]byte, error) { 1 
    pos, cond := stack.pop(), stack.pop() 2 
    if cond.Sign() != 0 { //jump 3 
        if !contract.validJumpdest(pos) { 4 
            return nil, errInvalidJump 5 
        } 6 
        *pc = pos.Uint64() 7 
        //get pc value 8 
        dataCollector.GetTrace("opcode:Jumpi", *pc) 9 
    } else {//fall through 10 
        *pc++ 11 
        //get pc value 12 
        dataCollector.GetTrace("opcode:Jumpi", *pc) 13 
    } 14 
 15 
    interpreter.intPool.put(pos, cond) 16 
    return nil, nil 17 
} 18 

Fig. 4. JUMPI instrucment code

of the inserted instructions is 140 in Fig. 5(e). Hence, after
subtracting the length (i.e., 7) of the bytecode that does not
belong to the original smart contract (i.e., the bytecode gen-
erated by beginning mark), we obtain the program counter
(i.e., 133) of the instruction right after the bytecode segment
that should be extracted. Finally, we extract the bytecode
segment which starts from the program counter 111 and
ends with the program counter 132, as underlined in Fig.
5(c).

The optimization mechanisms during the compilation
may lead to recombination and merging of instruction
sequences. To evaluate whether such optimization mecha-
nisms will affect our approach, we first investigate all 30
Yul-based optimization mechanisms from Solidity’s official
documents [42], including three loop-based optimization
mechanisms, ForLoopConditionIntoBody, ForLoopCondi-
tionOutOfBody, ForLoopInitRewriter. Since we find that
they focus on variables, loops, function calls, etc. (details
in the supplementary material [43]), our marks will not
be affected by optimization mechanisms. To validate the
correctness of our theoretical analysis, we also manually
check the impact of each optimization mechanism on in-
line marks by experiments. According to the patterns of
inline assembly fragments that can be optimized by these
30 optimization methods, we design 30 inline assembly
fragments and construct 30 test smart contracts containing
these inline assembly fragments. Then, we insert marks
into the boundaries of these inline assembly fragments in
these 30 test smart contracts, and enable the compiler’s
optimization option. After that, we analyze the bytecode of
these smart contracts. Our manual inspection shows that
our marks are always located at the beginning and end of
the inline assembly fragments without being affected by the
optimization.

Oyente [44] and Madmax [45] can locate the location
of the bytecode corresponding to the inline assembly by
using the source location mapping function provided by
the compiler. However, they can not achieve our purpose
because of two reasons. First, this feature cannot accurately
locate the variables declared in the inline assembly [46].
Second, inline assembly is available after V0.3.1 whereas
the source location mappings for bytecode is available after
V0.3.6 [47], and thus this feature cannot handle some inline
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assembly fragments. In contrast, our method can locate all
of them correctly.
Transaction collection. Although there are some data col-
lection platforms for Ethereum [38], [39], [48], [49], they
cannot provide the information about which instructions
are executed by a transaction. Such information is required
to determine whether a transaction executes inline assem-
bly. An intuitive approach is used to record all executed
instructions by instrumenting all interpretation handlers in
the EVM, each of which interprets an EVM instruction.
Unfortunately, this approach is inefficient because a number
of instructions executed by one transaction.

We propose an efficient approach that just records the in-
formation of jump instructions by instrumenting the instruc-
tion execution part of the go-ethereum client and obtaining
relevant information about the instruction, including the
program counters of jump instructions and their target in-
structions, because jump instructions (function calls within a
smart contract are compiled into jump instructions [36]) are
used for altering the control flow. For example, since JUMPI
instruction is a conditional jump instruction, and JUMP is a
direct jump instruction, we modify the JUMPI instruction
of the EVM of go-ethereum to obtain the corresponding
instruction and PC in Fig. 4 (JUMP is handled through a
similar process). More precisely, we first develop a data
record object dataCollector and record the data generated
by the Ethereum client when executing the instruction. In
Fig. 4, the jump destination is recorded in the handler
interpretation function opJumpi() executed by the JUMPI
instruction (Line 9 and 13). Knowing control flow transfers
and the bytecode of a smart contract, we can determine
which instructions are executed by a transaction. Ethereum
executes all transactions sequentially in each block, and thus
we can record the execution result of each transaction by
inserting a logging code after it completes execution. Specif-
ically, for each transaction that invokes a smart contract, we
record the address of the invoked smart contract, whether
the transaction is successful and the gas consumption. Our
approach collects 112,326,642 transactions which were sent
to smart contracts in ds3 and ds4 with blocks ranging from
0 to 10,000,000, and stores them in ds6 as shown in Fig. 1.
Please note that we do not need to record the transactions
sent to EOAs, because they do not execute smart contracts.

3.3 Investigation Procedures

RQ1: We analyze the data in ds2, ds4, ds5, and ds6 to answer
RQ1. First, we count the number of smart contracts with
inline assembly by querying ds4, and then compute the
proportion of such smart contracts to all smart contracts,
which are stored in ds2. For each smart contract with inline
assembly, we count how many inline assembly fragments
it has by querying ds4. Then we count the number of EVM
instructions in each inline assembly segment by querying
ds5. Moreover, we count the number of transactions execut-
ing inline assembly and compute its proportion by querying
ds5 and ds6. For each executed inline assembly segment, we
count the number of transactions executing it by querying
ds5 and ds6. Finally, we also conducted the above analysis
after removing the toy contracts (i.e., smart contracts that
have not been invoked).

RQ2: We examine the data in ds3, ds4, ds5, and ds6 to
answer RQ2. Specifically, we define five metrics (M1-M5) for
comparing the smart contracts with and the smart contracts
without inline assembly. M1-M3 are static metrics and M4-
M5 are dynamic metrics. A dynamic metric is only appli-
cable after the execution of smart contracts, e.g., the gas
consumption, while a static metric has no such restriction,
e.g., the length of EVM bytecode. We perform statistical tests
to compare two distributions corresponding to two sets of
smart contracts ds3 and ds4. More specifically, we apply
a two sided Mann-Whitney U test (which is equivalent to
the Wilcoxon rank-sum test [50]) to investigate whether two
populations have the same distribution [51] and consider
two distributions are different at α = 0.05.

We regard smart contracts that have not been invoked as
toy contracts, and smart contracts that have been invoked
at least once as non-toy contracts. For the static metrics M1-
M3, we study both non-toy and toy contracts.
M1: EVM bytecode length, which is an indicator of the
complexity of smart contracts. Since there are no standard
criteria for measuring the complexity of different programs,
we use the length of bytecode to measure the complexity
of smart contracts for the following reason. Nystedt et
al. [52] suggested that the line of code could be used as a
measure. Since the source code of smart contracts may not
be available, we use the length of bytecode, which will be
executed by EVM, as an approximation to the line of code
to measure the complexity of smart contracts. We also used
SolMet [53] to compute the complexity of the smart contracts
with/without inline assembly and selected commonly used
complexity metrics SLOC (number of source code lines) and
WMC (weighted sum of McCabe’s style complexity over the
functions of a contract) for analysis (§4.2).
M2: frequency of EVM instructions. It serves as an indicator
of the functionalities of smart contracts because we can
infer the functionalities of smart contracts according to the
semantics of the instructions used by the smart contracts.
These functionalities are all low-level logic, but multiple
such low-level functions can be combined into high-level
business logic. For example, if a smart contract does not
contain the EVM instruction NUMBER, it cannot read the
block number because NUMBER is the only instruction to
read the block number [36]. Therefore, M2 (frequency of
EVM instructions) can reflect the difference of function-
ality between inline assembly and Solidity. To compare
the functionalities of inline assembly fragments with those
implemented in Solidity, we count the number of each EVM
instruction appearing in the bytecode stored in ds5 and ds3,
individually. We ignore the following instructions, PUSHx
1 ≤ x ≤ 32 for pushing a number on the stack, POP for
popping the top stack item, DUPx 1 ≤ x ≤ 16 for duplicating
one stack item, SWAPx 1 ≤ x ≤ 16 for exchanging two stack
items [36], because these stack operations are frequently
used in all smart contracts and they do not provide hints
on the functionalities of smart contracts.
M3: is optimized? It reflects whether the developers intend
to optimize the performance of smart contracts. Since the
optimization level of each open-source smart contract is
available (§3.2), we count the number of smart contracts
with and smart contracts without optimization in ds3 and
ds4, individually.
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

function f(uint x) public { 
uint val = 0; 
 if (x%2 == 1) {x += 1;} 
assembly { 
   sstore(0x1111, 0x1998) 

    for {let i := 0} lt(i, x) {i := add(i, 1)} { 
    val := add(val, i) 

  } 
sstore(0x1111, 0x1998) 

  } 
if (val == 100) revert(); 

} 

0x608060405260043610603e5763fff
fffff7c010000000000000000000000
0000000000000000000000000000000
000600035041663b3de648b81146043
575b600080fd5b348015604e5760008
0fd5b506058600435605a565b005b60
006002820660011415606e576001820
191505b60005b828110156083579081
01906001016071565b5080606414156
09157600080fd5b50505600 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH1 0x00
[113] JUMPDEST
[114] DUP3
[115] DUP2

[116] LT
[117] ISZERO
[118] PUSH1 0x83
[120] JUMPI
[121] SWAP1
[122] DUP2
[123] ADD
[124] SWAP1
[125] PUSH1 0x01
[127] ADD

[128] PUSH1 0x71
[130] JUMP
[131] JUMPDEST
[132] POP
[133] DUP1
[134] PUSH1 0x64
...... 
[148] JUMP
[149] STOP

(a) Source code

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

function f(uint x) public { 
uint val = 0; 
 if (x%2 == 1) {x += 1;} 
assembly { 
   sstore(0x1111, 0x1998) 

    for {let i := 0} lt(i, x) {i := add(i, 1)} { 
    val := add(val, i) 
 } 

 } 
if (val == 100) revert(); 

} 

0x608060405260043610603e5763fff
fffff7c010000000000000000000000
0000000000000000000000000000000
000600035041663b3de648b81146043
575b600080fd5b348015604e5760008
0fd5b506058600435605a565b005b60
006002820660011415606e576001820
191505b60005b828110156083579081
01906001016071565b5080606414156
09157600080fd5b50505600 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH1 0x00
[113] JUMPDEST
[114] DUP3
[115] DUP2

[116] LT
[117] ISZERO
[118] PUSH1 0x83
[120] JUMPI
[121] SWAP1
[122] DUP2
[123] ADD
[124] SWAP1
[125] PUSH1 0x01
[127] ADD

[128] PUSH1 0x71
[130] JUMP
[131] JUMPDEST
[132] POP
[133] DUP1
[134] PUSH1 0x64
...... 
[148] JUMP
[149] STOP

(b) Bytecode

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

function f(uint x) public { 
uint val = 0; 
 if (x%2 == 1) {x += 1;} 
assembly { 
   sstore(0x1111, 0x1998) 

    for {let i := 0} lt(i, x) {i := add(i, 1)} { 
    val := add(val, i) 
 } 

 } 
if (val == 100) revert(); 

} 

0x608060405260043610603e5763fff
fffff7c010000000000000000000000
0000000000000000000000000000000
000600035041663b3de648b81146043
575b600080fd5b348015604e5760008
0fd5b506058600435605a565b005b60
006002820660011415606e576001820
191505b60005b828110156083579081
01906001016071565b5080606414156
09157600080fd5b50505600 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH1 0x00
[113] JUMPDEST
[114] DUP3
[115] DUP2

