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ABSTRACT

WebAssembly (Wasm) smart contracts have shown growing popu-
larity across blockchains (e.g., EOSIO) recently. Similar to Ethereum
smart contracts, Wasm smart contracts suffer from various attacks
exploiting their vulnerabilities. Even worse, few developers released
the source code of their Wasm smart contracts for security review,
raising the bar for uncovering vulnerable contracts. Although a
few approaches have been proposed to detect vulnerable Wasm
smart contracts, they have several major limitations, e.g., low code
coverage, low accuracy and lack of scalability, unable to produce
exploit payloads, etc. To fill the gap, in this paper, we design and
develop WASAI, a new concolic fuzzer for uncovering vulnera-
bilities in Wasm smart contract after tackling several challenging
issues. We conduct extensive experiments to evaluate WASAI, and
the results show that it outperforms the state-of-the-art methods.
For example, it achieves 2x code coverage than the baselines and
surpasses them in detection accuracy, with an F1-measure of 99.2%.
Moreover,WASAI can handle complicated contracts (e.g., contracts
with obfuscation and sophisticated verification). ApplyingWASAI
to 991 deployed smart contracts in the wild, we find that over 70%
of smart contracts are vulnerable. By the time of this study, over
300 vulnerable contracts have not been patched and are still oper-
ating on the EOSIO Mainnet. One fake EOS vulnerability reported
to the EOSIO ecosystem was recently assigned a CVE identifier
(CVE-2022-27134).

CCS CONCEPTS

• Security and privacy→ Software and application security; •
Software and its engineering→ Software testing and debug-

ging.
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1 INTRODUCTION

WebAssemly (Wasm) [59] was designed for Web applications to
support the execution of Wasm programs in memory-safe, sand-
boxed environments. It has been recently adopted by many popu-
lar blockchain platforms, e.g., EOSIO [4] and NEAR [43], as their
smart contract runtime, and thousands of Wasm smart contracts
have been deployed on blockchains. Even the Ethereum has placed
Ethereum flavoredWebAssembly on the Ethereum 2.0 roadmap [21]
as a replacement to the Ethereum Virtual Machine (EVM). Like
Ethereum smart contracts [7, 20, 60], Wasm smart contracts have
been suffering from various attacks exploiting their vulnerabilities.
Being the first blockchain supporting Wasm smart contracts, EO-
SIO has been attacked from time to time due to the vulnerabilities
in smart contracts [11, 31–33, 42]. Even worse, few developers re-
leased the source code of their Wasm smart contracts for security
review, raising the bar for uncovering vulnerable contracts.
The State of the Art. Although many tools have been developed
for detecting vulnerabilities in Ethereum smart contracts [6, 9, 12,
23, 34, 36, 40, 44, 45, 52, 67], they cannot be used to detect vul-
nerable Wasm smart contracts due to the significant differences
between Ethereum and EOSIO, including calling convention, seed
format, transaction dependency and notification mechanism. To
the best of our knowledge, only a handful of studies focus on Wasm
smart contracts, which can be classified into two categories: a)
static analysis based approaches that leverage symbolic execution
(SE for short) for detecting vulnerable Wasm contracts, such as
EOSafe [29] and WANA [61]; and b) fuzzers that conduct dynamic
analysis with generated inputs (or seeds) to construct transactions
sequences for triggering vulnerabilities, e.g., EOSFuzzer [30]. Unfor-
tunately, our experimental results showed that existing tools cannot
handle complicated smart contracts. On the one hand, SE-based
static analysis techniques are impeded by the difficulty of solving
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complicated constraints and the path explosion issue. For exam-
ple, EOSafe [29] andWANA [61], the state-of-the-art approaches,
cannot identify reachable paths for complicated smart contracts
(e.g., obfuscated contracts). On the other hand, fuzzers are limited
by ineffective seed generation strategies. To the best of our knowl-
edge, EOSFuzzer [30] is the only public available fuzzer for Wasm
contracts. Unfortunately, it only generates random seeds without
leveraging feedback, thus resulting in low code coverage, especially
for Wasm contracts with a large number of conditional branches.
ThisWork.We proposeWASAI, the first concolic fuzzer for analyz-
ing Wasm smart contracts. Although there are concolic fuzzers for
x86 binaries, e.g., [54], they cannot be applied to smart contracts be-
cause of the unique features of smart contracts and the underlying
blockchain platforms. For example, smart contracts are stateful with
states recorded in the blockchain. Moreover, the memory model
and the calling convention of Wasm runtime are different from
those of x86 native. Since EOSIO is the largest platform hosting
the most popular Wasm smart contracts, we focus on EOSIO smart
contracts in this paper, and our approach can also be generalized
to analyze Wasm smart contracts on other blockchains.

It is non-trivial to designWASAI because of the following chal-
lenges.C1: capturing traces ofWasm smart contracts is not straight-
forward because 1) EOSVM can execute multiple smart contracts in
parallel, and 2) one transaction may invoke several smart contracts.
To address these issues, we insertWasm hooks into individual smart
contracts to capture traces during the smart contract execution. Be-
sides, we redirect the traces to offline files once one EOSVM thread
finishes (§ 3.3.1). C2: it is challenging to recover meaningful data
(e.g., input data, structs, strings, call parameters) from the mem-
ory [37], because they are usually deserialized from bytes streams
by a bunch of memory instructions, where some memory data will
be overwritten several times. It prevents the symbolic execution en-
gine from locating the desired memory content if the corresponding
memory address is a symbolic expression. To approach this issue,
we create a memory model based on the concrete addresses from
the traces in § 3.4.1. C3: Before executing the desired functions,
Wasm contracts have to deserialize the input data into meaningful
data, such as arrays, structs and objects. Existing tools usually fail
to perform symbolic execution on the deserializing methods due to
path explosion [55]. Hence, we simulate the execution of desired
functions directly and skip the paths from the execution entry to
the desired functions (§ 3.4.2). However, by doing so, we may lose
the mapping from the input data to the arguments of the desired
functions, which will affect the seed mutation. To addres this is-
sue, we build function models for the deserializing methods and
create the symbolic expressions for the input data directly as the
arguments of the desired functions.

WASAI is state-sensitive for generating adaptive input accord-
ing to the on-chain states of smart contracts. Specifically,WASAI
performs a contract-level instrumentation to capture the execution
traces of transactions, enabling an EOSVM simulator to simulate
the smart contract execution and find adaptive seeds based on
symbolic execution. By replaying the captured traces, the EOSVM
simulator constructs symbolic expressions for the executed Wasm
instructions. Consequently,WASAI can find adaptive seeds to ex-
plore more branches by solving the symbolic constraints, which
can feedback the fuzzing. Moreover, we design vulnerability oracles

to uncover vulnerable smart contracts in § 2.3 and conduct verifi-
cation dynamically to achieve a low false-positive rate in § 4.2. To
evaluate the performance of WASAI, we construct a comprehensive
dataset, including known vulnerable smart contracts in the wild and
crafted vulnerable smart contracts by injecting vulnerabilities to
the bytecode of Wasm smart contracts [25]. The results of extensive
experiments show thatWASAI outperforms all state-of-the-art tech-
niques in terms of the effectiveness, efficiency, and robustness of
vulnerability detection (see § 4).WASAI and its dataset are released
at 10.5281/zenodo.6517515