[116] LT
[117] ISZERO
[118] PUSH1 0x83
[120] JUMPI
[121] SWAP1
[122] DUP2
[123] ADD
[124] SWAP1
[125] PUSH1 0x01
[127] ADD

[128] PUSH1 0x71
[130] JUMP
[131] JUMPDEST
[132] POP
[133] DUP1
[134] PUSH1 0x64
...... 
[148] JUMP
[149] STOP

(c) Disassemble text

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0x608060405260043610603e5763ffffffff7c0100000000
000000000000000000000000000000000000000000000000
600035041663b3de648b81146043575b600080fd5b348015
604e57600080fd5b506058600435605a565b005b60006002
820660011415606e576001820191505b6119986111115560
005b82811015608a57908101906001016078565b50611998
611111558060641415609857600080fd5b50505600 

function deploy_SC(bytes[] _code) public returns (address[]) { 
 uint sc_num = _code.length; 
 address[] memory sc_addr = new address[](sc_num); 
 assembly { 

 for { let i := 0 } lt(i, sc_num) { i := add(i, 1) } { 
 //code_ptr points the i-th bytecode 
 let code_ptr := mload(add(_code, mul(0x20, add(i, 1)))) 
 //deploy the bytecode, obtain its address 
 let target := create(0, add(code_ptr, 0x20), mload(code_ptr)) 
 //record the address in sc_addr[] 
 mstore(add(sc_addr, mul(0x20, add(i, 1))), target) 

 } 
 } 
 return sc_addr; 

} 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH2 0x1998

[114] PUSH2 0x1111
[117] SSTORE
[118] PUSH1 0x00
[120] JUMPDEST
[121] DUP3
[122] DUP2
[123] LT

[124] ISZERO
[125] PUSH1 0x8a
[127] JUMPI
[128] SWAP1
[129] DUP2
[130] ADD
[131] SWAP1

[132] PUSH1 0x01
[134] ADD
[135] PUSH1 0x78
[137] JUMP
[138] JUMPDEST
[139] POP
[140] DUP1

[141] PUSH2 0x1998
[144] PUSH2 0x1111
[147] SSTORE
[148] PUSH1 0x64
...... 
[162] JUMP
[163] STOP

(d) Bytecode after inline assembly insertion

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0x608060405260043610603e5763ffffffff7c0100000000
000000000000000000000000000000000000000000000000
600035041663b3de648b81146043575b600080fd5b348015
604e57600080fd5b506058600435605a565b005b60006002
820660011415606e576001820191505b6119986111115560
005b82811015608a57908101906001016078565b50611998
611111558060641415609857600080fd5b50505600 

function deploy_SC(bytes[] _code) public returns (address[]) { 
 uint sc_num = _code.length; 
 address[] memory sc_addr = new address[](sc_num); 
 assembly { 

 for { let i := 0 } lt(i, sc_num) { i := add(i, 1) } { 
 //code_ptr points the i-th bytecode 
 let code_ptr := mload(add(_code, mul(0x20, add(i, 1)))) 
 //deploy the bytecode, obtain its address 
 let target := create(0, add(code_ptr, 0x20), mload(code_ptr)) 
 //record the address in sc_addr[] 
 mstore(add(sc_addr, mul(0x20, add(i, 1))), target) 

 } 
 } 
 return sc_addr; 

} 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH2 0x1998

[114] PUSH2 0x1111
[117] SSTORE
[118] PUSH1 0x00
[120] JUMPDEST
[121] DUP3
[122] DUP2
[123] LT

[124] ISZERO
[125] PUSH1 0x8a
[127] JUMPI
[128] SWAP1
[129] DUP2
[130] ADD
[131] SWAP1

[132] PUSH1 0x01
[134] ADD
[135] PUSH1 0x78
[137] JUMP
[138] JUMPDEST
[139] POP
[140] PUSH2 0x1998

[143] PUSH2 0x1111
[146] SSTORE
[147] DUP1
[148] PUSH1 0x64
...... 
[162] JUMP
[163] STOP

(e) Disassemble text after inline assembly insertion

Fig. 5. Example of bytecode segment extraction

M4: number of transactions invoking a smart contract. It
may reflect the popularity of a smart contract because pop-
ular smart contracts will attract more users. We compute
the number of transactions invoking each smart contract in
ds4 and ds3, respectively, with the help of ds6, which stores
the destination addresses of all transactions.
M5: gas usage, which may reflect the popularity and com-
plexity of a smart contract, because executing a complex
smart contract will consume more gas and a popular smart
contract may attract more transactions and thus lead to
more total gas usage. For example, we found two real smart
contracts with differences in popularity and complexity. A
smart contract named SafeConditionalHFTransfer [54] con-
tains only 31 lines of Solidity code, and thus it is a fairly sim-
ple smart contract. However, due to its popularity (called
by 20,772 transactions), it consumes a total of 622,091,325
gas. Another smart contract named SGTExchanger [55] is
unpopular and involves only 961 transactions, but it is
relatively complex (1,847 lines of source code). It consumes
a total of 149,890,879 gas. Both smart contracts consume a
lot of gas.
RQ3: To discover the reasons why inline assembly is used,
four authors of this paper manually investigate all inline
assembly fragments in ds4. Fig. 6 shows the process of our
manual analysis. For each inline assembly fragment we ob-
tained by matching the assembly keyword from the source
code, in order to try to use Solidity to achieve the same func-
tionality, we first learn its functionality by reading the inline
assembly statements and the corresponding comments (if
existed). Then, to better understand its execution process,
we generate the corresponding mock data in advance. That
is, the parameters of the corresponding function are gener-
ated through the list of function parameter types provided
by its ABI. After that, we deploy the contract with the inline
assembly fragment to Remix [56] for manual simulation
execution, that is, use mock data to initiate a transaction
to the contract and then debug the transaction that executes
the function to view the stack change during the instruction
execution, and then compare it with the functionality of the
corresponding instruction [36].

To study whether this functionality can only be imple-
mented using inline assembly and whether using inline
assembly can save gas, we try to implement the same func-

tionality using Solidity. The authors of this paper have 1-4
years of experience in developing Ethereum smart contracts.
If there are different implementations to achieve the same
functionality in Solidity, we choose the implementation con-
suming the least gas. For a fair comparison, we compile
each implementation in Solidity using the same compiler
version and optimization level as those used to produce
the corresponding inline assembly fragment. If we can’t use
Solidity to achieve it (§5.1), we consider the functionality as
the one that cannot be implemented by Solidity code.

Moreover, we use the debugging function on the Remix
to analyze instruction execution step by step and investigate
why the inline assembly fragment can save gas. To compare
the gas consumption between an inline assembly fragment
and the bytecode compiled from its Solidity implementa-
tion, we deploy the two smart contracts (i.e., smart contract
with inline assembly and its Solidity implementation) on
Remix, and then call them respectively to obtain the real
gas consumption. The limitations and threats of Remix are
shown in detail in §7. If it cannot save gas with the inline
assembly fragment, we analyze whether the use of inline
assembly can ease development. That is, by consulting
programming books to determine whether the use of inline
assembly can make the programming process more readable
and easy.

4 QUANTITATIVE RESULTS

4.1 Results for RQ1
Results are shown in Fig. 7. We collect 7,640,317 open-
source smart contracts with 78,642 unique EVM bytecode.
Among all open-source smart contracts, we find 1,480,947
containing inline assembly fragments. These 1,480,947 smart
contracts correspond to 11,198 unique bytecode, and we
find 9,355 out of them contain the inline assembly bytecode
segments. That is, the inline assembly fragments in 1,843
(16.5% = 1, 843/11, 198) unique smart contracts are not
compiled into bytecode. After reading the source code, we
find that these inline assembly fragments are unreachable
(e.g., in never-called functions, on infeasible paths). Among
all 78,642 unique EVM bytecode, we find 35,178 of them
have not been invoked and 4,986 out of them contain inline
assembly bytecode segments. Hence, the EVM bytecode
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Fig. 6. The process of inline assembly fragment analysis.
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Fig. 7. Results for the prevalence of inline assembly in open-source
smart contracts

containing inline assembly bytecode segments accounts for
11.9% (9, 355/78, 642) of all unique EVM bytecode. And the
EVM bytecode of smart contracts that have not been called
accounts for 44.7% (35, 178/78, 642) of all unique EVM byte-
code. The EVM bytecode cotaining inline assembly bytecode
segments that have not been invoked accounts for 53.3%
(4, 986/9, 355) of all unique EVM bytecode containing inline
assembly bytecode segments. From all 9,355 EVM bytecode,
we discover 19,073 bytecode segments compiled from inline
assembly. Among these segments, 300 (1.6%) exist in the
constructor bytecode, and 18,773 (98.4%) exist in the runtime
bytecode. After removing toy contracts, the number of open-
source contracts with the unique EVM bytecode dropped to
43,464, of which 4,270 contained inline assembly bytecode
segments, accounting for 9.8% (4,270/43,464), and this ratio
is 14.5% (5,085/35,178) in toy smart contracts. Among the
4,270 EVM bytecodes, there are 8,192 bytecode segments
compiled from inline assembly. Of these segments, 115
(1.4%) are in the constructor bytecode, and 8,077 (98.6%)
are in the runtime bytecode.

To better understand the use of smart contracts with in-
line assembly, we investigated the creation time of all open-
source smart contracts. As shown in Table 1, the amount
of newly created smart contracts with inline assembly is
increasing year by year. Specifically, in 2016 and 2017, only
103 and 1,392 smart contracts with inline assembly were
created, which increased to 21,980 in 2018 and 226,707 in
2019. As of March 20, 2020, 49,853 smart contracts with
inline assembly have been created in 2020, which exceeds
the number in the same period in 2019. Then we calculated
the proportion of smart contracts with inline assembly in
all open-source smart contracts. 0.14% of all open-source
smart contracts created in 2016 contain inline assembly,

Year 2016 2017 2018 2019 2020(until March) 

# of SCs w/ inline 103 1392 21880 226707 49853 

# of all SCs 75490 1304084 3513930 2638212 108130 

% of SCs w/ inline 0.14% 0.11% 0.62% 8.6% 46.1% 

 TABLE 1
Number of smart contracts with inline assembly created by year

which increased to 0.11%, 0.62% and 8.6% from 2017 to 2019,
respectively. In 2020, the proportion reached 46.1%, which is
much higher than that in previous years. The reason for such
growth is that a smart contract named AccountCreator [57]
frequently created smart contracts with inline assembly
in 2020. In more detail, AccountCreator was created on
December 30, 2019, and then it created a large number
of (i.e., 11,476) smart contracts with inline assembly called
AccountProxy [58] before March 20, 2020. Similarly, another
smart contract with inline assembly called DSProxy [59] had
been created 10,160 times. These creations make the newly
created smart contracts with inline assembly account for a
high proportion of all newly created open-source contracts
in 2020. In general, the creation frequency of smart contracts
with inline assembly is increasing year by year, demonstrat-
ing that the functionalities provided by inline assembly are
very useful for smart contract developers.
Insight 1: The tools for analyzing the source code of smart
contracts should also handle inline assembly, because 11.9%
of smart contracts use it. However, to the best of our
knowledge, no source code analysis tool (e.g., VerSol [60],
SmartCheck [61], SolidityCheck [62]) can handle inline as-
sembly.