This work makes the following main contributions:
• We proposeWASAI, the first concolic fuzzer for Wasm smart
contracts, after tackling several challenges. It 1) instruments
the contract bytecode to capture the runtime traces; 2) builds
a memory model to recover symbolic expressions from the
memory faster than EOSafe; 3) and eases the path explosion
of the symbolic execution by building function models and
skipping redundant paths. With the feedback of the symbolic
execution, WASAI can generate adaptive seeds to resolve
complex branches.
• We develop a prototype of WASAI and construct a large-
scale benchmark with 3,340 samples, which is by far the
largest benchmark of Wasm smart contracts, to evaluate it.
Extensive experimental results demonstrate thatWASAI out-
performs all state-of-the-art approaches, with an F1-measure
of 99.2%. Specifically, the results of experiments using compli-
cated smart contracts with code obfuscation or complicated
verification show thatWASAI retains high detection accu-
racy and is more robust than existing techniques. We also
select 100 real-world contracts and then measureWASAI’s
code coverage comparing to EOSFuzzer. As a result, WASAI
can explore 2𝑥 more distinct branches than EOSFuzzer.
• We applyWASAI to 991 deployed Wasm contracts in EOSIO
Mainnet. The experimental results reveal that over 70% of
smart contracts are vulnerable. By the time of this study, 58%
of these contracts are still operating on the Mainnet, while
over 300 of them have not been patched yet. We reported a
Fake EOS vulnerability to the EOSIO ecosystem, which was
recently assigned a CVE identifier (CVE-2022-27134).

2 BACKGROUND

2.1 Transactions in EOSIO

EOS is the official token in EOSIO blockchain [24]. In this paper,
we focus on profitable smart contracts, which can accept EOS to-
kens to provide services. We use eosponser to refer to the Wasm
function that can respond to EOS transactions. Usually, smart con-
tracts implement eosponser as void transfer(name, name, asset,
string) to receive the message from eosio.token. Any EOSIO smart
contract can issue cryptocurrency. As the issuer of the official EOS,
the smart contract, eosio.token creates the EOS tokens and allows
users to transfer EOS via invoking a function called “transfer”. Ac-
tion functions are the public methods of a smart contract. A function
header explicates its function name and the parameters types (a.k.a.
function signature). In this paper, we use ‘@’ to indicate the scope
of an action function. For example, transfer@eosio.token denotes the
action function named transfer in the smart contract eosio.token.

10.5281/zenodo.6517515
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①

② ③

①: Update balances in eosio.token
apply(eosio.token, transfer, eosio.token): 
transfer(user, eosbet, 1.0000 EOS, "in")

②: Notify the payer
      ... 

③: Notify the payee
 apply(eosio.token, transfer, eosbet):
 eosponser(eosbet, user, 10.0000 EOS, “out”) 

④: Reward EOS

④

player eosbet

eosio.token

nativeaction ...eosio.system

Infrastructure

Native

DApp

...

Figure 1: The process of transferring EOS tokens.

Figure 1 shows the procedure of an EOS transaction. The player
pays EOS to the lottery smart contract named eosbet for the jack-
pot. ①: the player invokes transfer@eosio.token to pay EOS. Next,
eosio.token forwards the invocation message to notify the payer
(②) and the payee (③) accordingly. eosbet should response the EOS
notification with an action function, i.e, eosponser. ④: At last, eosbet
interacts with eosio.token to reward a lucky player with 10 EOS. To
this end, eosponser@eosbet must have the same function signature
with the transfer@eosio.token to parse the notification message.

2.2 EOSIO Smart Contract

EOSIO smart contracts are developed in C++ SDK (Software De-
velopment Toolkit) [16]. Its compiler turns the source code into a
Wasm contract and an ABI describing its function signatures of the
action functions (see § 2.1). Each Wasm contract uses an identical
dispatcher as the execution entry, i.e., void apply(name receiver,
name code, name action). The dispatcher loads the input data and
then performs an indirect call [49] to invoke the action function
indicated by its parameter action. EOSVM can invoke a Wasm
function using the unique function ID [63].
EOSIO Virtual Machine (EOSVM). EOSIO smart contracts are
running in the EOSVM [18]. EOSVM is a stack-based virtual ma-
chine, including a call stack, a Local section, a Global section, a
linear memory and a key-value database. The call stack consists of
multiple sub-stacks for isolating the function namespace. When a
function is invoked, EOSVM will allocate an array in Local section
for saving local data, e.g., the parameters of the function invocation.
Global section is an array as well, saving the global data across the
execution. The type of each element in these three components can
be i32 (32-bit integer), i64 (64-bit integer), f32 (32-bit floating-point),
or f64 (64-bit floating-point). The linear memory [58] is a byte-
addressable pool. We denote the storing instructions and loading
instructions as store and load, respectively. In total, there are 23
kinds of memory instructions in Wasm.
Library API. AWasm contracts can access blockchain states using
the library APIs provided by the EOSVM. has_auth, require_auth,
and require_auth2 verify the permissions of the caller (permission
APIs for short); tapos_block_pre and tapos_block_num fetch the
blockchain states such as timestamp; eosio_assert asserts the con-
straints. To maintain persistent data, each smart contract can access
its database with database APIs, such as db_find and db_erase.