Fig. 8(a) and Fig. 8(b) depict the cumulative distribution
function (CDF) of the number of unique inline assembly
fragments of the smart contracts with and the smart con-
tracts without toy contracts, respectively from 1 to 48 and
from 1 to 33. 68.5% of smart contracts with toy contracts
just contain 1 fragment, while those without toy contracts
are 71.2%, and 90% of smart contracts with toy contracts
contain no more than 4 fragments, while those without toy
contracts contain no more than 3 fragments. By inspecting
its source code, we find that the smart contract [63] contains
45 functions, and each contains at least one fragment. We
also find that the smart contract [64] contains many libraries,
and each contains several fragments. These smart contract
leverages inline assembly to access arbitrary memory lo-
cations and arbitrary storage locations, which cannot be
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Fig. 8. The number of inline assembly fragments

realized by Solidity (§5.1).
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Fig. 9. The number of instructions in inline assembly fragments

Fig. 9(a) and Fig. 9(b) shows the CDF of the number
of EVM instructions in each inline assembly bytecode seg-
ment of the smart contracts with and the smart contracts
without toy contracts. The number ranges from 1 to 3,329
and from 1 to 938, and most segments are short. Fig.
9(a) shows that 90% of the segments in these contracts
with toy contracts contain no more than 31 instructions,
while Fig. 9(b) shows that 90% of the segments in these
contracts without toy contracts contain no more than 25.
That is, the very complex segments are not actually invoked
and generally, the segments used frequently are relatively
short. However, we observe that a segment contains 3,329
instructions. By inspecting the source code, we find that the
corresponding smart contract [65] uses inline assembly to
implement Poseidon hash function. Poseidon hash function
is used for the implementation of Zero-knowledge proof [66]

in the Loopring protocol [67], which is a decentralized token
exchange protocol.
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Fig. 10. The number of transactions for each inline assembly fragment

Among all 112,326,642 transactions, 13% (14,583,890) of
them invoke the smart contracts containing inline assembly
bytecode segments. 58.3% (8,496,835) out of them execute
inline assembly code, but 6,785,879 transactions (80%) exe-
cute just 123 (0.7% = 123/18, 773) segments. Fig. 10(a) and
Fig. 10(b) shows the CDF of the number of transactions that
execute an inline assembly bytecode segment in the smart
contracts with and the smart contracts without toy contracts.
Fig. 10(a) shows that about 78% of segments have not
been executed yet, and nearly 88.4% of segments have been
executed by no more than 10 transactions. The reason for
the high proportions is that some popular smart contracts
attract most transactions. For instance, one segment has
been executed about 2.9 million times. We find that this
segment reads parameters by an inline assembly operation
CALLDATALOAD [4]. It belongs to a function modifier that is
used in 11 functions of the EOS token contract. Hence, the
segment will be executed whenever one of these 11 func-
tions is invoked. Note that EOS, a popular blockchain, uses
Ethereum to host its tokens before launching its mainnet.
And Fig. 10(b) shows that after removing the toy contract,
52.5% of the segments have not been executed, and 60.1%
of the segments have been executed by no more than 10
transactions. It can be observed that these two proportions
decrease after removing the toy contract because the toy
contract has not been called by any transaction.

We observe that millions of transactions execute inline
assembly fragments, while a few fragments attract most
transactions. After investigating the functions of these inline
assembly fragments that are not executed or rarely executed,
we find that they are both in one of the following two
cases: (1) they are in unpopular smart contracts, which
have a small number of transactions; (2) they are in the
functions of smart contracts which are called infrequently,
such as the initialization function of a smart contract, which
is called only once during the deployment of the smart
contract. Therefore, the execution of the inline assembly



10

fragments is related to the popularity of smart contracts
where the fragments are located. Similar to the fact that most
transactions on Ethereum are relevant to a small number
of smart contracts [68], the execution of inline assembly
fragments also shows the long tail phenomenon. That is,
most transactions execute a small part of inline assembly
fragments.

Answer to RQ1: 11.9% of smart contracts use inline assem-
bly and 8.5 million transactions executed inline assembly.

4.2 Results for RQ2
By comparing the smart contracts with and the smart
contracts without inline assembly, we find that these two
kinds of smart contracts have differences in terms of all five
metrics.
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Fig. 11. The length of bytecode

M1 (EVM bytecode length): The violin plot in Fig. 11(a) and
Fig. 11(b) show the bytecode length of the ds3 and ds4 with

and without toy contracts, including toy contracts ranging
from 8 bytes to 24,527 bytes and 43 bytes to 25,574 bytes,
excluding toy contracts, from 8 bytes to 24,523 bytes and
80 bytes to 24,513 bytes, respectively. We also compared the
toy smart contracts and the non-toy smart contracts in ds3
and ds4. Fig. 11(c) and Fig. 11(d) show whether it is ds3
or ds4, the bytecode length of toy smart contracts is longer
than that of non-toy smart contracts, which also shows that
toy smart contracts are not simpler, and it is consistent with
the difference after removing toy smart contracts in §4.1. We
analyzed the source code and its transactions, and found
smart contracts that use the factory design pattern, such as
the smart contract MultiSigFactory [69], which creates many
MultiSigStub contracts through transactions, and their codes
are almost the same. And some of them have no transactions
like the smart contract [70], while others have a small
number of transactions like the smart contract [71]. This
is also a possible reason why toy smart contracts are not
simple. We performed a Mann-Whitney U test on the EVM
bytecode length of the contract in ds3 and ds4. The input
is two arrays. Array A is the EVM bytecode length of the
smart contracts with inline assembly, and array B is the
EVM bytecode length of the smart contract without inline
assembly. The output shows that these two distributions
are different. On average, the smart contracts with inline
assembly are larger than those without inline assembly. The
probability distribution of the right violin is more smooth
than the probability distribution of the left violin. Because
in ds3, most values are close to the median while ds4 is the
opposite. It means that the average and median length of the
bytecode of smart contracts with inline assembly is greater
than that of smart contracts without inline assembly. There-
fore, the smart contracts with inline assembly are in general
more complicated than those without inline assembly. Here
are the explanations. A recent study discovers that many toy
smart contracts have been deployed on the blockchain [72],
which may be adapted from the examples of Ethereum doc-
uments and tutorials. These toy smart contracts do not use
inline assembly. Contrarily, when developers write inline
assembly, which has a higher learning curve compared to
Solidity, they may intend to implement special functionali-
ties (c.f., §5.1) in smart contracts for practical applications.

In order to more comprehensively show the difference
between ds3 and ds4 under a certain category, we further
conducted experiments for a specific category. Since there
is no recognized classification of contracts yet, in order to
explore the difference in a certain category, we analyzed
all Token contracts and obtained the same observation as
the previous one. That is, the bytecode of the Token smart
contract with inline assembly will be longer. As shown
in Fig. 12(a) and Fig. 12(b), after removing the toy smart
contract, compared the Token bytecode length of ds3 and
ds4, it can be seen that the conclusion is consistent with
the above, and the length of the token contract with inline
assembly is longer. Similarly, Fig. 12(c) and Fig. 12(d) also
show that in the category of Token, the bytecode length of
toy smart contracts is still longer than that of non-toy smart
contracts.

We also used SolMet [53] to compute the complexity
of the smart contract with inline assembly and the smart
contracts without inline assembly, and selected two com-
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Fig. 12. The length of token bytecode

monly used complexity metrics SLOC (number of source
code lines) and WMC (weighted sum of McCabe’s style
complexity over the functions of a contract) for analysis. The
former is often used to measure the volume of a program,
and it can also measure the complexity of a program, while
the latter is a quantitative measure of the number of linearly
independent paths through a program’s source code [73].
Fig. 13(a) and Fig. 13(b) shows the difference between ds3
and ds4 in the metrics SLOC and WMC. From the median
point of view, the smart contracts with inline assembly
are more complex in terms of SLOC and WMC, and their
graphics are smoother, which is also consistent with the
results obtained by above bytecode length.
M2 (frequency of EVM instructions)): Fig. 14(a) and Fig.
14(b) present the opcode clouds of the EVM instructions in
inline assembly bytecode segments and of those compiled
from Solidity code, respectively. Fig. 14(c) and Fig. 14(d)
present the opcode clouds of the EVM instructions in inline
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Fig. 13. The complexity of smart contracts

assembly bytecode segments and of those compiled from
Solidity code after removing toy contracts, respectively. We
performed a Mann-Whitney U test on the frequency of
instruction of the contract in ds3 and ds5. The input is two
arrays. Array A is the frequency of each instruction of the
inline assembly segments, and array B is the frequency
of each instruction of the smart contract without inline
assembly. The output shows that these two distributions are
different. We can find many differences between the two
opcode clouds with and the two opcode clouds without
toy contracts, indicating that inline assembly has special
capabilities that cannot be substituted by Solidity.

(a) ds5 with toy contracts (b) ds3 with toy contracts

(c) ds5 without toy contracts (d) ds3 without toy contracts

Fig. 14. Opcode clouds

(1) EXTCODESIZE frequently appears in inline assembly
segments and rarely in the bytecode compiled from Solidity.
The reason is that EXTCODESIZE is used for obtaining the
runtime bytecode size of a given account, and such function-
ality can only be realized by inline assembly (§5.1). We find
that this instruction only appears in the bytecode compiled
from Solidity in a rare circumstance, that is, instantiating the
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contract B { 1 
    function f() public returns(uint) { 2 
        return 1024; 3 
    } 4 
} 5 
 6 
contract C { 7 
    function f(address _addr) public returns(uint) { 8 
        B b = B(_addr); 9 
        return b.f(); 10 
    } 11 
} 12 

Fig. 15. Generate EXTCODESIZE using Solidity

contract object. Fig. 15 shows how to generate the instruc-
tion through Solidity. We instantiated a B contract in contract
C through the passed-in address (Line 9), and the compiler
used the EXTCODESIZE instruction in this process. Since this
instruction cannot be used explicitly, EXTCODESIZE rarely
appears in bytecode compiled from Solidity.
Insight 2: Developers can use some specific opcodes directly
through inline assembly to implement functionalities un-
available in Solidity.

(2) MLOAD appears more frequently in inline assembly
segments than in bytecode compiled from Solidity. The
possible reason is that using MLOAD in inline assembly
can read arbitrary memory locations, which can not be
implemented through Solidity. For example, we find that
three functionalities (i.e., F1, F8, F10 in §5.1) not supported
by Solidity use the MLOAD instruction to read memory at a
specific location. 45.2% of inline assembly segments contain
MLOAD and the inline assembly in smart contracts generates
fewer instructions than the Solidity code, which may also be
the reason for the higher frequency of MLOAD.

(3) JUMPDEST, JUMPI and ISZERO appear more fre-
quently in the bytecode compiled from Solidity than in
inline assembly segments. Note that these three instructions
are the results compiled from control flow statements (e.g.,
if...else, for{...} loop). Therefore, it suggests that developers
do not tend to write complex control flow transfers in inline
assembly. Such finding is accordant to Fig. 9 that most inline
assembly byte segments are short.
Insight 3: Developers tend to use inline assembly with short
length to implement uncomplicated control flows in long
smart contracts.

(4) AND appears more frequently in the bytecode com-
piled from Solidity than in inline assembly segments. The
frequency of AND appearing in the bytecode generated by
Solidity is 8.54%, which is a high frequency because there
are 142 opcodes in total [36]. The reason is that the compiler
automatically adds AND to ensure the validity of parame-
ters, and in some arithmetic operations, the compiler also
generates AND instructions. But the compiler will not auto-
matically generate AND in the inline assembly. For example,
when a function takes in an 8-bit unsigned integer, the 32-
byte data read from a transaction will be masked with 0xff
using AND to retain the lowest 8 bits. By contrast, we find
that inline assembly tends to use arguments directly without
masking.

As shown in Fig. 14(c) and Fig. 14(d), the instruction
frequency distribution has no change after removing the toy
smart contracts because the instruction frequency distribu-
tion of toy smart contracts is very similar to that of non-toy
smart contracts.
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Fig. 16. The proportion of optimized smart contracts

M3 (is optimized?): Fig. 16(a) and Fig. 16(b) show the
proportion of smart contracts with and the proportion of
smart contracts without toy contracts which are compiled
with optimization. We performed a Phi-coefficient [74] cor-
relation analysis between the contracts in ds3 and ds4 and
the optimization. We build a 2 x 2 table (optimized/non-
optimized, contract type) and calculated its Phi coefficient.
The results are that the contract in ds3 with toy contracts and
the optimization have Phi-coefficient |ϕ| = 0.14, and the
contract in ds3 without toy contracts and the optimization
have Phi-coefficient |ϕ| = 0.13, both have a weak posi-
tive correlation. We can see that about 45% of the smart
contracts without inline assembly are optimized, while the
proportion increases to about 67% for the smart contracts
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with inline assembly. After removing the toy contracts,
the optimization proportion increased to 49.1% and 71.4%,
respectively. This result suggests that the smart contracts
with and without inline assembly differ in optimization and
the developers using inline assembly pay more attention to
the performance of smart contracts than those writing pure
Solidity code. Such finding is accordant with §5.2 that inline
assembly can be used to save gas. We also compared the toy
smart contracts and the non-toy smart contracts in ds3 and
ds4. Fig. 16(c) and Fig. 16(d) show no matter in ds3 or ds4,
the optimization ratio of toy smart contracts is lower than
that of non-toy smart contracts. This also may be a reason
that why the bytecode of toy smart contracts is longer.
Insight 4: Developers using inline assembly may pay more
attention to the performance of smart contracts than those
writing pure Solidity code.
M4 (number of transactions invoking a smart contract):
Fig. 17 displays the CDF of the number of transactions
calling smart contracts. We performed a Mann-Whitney U
test on the number of transactions of the contract in ds3
and ds4. The input is two arrays. Array A is the number of
transactions of the smart contracts with inline assembly, and
array B is the number of transactions of the smart contracts
without inline assembly, the output shows that these two
distributions are different. The curve of the smart contracts
with inline assembly is below that of the smart contracts
without inline assembly, indicating that the former attracts
more transactions. Particularly, about 45.6% of the smart
contracts using inline assembly have not been invoked, and

this proportion soars to 80.9% for the counterpart. 90% of
smart contracts without inline assembly are invoked by
no more than 2 transactions. By contrast, 90% of smart
contracts with inline assembly are invoked by no more than
29 transactions. We observe that the smart contracts with
inline assembly have more transactions on average than the
smart contracts without inline assembly. The reason may be
that the smart contracts with inline assembly are usually
used for practical applications, which are more likely to be
frequently invoked. However, among the smart contracts
without inline assembly, there are many toy smart contracts
that are never invoked.

In addition, we studied whether the smart contracts with
or without inline assembly would lead to more or less failed
transactions. Please see the supplementary material [43] for
details.
M5 (gas usage): Fig. 18 presents the CDF of the gas con-
sumption of each smart contract, which is the summation
of the gas consumption of all transactions invoking that
smart contract. We performed a Mann-Whitney U test on
the gas consumption of the contract in ds3 and ds4. The
input is two arrays. Array A is the gas consumption of the
smart contracts with inline assembly, and array B is the gas
consumption of the smart contracts without inline assembly,
the output shows that these two distributions are different.
We observe that the smart contracts with inline assembly
consume more gas than the counterpart, which is consistent
with our previous observation that the smart contracts with
inline assembly are in general more complicated and have
more transactions invoked them.

We have also made statistics on the average gas con-
sumption of each smart contract. Fig. 19 presents the CDF
of the average gas consumption of each smart contract. The
average gas consumption of 90% of smart contracts with
inline assembly is lower than 1.3x106, while the average
gas consumption of smart contracts without inline assembly
is lower than 3.4x106, which means that smart contracts
without inline assembly consume more gas than smart
contracts with inline assembly. And the average maximum
gas consumed by smart contracts with inline assembly is
7.4x106, and this number is 7.9x106 for the counterpart.

Answer to RQ2: The smart contracts with and without
inline assembly differ in all five metrics.

In addition to the above comparison of the smart con-
tracts with and without inline assembly, we also derive three
observations from the analysis of toy smart contracts. First,
toy smart contracts are very complex, and their bytecode is
longer than non-toy smart contracts, which may be caused
by a lower optimization ratio. Second, the proportion of toy
smart contracts containing inline is even higher (14.5%), and
this proportion is 9.8% in non-toy smart contracts. Third, toy
smart contracts contain more inline assembly fragments and
inline assembly fragment instructions than non-toy smart
contracts.

5 QUALITATIVE RESULTS

We find three major reasons for using inline assembly in
smart contracts. First, inline assembly is used for imple-
menting 12 unavailable functionalities in Solidity. More
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complex functionalities can be realized based on these 12
functionalities. For example, to obtain the bytecode hash
of a given account, we can first copy the bytecode of
the account (F8, §5.1) and then compute its hash by the
function keccak256() supported in Solidity. Note that we
only enumerate the 12 basic functionalities in §5.1 instead
of such composite functionality. The fact that Solidity did
not implement these functionalities may be due to secu-
rity considerations, but the security and functionalities are
tradeoffs, and our survey results in §6 show that a few
developers have security concerns, but most of them still
hope that Solidity has these functionalities. Second, inline
assembly can be used for producing gas-efficient bytecode
by any of 6 programming patterns (§5.2), which costs less
transaction fee than the counterpart in Solidity. Third, inline
assembly has special programming constructs, which can
ease development (§5.3), even if Solidity source code can be
compiled into the same bytecode.

5.1 Supporting Functionalities Unavailable in Solidity
One inline assembly fragment can implement several func-
tionalities. For each functionality, we calculate the propor-
tion of inline assembly fragments (shown in <>) imple-
menting it. Moreover, to better understand each function-
ality, we added a real smart contract example to explain it.
Note that these 12 functionalities cannot be realized by pure
Solidity code.
F1<1.1%>: deploying a smart contract provided its
bytecode using inline assembly operations CREATE or
CREATE2 [4]. Although a smart contract A can deploy a
smart contract B using the keyword new of Solidity [3], there
are two restrictions in Solidity. First, the source code of B is
needed. Second, B should be available to A before compiling
A. That is, A cannot deploy a smart contract whose source
code or bytecode is given as input to A. These restrictions
can be bypassed by inline assembly so that many smart
contracts can be deployed by one transaction given their
bytecode. Fig. 20 shows an example where deploy SC()
takes in the bytecode of sc num (Line 2) smart contracts
stored in code. The bytecode of each smart contract in code
can be located by the variable code ptr (Line 7). After CREATE
is used to deploy a smart contract, its address is obtained
(Line 9) and stored in the memory (Line 11). All addresses
will be returned (Line 14).

Real contract: GAST2 Token [75] has 279,310 transac-
tions, it uses the gas refund obtained when deleting the cre-
ated contract so that the gas cost of executing the transaction
is low [76]. And this contract uses F1 to create a very simple
contract to achieve this function.
F2<45.2%>: memory pointer, based on which smart con-
tracts can manipulate the memory in a fine-grained way. F2
can be realized by three inline assembly operations, MLOAD
reading 32 bytes, MSOTRE writing 32 bytes and MSTORE8
writing 8 bytes, which can access the memory location
specified by developers [4].

Real contract: ENS [77] has 1,507,738 transactions, it im-
plements a strlen function to obtain the length of the string.
In the strlen() function, it uses MLOAD to get how many slots
the string s occupies in the memory. Fig. 21 shows how the
contract uses MLOAD to obtain the end pointer of string in
memory (Line 5).

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

0x608060405260043610603e5763ffffffff7c01000000
0000000000000000000000000000000000000000000000
0000600035041663b3de648b81146043575b600080fd5b
348015604e57600080fd5b506058600435605a565b005b
60006002820660011415606e576001820191505b611998
6111115560005b82811015608a57908101906001016078
565b508060641415609857600080fd5b50505600 

[0] PUSH1 0x80
[2] PUSH1 0x40
[4] MSTORE
...... 
[109] POP
[110] JUMPDEST
[111] PUSH2 0x1998

[114] PUSH2 0x1111
[117] SSTORE
[118] PUSH1 0x00
[120] JUMPDEST
[121] DUP3
[122] DUP2
[123] LT

[124] ISZERO
[125] PUSH1 0x8a
[127] JUMPI
[128] SWAP1
[129] DUP2
[130] ADD
[131] SWAP1

[132] PUSH1 0x01
[134] ADD
[135] PUSH1 0x78
[137] JUMP
[138] JUMPDEST
[139] POP
[140] DUP1

[141] PUSH1 0x64
...... 
[155] JUMP
[156] STOP

function deploy_SC(bytes[] _code) public returns (address[]) { 
 uint sc_num = _code.length; 
 address[] memory sc_addr = new address[](sc_num); 
 assembly { 

 for { let i := 0 } lt(i, sc_num) { i := add(i, 1) } { 
 //code_ptr points the i-th bytecode 
 let code_ptr := mload(add(_code, mul(0x20, add(i, 1)))) 
 //deploy the bytecode, obtain its address 
 let target := create(0, add(code_ptr, 0x20), mload(code_ptr)) 
 //record the address in sc_addr[] 
 mstore(add(sc_addr, mul(0x20, add(i, 1))), target) 

 } 
 } 
 return sc_addr; 

} 

Fig. 20. Deploy many smart contracts using one transaction

function strlen(string s) returns (uint) { 1 
    ... 2 
    assembly { 3 
        ptr := add(s, 1) 4 
        end := add(mload(s), ptr) 5 
    } 6 
    ... 7 
} 8 

Fig. 21. Obtain string length using mload

F3<8.2%>: obtaining the length of the allocated memory
through the inline assembly operation MSIZE [4]. The mem-
ory slots after such length are unallocated [36], so knowing
the length, inline assembly can avoid writing to the memory
slots that are used by Solidity code.

Real contract: SyncFab [78] has 25,893 transactions, it
implements the role of a proxy, which completes an external
call and uses MSIZE to obtain the used memory size, and
puts the returned result at the end to avoid overwriting
other memory. Fig. 22 shows how the smart contract obtains
the used memory size through MSIZE (Line 3) and stores the
return data at the end (Line 5).
F4<0.7%>: storage pointer, based on which smart contracts
can manipulate storage locations flexibly. F4 can be realized

function _returnReturnData(bool _success) internal { 1 
    assembly { 2 
        let returndatastart := msize() 3 
        mstore(0x40, add(returndatastart, returndatasize)) 4 
        returndatacopy(returndatastart, 0, returndatasize) 5 
        switch _success 6 
        case 0 { revert(returndatastart, returndatasize) } 7 
        default { return(returndatastart, returndatasize) } 8 
    } 9 
} 10 

Fig. 22. Obtain the used memory using msize

function _implementation() internal view returns (address impl) { 1 
    bytes32 slot = IMPLEMENTATION_SLOT; 2 
    assembly { 3 
        impl := sload(slot) 4 
    } 5 
} 6 

Fig. 23. Obtain the special stored bytes using sload
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function () payable { 1 
    bytes32 result = _getAsset()._performGeneric...; 2 
    assembly { 3 
        mstore(0, result) 4 
        return(0, 32) 5 
    } 6 
} 7 

Fig. 24. Return data from a fallback function

function _delegate(address implementation) internal { 1 
    assembly { 2 
        calldatacopy(0, 0, calldatasize) 3 
        let result := delegatecall(gas, ...) 4 
        returndatacopy(0, 0, returndatasize) 5 
        switch result 6 
        case 0 { revert(0, returndatasize) } 7 
        default { return(0, returndatasize) } 8 
    } 9 
} 10 

Fig. 25. Obtain the call result of the smart contract

by two inline assembly operations, SLOAD reading 32 bytes
and SSTORE writing 32 bytes, which can access the storage
location specified by developers [4]. Sophisticated function-
alities can be built using storage pointers. For example, the
diamond standard designs a new storage layout allowing
to create structs in arbitrary places in the storage. Such
layout mechanism relies on storage pointer [79]. A diamond
is a contract with external functions that are supplied by
contracts called facets [80]. Facets are separate, independent
contracts that can share internal functions, libraries and state
variables [80]. Diamonds can be upgraded without having
to redeploy existing functionality. Parts of a diamond can be
replaced while leaving other parts alone [80]. This contract
architecture makes the upgrade of the contract more flexible,
breaks the contract size limit, and maintains transparency.