2.3 Vulnerabilities

Following previous studies [29, 30, 61], we aim to detect five kinds
of commonly-seen vulnerabilities in EOSIO, which is a superset of

those considered in the existing studies. Note that the Fake EOS
and the Fake Notification bugs only exist in EOSIO contracts. The
other three bugs are examined for a fair comparison with the two
baselines that claim to be able to detect them (see § 4.2).

1 void apply(name receiver , name code , name action) {

2 // the initiation is omitted

3 if (action == N(transfer)) {

4 // patch:assert(code==N(eosio.token), "");

5 run(eosponser);// execute eosponser

6 }

7 else if(code== receiver ||code==N(eosio.token)){
8 EOSIO_API(action);// execute other actions

9 }

10 }

Listing 1: An example of Fake EOS vulnerability.

2.3.1 Fake EOS. EOSIO allows anyone to issue tokens with any
name, enabling attackers to release fake EOS tokens with identical
name of the official one. If the victim accepts the fake tokens from
attackers, it falls in the Fake EOS vulnerability. Listing 1 shows a
vulnerable smart contract. Attackers can exploit the vulnerability
in two ways. On the one hand, they can invoke the eosponser of
the victim directly. On the other hand, they can deploy a smart
contract, e.g., fake.token, to issue the fake token named “EOS”, and
then invoke eosponser@fake.token to transfer fake EOS to the victim.

The exploit is feasible because the victim does not check whether
the token issuer is eosio.token. Hence, no matter who sends the
transaction, the eosponser will be invoked to provide services (Line
5). To patch it, developers must implement the guard code in Line 4
to check the token issuer, where the current caller is recorded in the
parameter code of void apply(). In Wasm bytecode, there should
be a comparison instruction (e.g., i64.ne and i64.eq), in which the
name of the contract eosio.token and value of the parameter code
are the two operands.

1 [[eosio:: action ]] void eosponser( name from , name to,

asset quantity , string memo) {

2 // patch: if (to != _self) return;

3 action (...).send();// sensitive operation

4 }

Listing 2: An example of a Fake Notification vulnerability.

2.3.2 Fake Notification. The Fake Notification (Fake Notif for
short, also known as Fake Receipt in [29]) vulnerability evolves
from the Fake EOS. Attackers can play the dual accounts and forge
an EOS notification to the example shown in Listing 2: 1) they
deploy an agent smart contract called fake.notif ; 2) they invoke
transfer@eosio.token to transfer official EOS to the fake.notif ; 3)
the pre-defined code of fake.notif forwards the notification from
eosio.token to the victim. At this time, the parameter code remains
the original value: the official issuer eosio.token; 4) as a result, the
victim executes eosponser accidentally without receiving any EOS.

In this exploit procedure, the attacker is able to forward a fake
notification from eosio.token to the victim. Thus the guard code of
the Fake EOS can be bypassed. Any smart contract does not validate
the notification in its eosponser is vulnerable, because the attacker
can pretend a friendly user who has paid EOS to the contract. Since



ISSTA ’22, July 18–22, 2022, Virtual, South Korea Weimin Chen, Zihan Sun, Haoyu Wang, Xiapu Luo, Haipeng Cai, and Lei Wu

the header of eosponser must follow transfer@eosio.token (see § 2.1),
the second parameter of the eosponser indicates the payee name.
Developers can use the guard code in Line 2 to fix the bug by
ensuring the EOS payee (to) is the contract itself (_self), where
_self is a global variable maintaining the contract identification.

1 void eosponser(name from , name to, asset quantity ,

string memo) {

2 // patch: require_auth(from);

3 action(permission_level{from , N(active)},

4 N(eosio.token), N(transfer),

5 make_tuple(from ,to,quantity ,memo)

6 ).send();

7 }

Listing 3: An example of using permission check at line 2.

2.3.3 Missing Authorization Verification. Smart contracts can ex-
ecute sensitive operations, hence it is necessary to verify the au-
thorization status of the caller. Otherwise, it exposes authorization
vulnerability (MissAuth for short). Taking Listing 3 as an example,
the smart contract should check whether the caller in the parameter
from is the actual payer before it invokes eosio.token at Line 3-6. To
patch it, smart contracts should utilize permission APIs to perform
authorization checking (see § 2.2).

2.3.4 Blockinfo Dependency. Due to the lack of native pseudo-
random number generators (PRNG), EOSIO smart contracts may
utilize blockchain states (e.g., timestamp) as the source of ran-
domness by calling specific APIs such as tapos_block_pre and
tapos_block_num. However, such randomness would be predicted
by the attacker. Following previous work [30], we flag a vulnerable
contract (BlockinfoDep for short) if it uses blockchain states to
generate pseudorandom numbers. For the security of pseudoran-
dom, developers are suggested to use the verified PRNG services,
e.g., Niguez Randomity Engine [15].

1 void apply(name receiver , name code , name action) {

2 if (action == N(transfer))

3 run(reveal);// execute the function reveal (...)

4 ...

5 }

6 void reveal(name from , name to, asset quantity , string

memo) {

7 eosio_assert(quantity >=asset("10.0000 EOS"),"exit");

8 int a = tapos_block_prefix ()*tapos_block_num (); //

use verified PRNG for the BlockinfoDep safety

9 int b = tapos_block_prefix ()+tapos_block_num ();

10 if (a % b) {

11 action(permission_level{_self , N(active)}, // use

defer scheme for the Rollback safety

12 N(eosio.token), N(transfer),

13 std:: make_tuple(_self , N(eosio.token),

14 asset (1000) , std:: string("test"))) .send();

15 }

16 }

Listing 4: An example of a Rollback vulnerability.

2.3.5 Rollback. EOSIO allows smart contracts to invoke each other
by using inline actions and defer actions. All inline actions will be
packed into the same transaction under the control of the caller,

Memory Model

Input Inference

Solver

SymBack

report

tracessmart
contract

seeds

Engine

Seed
Selector

Γ⟨𝜑, 𝜌⟩

𝜏

𝜏

Scanner
- Fake EOS    - Fake Notification
- MissAuth      - Rollback
- BlockinfoDep

Figure 2: The architecture of WASAI. The red blocks in seeds
are generated from the adversary oracles (see § 2.3).

while the defer actions could not be reverted by the caller directly.
Attackers can rollback the inline actions to enforce the blockchain
to deny the transactions. Listing 4 shows a vulnerable lottery game,
in which the attacker can make a profit via an evil contract. The
evil contract first participates in the game with an inline action and
then immediately checks its balance after asking for the revealing
with another inline action. If its balance increased, it means the
attacker won from the reveal behavior. Otherwise, the evil contract
can revert itself to avoid loss.

This exploit scenario is reliable since the participate behavior
and the reveal behavior are two inline actions in one identical
transaction, which can be reverted by the attacker. To patch it,
the developer should implement a defer mechanism (see Line 11),
ensuring the participate behavior and the reveal behavior would
be packed into two different transactions.