Real contract: FiatTokenProxy [81] has 10,048,021 trans-
actions, it is a proxy contract that uses a specific storage
slot to store the address of a contract to be called. Its
purpose is to update the address of the contract to be called
by updating the specific storage of the contract. Fig. 23
shows how the smart contract obtains the bytes stored in
the special storage through SLOAD and uses it for other
operations (Line 4).
F5<9.3%>: returning data from a fallback function, which
is an unnamed function in Ethereum smart contracts [35]. F5
can be realized by inline assembly operations RETURN and
REVERT, which return some data in the memory [4] and thus
improve the capability of fallback functions.

Real contract: PolybiusToken [82] has 103,402 transac-
tions, in order to prevent users from calling the wrong
contract, it implements a proxy functionality in its fallback
function, that is, if the user originally wants to call another
function of another contract, its fallback function will be
forwarded to the corresponding contract and use F5 to
return the call result in the fallback function. Fig. 24 shows
how the smart contract returns the processing result in the
fallback function through RETURN (Line 5).
F6<5.7%>: obtaining the return data from the previous

function isContract(address _addr) returns (bool) { 1 
    if (_addr == 0) return false; 2 
    uint256 size; 3 
    assembly { 4 
        size := extcodesize(_addr) 5 
    } 6 
    return (size > 0); 7 
} 8 

Fig. 26. Determine whether the address is a smart contract address

invocation of a smart contract. Solidity does not support
F6 until V0.5.0 [83]. Before V0.5.0, F6 must be implemented
by an inline assembly operation RETURNDATACOPY [4].

Real contract: A proxy contract named FiatToken-
Proxy [81] has 10,048,021 transactions. Since this contract
requires the return result of the contract it calls and the
compiler version of it is below V0.5.0, RETURNDATACOPY is
needed to obtain the returned data. Fig. 25 shows how the
smart contract obtains the return date of the previous call
to other smart contracts through RETURNDATACOPY (Line 5)
and returns the returned data (Line 7).
F7<28.6%>: obtaining the runtime bytecode size of a
given account through the inline assembly operation
EXTCODESIZE [4]. Since an EOA does not contain bytecode,
EXTCODESIZE can be used to check the type of an account.
Moreover, the bytecode size is a mandatory parameter for
copying the bytecode to the memory (i.e., F8) [4].

Real contract: SNT [84] has 954,549 transactions, it is a
contract for the Status IM [85]. It is used by another control
contract TokenController. Therefore, it is necessary for SNT
to determine whether the sending address is a contract. This
contract uses F7 to obtain the runtime bytecode size of the
address. If it is greater than zero, the address is a contract
address, and then different logic will be made according
to whether it is a contract address. Fig. 26 shows how the
smart contract obtains the length of the runtime bytecode
of the address through EXTCODESIZE (Line 5) and uses the
length to determine whether the address is the address of
the smart contract (Line 7).
F8<0.4%>: copying the runtime bytecode of a given ac-
count to a specified memory location. If the account is an
EOA, nothing will be copied. The inline assembly opera-
tion, EXTCODECOPY can implement F8 [4]. With F8, a smart
contract can validate the bytecode of any specified smart
contract. Fig. 27 shows a smart contract checking whether
the first 44 bytes of a specified smart contract is identical
with a prelude, which is generated at Lines 2 and 3. The
first 44 bytes of a smart contract is read at Line 9, and the
comparison is conducted at Lines 11 - 13.

Real contract: EIP20Factory [86] has 16 transactions, it is
used to create a contract that meets EIP20 [87] and provides
a function for verifying whether a contract address meets
EIP20. Therefore, this contract needs to use F8 to obtain
the runtime bytecode of the contract and directly match all
bytecodes to verify whether it is an ERC20 Token.
F9<0.3%>: obtaining the runtime bytecode size of the
running contract through the inline assembly operation
CODESIZE [4]. The bytecode size is a mandatory parameter
for copying the bytecode to the memory (i.e., F10) [4].
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function substr(string str, uint pos) returns (bytes) { 
 bytes memory res = new bytes(50); 
 assembly { 

 //start_ptr indicates where to read 
 let start_ptr := add(str, add(0x20, pos)) 
 //read the first 32 bytes 
 mload(add(res, 0x20), mload(start_ptr)) 
 //read the last 18 bytes 
 mload(add(res, add(0x20, 18)), mload(add(start_ptr, 18))) 

 } 
 return res; 

} 

function Add(uint a, uint b) internal returns (uint) { 
 return a+b; 

} 
function Sub(uint a, uint b) internal returns (uint) { 

 return a-b; 
} 
function f(bool flag) public returns (uint) { 

 //compute is a variable of the function type 
 function (uint, uint) returns (uint) compute; 
 assembly { 

 //compute can be assigned as different functions 
 if eq(flag, 1) { compute := Add } 
 if eq(flag, 0) { compute := Sub } 

 } 
 return compute(1995, 1116); 

} 

function _getPrelude(address vaultContract)...(bytes memory prelude) { 
 prelude = abi.encodePacked(bytes22(0x6e2b...5773), 
 vaultContract, bytes2(0xff5b)); 

} 
function _verifyPrelude(address metamorphicContract, bytes memory prelude)...{ 

 bytes memory runtimeHeader; 
 assembly { ...... 

 //read the first 44 bytes of a smart contract 
 extcodecopy(metamorphicContract, add(runtimeHeader, 0x20), 0, 44) 

 } 
require(keccak256(abi.encodePacked(prelude)) == 
keccak256(abi.encodePacked(runtimeHeader)), 
 "Deployed runtime code does not have the required prelude."); 

} 

Fig. 27. Validate the bytecode of a given smart contract

function safeMemoryCleaner() internal pure { 1 
    assembly { 2 
        let fmem := mload(0x40) 3 
        codecopy(fmem, codesize, sub(msize, fmem)) 4 
    } 5 
} 6 

Fig. 28. Clear memory using codesize and codecopy

F10<0.3%>: copying the runtime bytecode of the running
contract to a specified memory location through the inline
assembly operation, CODECOPY [4]. With F10, a smart con-
tract can self check the integrity of its bytecode.

Real contract: a smart contract called Mobius-
Random [88] has 2,769 transactions and uses both
CODESIZE (F9) and CODECOPY (F10). Specifically,
this.code[codesize:length] is used to get a piece of empty
data (i.e., data with a value of 0), and CODECOPY is used to
clear a piece of memory by copying the empty data into
memory. Fig. 28 shows how the smart contract obtains the
length of its runtime bytecode (Line 4) through CODESIZE
and uses CODECOPY to clear a piece of memory (Line 4).
F11<0.08%>: obtaining the chain id of the run-
ning blockchain through the inline assembly operation
CHAINID [4]. Since different blockchains have different chain
ids (e.g., the chain ids of Ethereum mainnet and RSK
mainnet are 1 and 30, respectively [89]), they can be used
to differentiate blockchains. Moreover, with F11, a smart
contract can check whether a signed message aims to be
delivered to the running blockchain [90].

Real contract: OrchidLottery [91] has 753 transactions, it
is a lottery contract, which uses CHAINID to perform differ-
ent operations depending on the chain where it is located.
In fact, CHAINID is used as a variable (similar to BLOCKHASH,
BLOCKNUMBER, TIMESTAMP, etc.) for the hash operation, so

function grab(bytes32 reveal, bytes32 commit, ...) public { 1 
    ... 2 
    bytes32 ticket; 3 
    assembly { 4 
        ticket := chainid() 5 
    } 6 
    ticket = keccak256(abi.encode(ticket, ...)); 7 
    ... 8 
} 9 

Fig. 29. Obtain current blockchain id

function breed(uint256[2] mother, ...) { 1 
    assembly { 2 
        ... 3 
        function shiftR(value, offset) -> result { 4 
            result := div(value, exp(2, offset)) 5 
        } 6 
        ... 7 
    } 8 
} 9 

Fig. 30. Restrict function scope using inline assembly function

if the chain is changed, the final hash result will also be
affected, which is to make the result as unmanageable as
possible. Fig. 29 shows how the smart contract obtains its
own running blockchain id (Line 3) through CHAINID and
uses it for the hash operation to obtain a more complex ticket
(Line 4).
F12<0.04%>: functions with a restricted scope. Each inline
assembly fragment has its own scope and the function
defined using inline assembly is visible only to the code in
the same fragment [4]. On the contrary, the function defined
in Solidity has a global scope, which is visible to all other
Solidity code in the same smart contract.

Real contract: PepeBase [92] has 8,133 transactions. Since
the shift operation is not supported in Byzantium, the
Solidity part will be replaced by other operations such
as division. Due to the uncertainty of optimization, this
contract directly uses F12 to complete shift operation. Fig. 30
shows how the smart contract uses inline assembly function
to encapsulate functions and does not expose the w/o inline
part (Line 4).

We investigated the use of these 12 functionalities by
the top 10 most popular open-source smart contracts with
inline assembly. As shown in Table 2, among the top 10
open-source smart contracts with inline assembly involving
the most transactions, F2 is used by 6 contracts, F7 by 5
contracts, and F5 by 3 contracts, which matches the previ-
ous statistical results that F2, F7 and F5 are the top three
functionalities with the largest proportion.

5.2 Saving Gas by Inline Assembly
For each pattern, we count the number of inline assembly
fragments implementing it, as shown in <>. One inline
assembly can implement multiple patterns. Although a few
tools such as Gasper [93], Syrup [94] and GasChecker [95]
that can optimize smart contracts to save gas, but we believe
inline assembly can complement these tools for two reasons.
First, as the developers well know their smart contracts
including coding and semantics, they can leverage inline
assembly to directly optimize gas consumption. At the
same time, they can use the optimizations provided by
the Yul compiler. Second, other tools like Gasper, Syrup
and GasChecker can only optimize the gas consumption
of the Solidity source code or EVM bytecode that fulfills
certain patterns, and thus they may miss some optimization
opportunities known to the developers or the Yul compiler.
P1 < 87 >: do{...}while, can be realized by the inline assem-
bly operation, JUMPI which is a conditional jump [4]. So-
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Address Name Functionalities used

0x6090a6e47849629b7245-
dfa1ca21d94cd15878ef

ENS F2

0xece701c76bd00d1c3f96-
410a0c69ea8dfcf5f34e

Etheroll F2,F7

0x0affa06e7fbe5bc9a764-
c979aa66e8256a631f02

PolybiusToken F2,F5

0x86fa049857e0209aa7d9-
e616f7eb3b3b78ecfdb0

DSToken F2

0x744d70fdbe2ba4cf9513-
1626614a1763df805b9e

SNT F7

0x9899af5aa1efa90921d6-
86212c87e70f4fbea035

Cryptaur F2,F5

0xe7775a6e9bcf904eb39d-
a2b68c5efb4f9360e08c

TAAS F2,F5

0xdd98b423dc61a756e107-
0de151b1485425505954

Dice F7

0x55d34b686aa8c0492139-
7c5807db9ecedba00a4c

StatusContribution F7

0x960b236a07cf122663c4-
303350609a66a7b288c0

MiniMeToken F7

TABLE 2
Functionalities used in the top 10 most popular open-source smart

contracts with inline assembly

lidity does not support do{...}while until V0.4.5 [96]. Before
V0.4.5, Solidity has to use while{...} or for{...} to realize the
functionality of do{...}while. However, while{...} and for{...}
cost more gas than do{...}while because a loop guard will
be evaluated before entering the loop for the first time. We
use the EVM instructions compiled from a while{...} loop
(Fig. 31(a)) and a do{...}while (Fig. 31(b)) to explain their
differences in gas consumption in more detail.
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JUMPDEST 
%comparison 
PUSH ... 
JUMPI 
%loop body 
PUSH ... 
JUMP 
JUMPDEST 

JUMPDEST 
%loop body 
%comparison 
PUSH ... 
JUMPI 

(a) A while/for{...} loop
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PUSH ... 
JUMP 
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JUMPDEST 
%loop body 
%comparison 
PUSH ... 
JUMPI 

(b) A do{...}while loop

Fig. 31. EVM instructions of a loop with two implementations

In a while{...} loop (Fig. 31(a)), the program jumps over
(Line 4) the loop body if the loop guard is evaluated to false
(Line 2). Line 3 pushes the jump target on the stack. After
executing the loop body (Line 5), the program jumps (Line
7) back to the start of the loop (Line 1). The jump target is
pushed on the stack at Line 6. In a do{...}while loop (Fig.
31(b)), the loop guard is after the loop body (Line 3). If the
loop guard is evaluated to true, the program jumps back
to the start of the loop (Line 1). Line 4 pushes the jump
target. We can see that a while{...} loop contains three more
instructions (i.e., a JUMPDEST, a PUSH and a JUMP) than a
do{...}while loop, so the deployment of a while{...} loop costs
more gas. Assuming that the loop body executes n times,
a while{...} loop will execute 2n more instructions (i.e., n
PUSH and n JUMP) than a do{...}while loop. Therefore, the
invocation of a while{...} loop costs more gas.

Six of the 87 smart contracts are compiled by compil-
ers lower than V0.4.5, including a smart contract called
Sweeper [97], which involves 35,370 transactions. This con-

function getSum(uint[] memory self) 1 
    public returns(uint) { 2 
    uint sum = 0; 3 
    for (uint i = 0; i < self.length; i++) { 4 
        sum += self[i]; 5 
    } 6 
    return sum; 7 
} 8 

Fig. 32. Redundant bound checks at Line 5

tract has only two functions with the same functionality,
one of which is implemented by Solidity, and the other
is implemented by inline assembly. And all transactions
sent to the contract invoked the function implemented by
inline assembly, which consumes less gas than the Solidity
implementation. In addition, if the compiler version is not
lower than V0.4.5, using the built-in do{...}while loop of
Solidity can achieve the same gas-saving effect as using
inline assembly. However, we observed that developers
often use the for{...} loop and the while{...} loop instead
of the do{...}while loop. Specifically, we checked all open-
source smart contracts through string matching, and only
found 141 contracts that used the do{...}while loop, while
3,597,421 and 150,718 contracts used the for{...} loop and
the while{...} loop respectively.

In summary, we found that (1) the compiler before V0.4.5
does not support the do{...}while loop, and (2) developers
rarely use the do{...}while loop, even though it is a gas-
saving structure.
P2 < 387 >: redundant bound checks. The Solidity compiler
generates a bound check for the access of an array item, if
the item index is not a constant. However, the bound check
is redundant if the index cannot overrun the array. Fig. 32
shows a practical smart contract whose gas consumption
can be reduced if we replace Line 5 with inline assembly by
eliminating the redundant bound checks for self [i], whose
index i is restricted by Line 4.
P3 < 168 >: type conversion. The type system of Solid-
ity restricts the operations available to each type. Explicit
type conversion is needed for a type to gain the ability of
another type. For example, since an address is not allowed
in arithmetic operations, the address should be converted
to an integer before arithmetic operations. Type conversion
will be compiled into EVM instructions, which cost gas.
However, type conversion is not needed in inline assembly
because inline assembly just supports one type, 256-bit
unsigned integer [34].
P4 < 109 >: accessing an arbitrary-length substring of
a string in the memory. The string in Solidity does not
support access to its substring or individual characters [3].
To access a substring in Solidity, a smart contract must first
convert the string into a bytes because the bytes type can
be considered as a byte array that supports access to its
individual bytes [3]. Then, a loop is needed to access the
substring. By contrast, inline assembly can implement such
functionality much simpler with less gas, because MLOAD,
MSTORE and MSTORE8 can access any specified memory
slots [36]. Therefore, using inline assembly can avoid many
array operations and the associated bound checks. Fig. 34(a)
shows a smart contract that extracts a 32-byte substring
starting from the 10th byte of a string. Line 3 converts the
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string into a byte. A loop (Lines 5, 6) is used for accessing the
substring. Fig. 34(b) displays the inline assembly version.
No loops, no array operations and no bound checks are
used in inline assembly; instead, the inline assembly uses
one MLOAD and one MSTORE to read and write the memory.
We skip the first 32 bytes of sub (Line 4) and str (Line 5),
because the bytes and the string are dynamically-sized types
whose first 32 bytes store their lengths and their contents are
stored immediately after the length fields [3].
P5 < 113 >: bitwise shift, can be realized by inline assembly
operations SHL, SHR and SAR [4]. A bitwise shift operation
in Solidity will be compiled into a multiplication instruction,
MUL or a division instruction DIV before V0.5.5 [3]. Inline as-
sembly saves gas because each of these three inline assembly
operations costs 3 units of gas, but MUL and DIV cost 5 units
of gas [36]. One of 113 is compiled with a version that is
smaller than V0.5.5. After the V0.5.5 compiler, the Solidity
implementation of bit operations will also be compiled into
SHL, SHR and SAR instructions. That is, using inline assembly
to implement bit operations does not save more gas than
using Solidity. Nevertheless, 112 contracts still used inline
assembly. A possible reason is that the update log of the
compiler was not detailed enough so that the developers
of these 112 contracts were unaware that Solidity consumes
the same amount of gas as inline assembly.
P6 < 1, 635 >: contract invocation. Inline assembly uses
CALL, CALLCODE, DELEGATECALL, or STATICCALL to invoke
another smart contract [4]. Each of them takes in many
operands. For example, CALL takes in seven operands [4].
Therefore, the bytecode compiled from these inline assem-
bly operations contains tens of instructions for preparing
operands. Inline assembly saves gas compared to Solidity
because Yul code has more optimization opportunities [34].
Fig. 33 shows the steps from source code to optimized byte-
code. The compiler uses Yul Optimizer to optimize the inline
assembly section. The other parts of the code are directly
compiled into bytecode, so inline assembly will have addi-
tional optimizations. It is worth noting that after V0.7.5, the
Solidity source code can be compiled into Yul code through
a special compilation (i.e., –experimental-via-ir) option to
enjoy the optimization of Yul [47]. However, the compilation
option is turned off by default because Ethereum officials
believe that this is a highly EXPERIMENTAL feature and
cannot meet the product requirements [98].

To evaluate the impact of compilers on patterns, we
conduct experiments on each pattern to explore whether
they can save gas and how much gas they can save under
different compiler versions. Specifically, for each pattern, we
develop two smart contracts with the same functionality:
one smart contract uses inline assembly whereas the other
one is fully in Solidity. We compile them with different
versions of compilers, then deploy and execute them in
Remix to obtain gas consumption. The result shows that
P1 and P5 can save gas under certain compiler versions,
while other patterns can save gas under all current compiler
versions (as shown in Table 3). Note that inline assembly is
a feature only available in version 0.3.1 and later versions,
and we chose the last sub-version of each version from 0.3
(released in August 2016) to 0.8 (released in November 2021)
for this experiment.
Insight 5: Under specific compiler versions, developers can

replace a block of gas-costly Solidity code with inline assem-
bly to save gas according to the patterns above.

Version of Solc 0.3.6 0.4.26 0.5.17 0.6.12 0.7.6 0.8.10

P1 127 0 0 0 0 0
P2 200 235 205 205 205 205
P3 6 6 18 18 18 124
P4 10337 6529 6105 6105 6105 10617
P5 Unsupported 65 0 0 0 0
P6 21 36 84 84 84 84

TABLE 3
Gas saved by these patterns

F6, P1 and P5 are related to old compiler versions (e.g.,
P1 can save gas only under a certain compiler version or
older versions). To understand the use of old compilers,
we count the distribution of compiler versions used in the
deployment of the smart contracts with inline assembly. Fig.
35 shows the top 9 compiler versions of all open-source
contracts with inline assembly in the first three months of
2020. The most used compiler version is V0.5.4 (released in
February 2019), accounting for 23.1%. The second most used
is V0.4.24 (released in May 2018), accounting for 21.0%, the
third to ninth are V0.4.23 (released in April 2018) accounting
for 20.4%, V0.5.10 accounting for 16%, V0.5.15 accounting
for 4.0%, V0.5.12 accounting for 3.7%, V0.5.2 accounting
for 3.4%, V0.5.11 accounting for 3.4%, the rest of versions
accounting for 4.8% respectively. The results show that
the top three compiler versions used most in the open-
source smart contract in 2020 were all released a year ago,
which indicates that many open-source smart contracts are
still compiled with old compilers. It also shows that our
research on functionalities and gas-saved patterns of the old
compilers are meaningful.

5.3 Easing Development through Inline Assembly

D1 < 2, 517 >: switch...case is only supported by inline
assembly [4]. For the same functionality, Solidity code has
to use if...else with multiple branches, which is clumsy [99].

Answer to RQ3: Inline assembly is used for implementing
unavailable functionalities in Solidity, optimizing bytecode
to save gas, or ease of programming.

6 QUESTIONNAIRE SURVEY

To understand the usage of the above 12 functionalities
among smart contracts developers and their opinions on
inline assembly, we designed and released this survey,
and received informative feedback from 122 smart contract
developers in 22 countries. The survey result can support
our findings. For example, the result is accordant with
the answer to RQ1 that inline assembly is frequently used
and our insights/observations in §4 and §5, including (1)
developers can use some specific opcodes directly through
inline assembly to implement functionalities unavailable in
Solidity; (2) developers tend to use inline assembly with
short length to implement uncomplicated control flows in
long smart contracts; (3) developers using inline assembly
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Yul Optimizer (BlockFlattener, 

CircularReferencesPruner etc.) 