3 WASAI

3.1 Overview

Figure 2 depicts the overall architecture of WASAI, which consists
of three major modules, i.e., Engine, Symback, and Scanner. Given
the binary of a Wasm contract and the corresponding ABI as input,
WASAI strategically generates seeds as transaction sequences to
trigger the vulnerabilities described in §2.3 in the Wasm contract
(if any). To boost the fuzzing in exploring as many paths as pos-
sible, WASAI performs symbolic execution to feedback the seed
mutation, which should generate adaptive seeds that can satisfy
the path constraints. Since smart contracts are stateful, the execu-
tion of one transaction may depend on the persistent data which
can be accessed by executing another specific transaction. We call
it transaction dependency [28], which can be resolved by Engine.
In particular, Engine will instrument the smart contract binary to
capture execution traces (§3.3.1) and select new seeds that fulfill
the transaction dependency for testing (§3.3.2). Symback will con-
struct symbolic constraints for Wasm branches from the traces and
generate new seeds to explore more code (§3.4). To recover the
memory accesses by symbolic execution, Symback proposes a new
memory model to handle the complex memory addresses used in
EOSVM, e.g., different symbolic expressions as the address may
point to the same memory content at EOSVM. To ease the path
explosion during the symbolic execution, Symback simulates the
action function and skips its prior paths. Since the seed mutation
requires the mapping from the input data to the arguments of the
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action functions, Symback infers the mapping based on the call-
ing convention in Wasm smart contracts. Scanner will analyze the
exploit events from the traces and output a vulnerability report
(§3.5).

Before describing the algorithm of WASAI and its modules, we
first define the following concepts.
Seed. Each seed is a pair Γ ⟨𝜑, ®𝜌⟩, where 𝜑 is the name of the action
function in the fuzzing target, and ®𝜌 is the parameters.
Trace. Traces refer to the executed Wasm instructions. Each trace
is a tuple 𝜏 (𝑖, ®𝑝), where 𝑖 is an executed instruction, and ®𝑝 records
its operands, respectively.
Machine State. A machine state is an internal state of the EOSVM,
denoted as 𝜇. Each machine state contains the information in the
following components: a code section (i.e., the instructions), a linear
memory 𝜇𝑚 , a stack 𝜇𝑠 , a Local section 𝜇𝑙 , a Global section 𝜇𝑔 and
a list 𝜇𝑟 containing the returns from the currently invoked function.
Following the Wasm design, we create an EOSVM simulator for the
symbolic execution in this paper.
Conditional State. A conditional state can change the control flow
depending on its condition:

(1) execute the branch instruction, i.e., br_if and if; or
(2) call the assertion API, i.e., eosio_assert,
Algorithm 1 shows the three-stage workflow of WASAI. 1) In-

strumentation (L1): we instrument the Wasm smart contract
to generate 𝑏𝑖𝑛′ (§ 3.3.1); 2) Initiation (L2): we initiate a local
blockchain with necessary smart contracts, e.g., 𝑏𝑖𝑛′, eosio.token
and some agent contracts used in the adversary oracles. 𝑠𝑒𝑒𝑑𝑠 is the
seed pool, which is initiated with random data at first. 3) Fuzzing
loop (L3-12): during each iteration, WASAI selects a seed from
𝑠𝑒𝑒𝑑𝑠 to execute. To tackle the transaction dependency ( § 3.3.2), we
first choose an action function, 𝜑 , and then enquiry the parameters
(denoted as ®𝜌) from the seed pool to construct a concrete seed for
fuzzing, denoted as Γ ⟨𝜑, ®𝜌⟩. We build an EOSVM simulator (§ 3.4)
for the feedback fuzzing. We first follow the calling convention of
Wasm contracts to infer the data layout of the Wasm bytecode and
then initiate the EOSVM simulator with the symbolic expressions
of the user input generated on-the-fly (§ 3.4.2). The machine state
(i.e., 𝜇) of the EOSVM simulator is updated along the traces. We
flip the symbolic constraints for resolving the unexplored branches,
and analyze the execution traces to detect the vulnerabilities (§ 3.5).
The fuzzing will be terminated after timeout period.