Bytecode Optimizer (Peephole, 

constantOptimizer etc.) 
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Fig. 33. The process of bytecode optimization.
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function sizeOfInt(uint16 _postfix) 
 returns(uint size){ 
 switch _postfix 

 case 8 { size := 1 } 
 case 16 { size := 2 } 
 ...... 
 case 256 { size := 32} 
 default { size := 32} 

 } 
} 

function sizeOfInt(uint16 _postfix) 
 returns(uint size){ 
 if (_postfix == 8) size = 1; 
 else if (_postfix == 16) size = 2; 
 ...... 
 else if (_postfix == 256) size = 32; 
 else size = 32; 

} 

function getMax(uint256[] storage self) 
 constant returns(uint256 maxValue) { 
 maxValue = self[0]; 
 for (uint i = 1; i < self.length; i++) { 

 maxValue = self[0]; 
 if (self[i] > maxValue) maxValue = self[i]; 

 } 
} 

function substr(string str) 
 returns (bytes sub) { 
 bytes memory str_bytes =  bytes(str); 
 sub = new bytes(32); 
 for (uint i = 10; i < 42; i++) { 

 sub[i-10] = str_bytes[i]; 
 } 

} 

function substr(string str) 
 returns (bytes sub) { 
 assembly { 

 mstore(add(sub, 0x20), 
 mload(add(str, add(0x20, 10))) 

 } 
} 

(a) Source code version
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function sizeOfInt(uint16 _postfix) 
 returns(uint size){ 
 switch _postfix 

 case 8 { size := 1 } 
 case 16 { size := 2 } 
 ...... 
 case 256 { size := 32} 
 default { size := 32} 

 } 
} 

function sizeOfInt(uint16 _postfix) 
 returns(uint size){ 
 if (_postfix == 8) size = 1; 
 else if (_postfix == 16) size = 2; 
 ...... 
 else if (_postfix == 256) size = 32; 
 else size = 32; 

} 

function getMax(uint256[] storage self) 
 constant returns(uint256 maxValue) { 
 maxValue = self[0]; 
 for (uint i = 1; i < self.length; i++) { 

 maxValue = self[0]; 
 if (self[i] > maxValue) maxValue = self[i]; 

 } 
} 

function substr(string str) 
 returns (bytes sub) { 
 bytes memory str_bytes =  bytes(str); 
 sub = new bytes(32); 
 for (uint i = 10; i < 42; i++) { 

 sub[i-10] = str_bytes[i]; 
 } 

} 

function substr(string str) 
 returns (bytes sub) { 
 assembly { 

 mstore(add(sub, 0x20), 
 mload(add(str, add(0x20, 10))) 

 } 
} 

(b) Inline assembly version

Fig. 34. Extract a 32-byte substring starting from the 10th byte of a string
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Fig. 35. Compiler versions of contracts with inline assembly

may pay more attention to the performance of smart con-
tracts than those writing pure Solidity code. More precisely,
57 (46.7%) respondents use inline assembly to implement
some functionalities unavailable in Solidity; 43 (35.2%) use
inline assembly to save gas; 21 (17.2%) use inline assembly
because it is more concise than Solidity code. Moreover,
the results of this survey also point out some suggestions
for improving smart contract IDE (Integrated Development
Environment) and Solidity compilers, such as the need of
tools for supporting the development of inline assembly
and checking its accuracy and security, the support of those
12 functionalities that can only be implemented in inline
assembly.

6.1 Survey design

According to the instructions of Kitchenham et al. for per-
sonal opinion surveys [100], we conduct an anonymous
questionnaire survey to increase the response rates1 We first
conduct a small-scale survey to test and refine our questions
based on feedbacks, e.g., “the question is not clear”. After
that, we conduct a larger-scale survey sending to 1,258
practitioners and received 122 responses finally. Our survey
consists of 23 questions. The first seven questions concern
the characteristics of participants, e.g., what is the resident
country, how many years of experience the participant has
about smart contracts, what is the main role in developing
smart contracts, do you think whether the participant uses
inline assembly of smart contracts? The next three questions
focus on the reasons for using inline assembly, the difficulty
of using inline assembly and Solidity, and the verification
of whether to choose inline assembly if it consumes less gas
than Solidity. The 11th–22nd questions list the 12 functional-
ities that can only be realized by inline assembly (§5.1). For
each functionality, we ask the participants whether the func-
tionality is useful with three options, Very, Sometimes and
No and whether participants want Solidity to support this
functionality with three options, Yes, Neutral and No. We also
add an option that allows participants to leave comments for
each functionality. The final question allows participants to
write down any other comments. All questions listed in the
survey are presented in the supplementary material [43].

1. Our IRB application for conducting this questionnaire survey has
been approved by The Hong Kong Polytechnic University.
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TABLE 4
Scores of questions about 12 functionalities in §5.1

6.2 Results

We received 122 responses (the response rate is 9.7%) from
22 different countries, and received 46 comments. The av-
erage years of experience in smart contracts are 2.02 years,
indicating good experiences of respondents since Ethereum
was launched in 2015. 63.9% of participants are developers
of smart contracts, and impressively, 49 (40%) participants
say they have ever used inline assembly in developing smart
contracts. The result is accordant with the answer to RQ1
that inline assembly is frequently used. 57 (46.7%) respon-
dents use inline assembly to implement some functionalities
unavailable in Solidity; 43 (35.2%) use inline assembly to
save gas; 21 (17.2%) use inline assembly because it is more
concise than Solidity code. 77 (64%) participants believe that
inline assembly is more difficult to write than Solidity. If a
functionality can be implemented by both inline assembly
and Solidity but the inline assembly version saves gas, 63
participants (51.6%) would choose inline assembly version.

Table 4 shows the results of questions about the unavail-
able functionalities in Solidity. Columns 1 and 6 present the
functionalities. We give the options, Very, Sometimes and
No scores 2, 1, 0 to quantify the functionality usefulness.
Similarly, we give the options, Yes, Neutral and No scores
2, 1, 0 to quantify the willingness of participants to have
the functionality in Solidity. Columns 2, 4, 7, 9 illustrate the
score distributions, and columns 3, 5, 8, 10 present the aver-
age scores. All average scores of functionality usefulness are
no lower than 1.0, indicating that participants believe inline
assembly can complement Solidity. Moreover, all average
scores of the willingness to build these functionalities in
Solidity are no lower than 1.2, implying that participants
expect to realize these functionalities in Solidity in future.
Insight 6: Practitioners believe inline assembly is useful,
and show positive attitudes to add these functionalities in
Solidity.

We then investigate why 9 participants believe these
functionalities are not useful and 4 participants do not
want Solidity to add these functionalities by reading their
comments. 6 believe some functionalities (e.g., F2) have high
security risks, 4 consider some functionalities (e.g., F11)
are useful in very limited applications, 2 have never used
some functionalities (e.g., F3) in their smart contracts, and 1
worries about the maintenance difficulty of inline assembly.

We receive many positive comments about our survey,
including:
– Good questions you’ve listed. You should publish these in
a post, they’re interesting parts of Solidity/EVM;
– Very nice survey, keep up the good work and please send
me the results;
– These were good ideas for improving Solidity.

7 THREATS TO VALIDITY

Internal validity. The inserted marks may change the in-
structions in the original smart contract, or the original
smart contract may contain the same instructions as the
inserted marks, which may affect the accuracy of bytecode
segment extraction. To reduce this threat, we propose three
requirements for producing marks, and we correlate all
19,073 and 1,824 unique extracted bytecode segments with
its inline assembly fragment manually to ensure correctness.
Specifically, we disassemble the extracted bytecode of all
inline assembly fragments, then compare the instructions
obtained by disassembly with the source code of inline
assembly fragment to determine whether the bytecode of
the inline assembly fragment we extracted is complete. That
is, the extracted bytecode is complete only if the semantics
of the instructions obtained by disassembly is the same as
the source code of the inline assembly fragment. We also use
regular matching to solve the problem that the bytecode of
end mark cannot be generated because of early return/re-
vert in inline assembly, that is, match specific instructions
(i.e., RETURN, REVERT) and treat them as the end of inline
assembly.

We find that estimateGas() uses a binary search method
to estimate gas consumption, which leads to overestima-
tion [101]. To reduce this threat, we deployed smart con-
tracts in Remix [56] and executed real transactions to mea-
sure gas consumption. Specifically, for each pattern, we
first developed a smart contract with inline assembly and
another smart contract fully in Solidity with the same func-
tionality. Secondly, we compiled the two smart contracts in
Remix using the same compiler and compilation options,
and then deployed them to virtual machine of Remix. Fi-
nally, we called these two smart contracts with the same
parameters and obtained the consumed gas. Since the smart
contracts we developed do not depend on the blockchain
state (e.g., the block number) and the smart contract state
(e.g., attribute variables), Remix returned constant gas con-
sumption values. We acknowledged that Remix may return
infinite gas consumption in some cases, for example, the ex-
ecuted function reads the blockhash of a specific block [102].
Since our patterns are not related to the cases incurring
infinite estimated gas consumption, we did not encounter
infinite gas consumption in our empirical study.

For the threat relevant to the implementation of inline
assembly, we ask multiple developers to write Solidity
for implementing the same functionality and then conduct
the analysis. Besides, this empirical study involves much
manual effort, which depends on researcher’s experience
and ability significantly. To reduce this threat, we ask four
students to analyze independently, and then resolve their
inconsistencies by the discussion of two authors with more
than four years of experience in developing smart contracts.
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Moreover, participants may not have good understandings
of our survey. To reduce this threat, we allow participants to
leave comments. We revise our survey if some participants
have problems in understanding questions.
External validity. Solidity and Yul are fast-evolving lan-
guages, and new features have been frequently introduced,
which may pose new threats to inline assembly. To reduce
this threat, we analyze all open-source smart contracts de-
ployed before March 2020, and we adopt the corresponding
version of compiler that was used to compiled each smart
contract to ensure that the generated bytecode is the same as
the bytecode deployed on the blockchain. The methodology
of our study is also applicable to new language features
and new smart contracts. Due to the need for source code
support, this study only discusses and analyzes open-source
smart contracts, and can only explain the current inline
assembly usage of open-source smart contracts. Because in
the compiled bytecode, the inline assembly has no specific
start and end marks, so it is very difficult to analyze
whether the bytecode of the smart contract contains the
inline assembly or which part is the bytecode generated by
the inline assembly without the source code. Therefore, all
observations and conclusions of this paper are derived from
the analysis of open-source smart contracts.

8 RELATED WORK

Vulnerability discovery. Nguyen et al. present an adap-
tive fuzzer for Ethereum smart contracts called sFuzz,
which combines the strategy in the AFL fuzzer and an
efficient lightweight multi-objective adaptive strategy to
target branches that are difficult to cover [103]. ETHBmc,
a bounded model checker based on symbolic execution, can
be used to detect suicidal and unsecured balance vulnerabil-
ities [104]. sCompile statically identifies the paths involving
monetary transactions in smart contracts. It can detect four
types of security vulnerabilities [105]. WANA is a cross-
platform smart contract vulnerability detection tool based
on the symbolic execution of WebAssembly bytecode. It
can detect three typical vulnerabilities for Ethereum smart
contracts [106]. EOSFuzzer, a general black-box fuzzing
framework, is used to detect vulnerabilities within EOSIO
smart contracts [107]. Ashraf et al. present GasFuzzer, a tool
that fuzzes Ethereum smart contract binaries to expose gas-
oriented exception security vulnerabilities [108]. Harvey is
a greybox fuzzer for smart contracts that selects appropriate
inputs and transaction sequences to increase code cover-
age [109]. ContractGuard inserts checks into smart contracts
to protect them from intrusion attacks [110]. VULTRON
compares the actual transferred amount and the amount
reflected on the contract’s internal bookkeeping to detect
malicious transactions [111]. Chen et al. define 20 smart
contract defects on Ethereum by analyzing real-world smart
contracts and the posts on StackExchange [112]. SoCRATES
uses a federated organization of bots to mimic the interac-
tions among users to expose known and unknown faults
in smart contracts [113]. Chen proposes a deep learning-
based method to find security issues of Ethereum smart
contracts by finding the updated version of a destructed
contract [114]. SOLC-VERIFY is a tool for automated veri-
fication of Solidity smart contracts based on modular pro-

gram reasoning and SMT solvers [26]. Its author stated that
the tool does not support inline assembly but did not give
a specific reason. Similarly, a safety verifier for Ethereum
smart contracts called VERISMART does not support inline
assembly, and the authors admit that the tool may miss bugs
hidden in inline assembly [27]. In summary, these studies
focus on security vulnerabilities rather than inline assembly
in smart contracts.
Semantics. Jiao et al. develop the operational formal se-
mantics for Solidity which defines correct and secure high-
level execution behaviors of smart contracts to reason about
compiler bugs and assist developers in writing secure smart
contracts [28], [29]. However, they clarify that their work
skips the tests for inline assembly and the proposed Solidity
semantics do not cover inline assembly statements because
they believe that inline assembly is a low-level feature to
access EVM [28], [29]. Zakrzewski proposes a formalization
of a small subset of Solidity that contains its core data
model and some unique features [30]. And he mentioned
that inline assembly is incompatible with their high-level
modeling and cannot be implemented [30].
Gas. sOptimize identifies and removes three kinds of code
blocks to optimize smart contract gas consumption [115].
Khan et al. analyze the factors causing an increase or
decrease in the gas consumption of smart contracts [116].
Zarir et al. analyze the gas usage of Ethereum transac-
tions and obtain some new observations and insights [117].
Marchesi et al. provide a set of design patterns and tips
to help gas saving in developing smart contracts [118].
Hukkinen et al. pinpoint inefficiencies in the design of the
smart contract and reduce its gas consumption, and then
formulate a set of guidelines suitable for optimizing the
efficiency of smart contracts [119]. Chen et al. propose and
develop three tools named GASPER [93], GasChecker [95]
and GasReducer [120]. GASPER can automatically locate
gas-costly patterns in smart contracts [93], and GasChecker
is an extended version of the former [95]. And GasReducer
can detect anti-patterns and replace them with efficient
code [120]. Wang et al. reduce the cost of gas by auto-
matically generating cost-effective and representative test
suites [121]. Visualgas is a tool for in-depth visualization
of gas costs to support the simpler and more gas-efficient
development of smart contracts [31]. It does not support
the use of inline assembly in Solidity because the author
believes that inline assembly can break many invariants that
the solc compiler would comply with [31].

In addition, there are some other studies on gas, in-
cluding estimation of gas consumption [53], [122], [123],
[124], [125], [126], [127], gas price [128], [129], [130], [131],
[132], [133], gas mechanism [134], [135], [136], the out of gas
exceptions [137], [138] and others [139]. However, none of
the above work uses inline assembly for gas optimization or
other purposes.
Performance. Zheng et al. consider gas as an unsuitable
metric by its one-sidedness and floating [140]. They propose
detailed performance metrics and a performance monitor-
ing framework with a log-based method to provide perfor-
mance monitoring approach and real-time performance in-
formation for different blockchain systems [140]. However,
the inline assembly is not mentioned in this work.
Development and maintenance. Zou et al. reveal several
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major challenges developers are facing during smart con-
tract development through interviews and surveys [33].
Zheng et al. present the challenges in smart contracts as
well as recent technical advances [141]. Khan et al. present
a taxonomy of existing blockchain-enabled smart contract
solutions [142]. Chen et al. conduct an empirical study of
code reuse in smart contracts [143]. Zhang et al. propose
a source code obfuscation approach for Ethereum smart
contracts [144].

There are also many empirical studies and surveys about
smart contracts and blockchains [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24], but to the best
of our knowledge, none of them investigate the usage of
inline assembly in smart contracts.
Inline assembly in C programs. Although a recent work
studied the x86-x64 inline assembly in C programs [32],
e.g., how common is inline assembly in C programs, why C
programs use inline assembly, its methodology and insights
cannot be directly used in our study due to the fundamental
differences between smart contracts and C programs run-
ning on x86/x64 CPUs. More precisely, Ethereum has a new
instruction set with more than 130 instructions [36] rather
than x86/x64. Moreover, the inline assembly of Solidity and
Yul have different syntax and semantics from C and x86/x64
inline assembly [3]. Smart contracts are interpreted by the
stack-based EVM [35] instead of CPU. Besides, Ethereum
introduces a gas mechanism which affects smart contract
development, deployment and execution [93], [120]. The
x86/x64 CPU does no have the gas mechanism.

Besides the differences between smart contracts and C
programs, our methodology has three obvious differences
with the related work [32]. First, we collect open-source
smart contracts and transactions by leveraging Etherscan
and BigQuery, while the C programs studied in [32] were
fetched from Github. It is worth noting that, although
there has been related work [48] has collected all the open-
source smart contracts and transactions, but the open-source
content only has the source code without the compiled
version and whether it is optimized of the smart contract
required by this paper. Second, we investigate both static
and dynamic features of smart contracts, whereas only static
features were studied in [32]. Third, our study needs to
address Ethereum-specific challenges (e.g., extracting inline
assembly bytecode segments) and includes some unique
evaluation (e.g., gas consumption) and comparison (e.g.,
comparing smart contracts with and smart contracts with-
out inline assembly) that are not involved in [32].

9 CONCLUSION AND FUTURE WORK

We conduct the first large-scale empirical study of inline
assembly on Ethereum smart contracts. We obtain new
insights and reveal why smart contracts use inline assembly
by a thorough quantitative and qualitative analysis, and a
survey. This study can help developers in the following
three points. First, this study can provide suggestions to
developers when they can use inline assembly. Second, this
study can provide suggestions to developers on how to use
inline assembly to save gas under specific compiler versions.
Third, this study can also benefit the evolution of Solidity
and the optimization of its compilers. For example, in the

survey, many developers hope that certain functionalities of
inline assembly can be implemented in future versions of
Solidity.

In future work, we will explore three directions. First,
we will develop a tool to provide developers suggestions
on how to optimize their smart contracts by replacing
codes in Solidity with inline assembly. Second, we will
consider implementing a bytecode segment extraction tool
that developers and researchers can leverage. Our bytecode
segment extraction tool can not only support the posi-
tioning of Yul inline assembly, but also the positioning of
specified statements in solidity. Third, Solidity and Yul are
fast-evolving languages, and tens of thousands of smart
contracts are deployed everyday, which means that existed
language features may be deleted, new features may be
introduced and new usages of inline assembly may appear
in future. We will continue to track the new features of the
compiler and analyze whether these new features pose any
threats to inline assembly.

ACKNOWLEDGEMENT

This work was partly supported by National Natural
Science Foundation of China (61872057), National Key
RD Program of China (2018YFB0804100), Hong Kong
RGC Projects (PolyU15222320, PolyU15224121), Science and
Technology Development Fund of Macau under Grant
0047/2020/A1, China Postdoctoral Science Foundation un-
der Grants 2017M621247, and Natural Science Foundation
of Heilongjiang Province, China under Grant LH2019F008.

REFERENCES

[1] I. Koksal. (2019) The benefits of applying blockchain
technology in any industry. [Online]. Available:
https://www.forbes.com/sites/ilkerkoksal/2019/10/23/the-
benefits-of-applying-blockchain-technology-in-any-industry/
#6da7d2b949a5

[2] Google. (2020) Big query. [Online]. Avail-
able: https://console.cloud.google.com/bigquery?project=
bigquery-public-data

[3] Ethereum. (2020) Solidity documentation. [Online]. Available:
https://solidity.readthedocs.io/en/latest/

[4] Ethereum. (2020) Inline assembly. [Online]. Available: https:
//solidity.readthedocs.io/en/latest/assembly.html

[5] Y. Chen and C. Bellavitis, “Blockchain disruption and decentral-
ized finance: The rise of decentralized business models,” Journal
of Business Venturing Insights, vol. 13, p. e00151, 2020.

[6] DefiLlama. (2021) Total value locked rankings. [Online].
Available: https://defillama.com/chain/Ethereum

[7] Stack Exchange. (2020) Ethereum stack exchange. [Online].
Available: https://ethereum.stackexchange.com/

[8] Reddit. (2020) Reddit: the front page of the internet. [Online].
Available: https://www.reddit.com

[9] gensim. (2020) models.ldamodel — latent dirichlet
allocation. [Online]. Available: https://radimrehurek.com/
gensim/models/ldamodel.html

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet alloca-
tion,” the Journal of machine Learning research, vol. 3, pp. 993–1022,
2003.

[11] K. Wu, Y. Ma, G. Huang, and X. Liu, “A first look at blockchain-
based decentralized applications,” Software: Practice and Experi-
ence, 2019.

[12] Z. Wan, X. Xia, and A. E. Hassan, “What is discussed about
blockchain? a case study on the use of balanced lda and the refer-
ence architecture of a domain to capture online discussions about
blockchain platforms across the stack exchange communities,”
IEEE Transactions on Software Engineering, 2019.



23

[13] Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in
blockchain systems: a large-scale empirical study,” in 2017
IEEE/ACM 14th International Conference on Mining Software Repos-
itories (MSR). IEEE, 2017, pp. 413–424.

[14] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi, “A
massive analysis of ethereum smart contracts empirical study
and code metrics,” IEEE Access, vol. 7, pp. 78 194–78 213, 2019.

[15] M. Bartoletti and L. Pompianu, “An empirical analysis of smart
contracts: platforms, applications, and design patterns,” in In-
ternational conference on financial cryptography and data security.
Springer, 2017, pp. 494–509.

[16] M. Coblenz, J. Aldrich, J. Sunshine, and B. Myers, “An empirical
study of ownership, typestate, and assets in the obsidian smart
contract language,” arXiv preprint arXiv:2003.12209, 2020.

[17] V. Saraph and M. Herlihy, “An empirical study of specula-
tive concurrency in ethereum smart contracts,” arXiv preprint
arXiv:1901.01376, 2019.

[18] G. A. Oliva, A. E. Hassan, and Z. M. J. Jiang, “An exploratory
study of smart contracts in the ethereum blockchain platform,”
Empirical Software Engineering, pp. 1–41, 2020.

[19] I. Mokdad and N. M. Hewahi, “Empirical evaluation of
blockchain smart contracts,” in Decentralised Internet of Things.
Springer, 2020, pp. 45–71.
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[26] Á. Hajdu and D. Jovanović, “solc-verify: A modular verifier for
solidity smart contracts,” arXiv preprint arXiv:1907.04262, 2019.

[27] S. So, M. Lee, J. Park, H. Lee, and H. Oh, “Verismart: A highly
precise safety verifier for ethereum smart contracts,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1678–
1694.

[28] J. Jiao, S. Kan, S.-W. Lin, D. Sanan, Y. Liu, and J. Sun, “Semantic
understanding of smart contracts: Executable operational seman-
tics of solidity,” in 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020, pp. 1695–1712.

[29] J. Jiao, S.-W. Lin, and J. Sun, “A generalized formal semantic
framework for smart contracts.” in FASE, 2020, pp. 75–96.

[30] J. Zakrzewski, “Towards verification of ethereum smart contracts:
a formalization of core of solidity,” in Working Conference on
Verified Software: Theories, Tools, and Experiments. Springer, 2018,
pp. 229–247.

[31] C. Signer, “Gas cost analysis for ethereum smart contracts,”
Master’s thesis, ETH Zurich, Department of Computer Science,
2018.

[32] M. Rigger, S. Marr, S. Kell, D. Leopoldseder, and H. Mössenböck,
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