3.2 Challenges and Solutions

The existing tools [54, 65] cannot analyze the EOSIO smart contract
directly because of the architecture differences between EOSIO and
x86, and those between EOSIO and Ethereum. Comparing with
x86, EOSIO Wasm uses a different memory structure. (1) x86 uses
heap for memory allocation, which shares the same address space
with the stack. In contrast, Wasm’s memory has its unique space;
(2) The heap data in x86 is not stored in a continuous piece, but
Wasm memory data is stored in a linear vector. The differences
between EOSIO and Ethereum lie in the persistent storage and the
calling convention. First, the structured storage in Wasm makes
persistent data more complicated because Wasm supports several
kinds of APIs to operate the persistent data in the smart contract
database, and thus WASAI has to identify their patterns to recover

Algorithm 1 The workflow of WASAI

1: 𝑏𝑖𝑛′ ← 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑏𝑖𝑛)
2: fill seeds with random data
3: repeat
4: select an action function for transaction dependency
5: select a seed, Γ
6: ®𝜏 ← 𝑟𝑢𝑛(𝑏𝑖𝑛′, Γ) ⊲ capture traces
7: report 𝑣𝑢𝑙 (®𝜏) ⊲ vulnerabilities detection
8: create symbolic expressions for ®𝜌 and store in 𝜇

9: update 𝜇 along the symbolic traces
10: 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 ← 𝑓 𝑙𝑖𝑝 (𝜇, 𝜏)
11: solve constraints and find new seeds
12: until timeout

the database dependency for generating adaptive seeds. Second,
the structured function isolation requires the symbolic execution
engine to handle its calling convention. Since the calling convention
of EOSIO is quite different from that of EVM,WASAI has to identify
the stack frame for each invoked function to update its symbolic
states. In specific, there are three challenges in buildingWASAI.
C1: Trace Acquisition. When interacting with smart contracts,
WASAI needs to fetch the traces from EOSVM to know the states of
the smart contract. Existing fuzzers usually instrument the modi-
fied runtime (e.g., Qemu for X86 fuzzers, EVM for Ethereum fuzzers)
to export traces. It is not straightforward to apply their technol-
ogy to EOSIO because the traces from different smart contracts
can be generated in parallel in EOSVM. Different from EVM that
only executes one smart contract at a time, EOSVM can allocate
several threads to execute multiply smart contracts in parallel for a
larger throughput. EOSFuzzer [30] instruments EOSVM to collect
the traces, and thus it has to scarify the efficiency to execute smart
contracts one by one to avoid mixing up the traces from different
smart contracts. Without differentiating traces of each executed
smart contract, EOSFuzzer redirects all of them into one offline file.
Our Solution:We perform a contract-level instrumentation, which
injects low-level hooks [39] before each Wasm instruction in the
individual Wasm bytecode. Each low-level hook is a piece of sev-
eral Wasm instructions, executing along with the instructions of
smart contracts. Specifically, the hooks duplicate the corresponding
operands of the hooked instruction and invoke library APIs to print
the traces. Once an EOSVM thread finishes, we export the traces to
Symback for analysis. Since only the instrumented smart contracts
can output traces, WASAI is not affected by the unnecessary traces
from the auxiliary smart contracts, e.g., eosio.token. The instrumen-
tation framework makes it easy to migrateWASAI to other Wasm
platforms because it is much easier to invoke new library APIs than
to instrument a new Wasm virtual machine (§ 3.3.1).
C2: Memory Model. Memory is essential in the execution of
Wasm smart contracts. Each unit space of the EOSVM memory
is one byte [58]. The 23 kinds of memory instructions can obtain
memory contents with addresses. EOSVM memory can be used to
load the arguments of a function invocation and the returns from a
function. Crucially, EOSVM stores and retrieves any complex data
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structure larger than 64 bits with an i32 pointer, which points to
the data content in the memory. During the symbolic execution,
we construct symbolic expressions as the addresses used by the
memory instructions, which implicitly maintain the data flow in
the Wasm contracts. The high-precision analyses require to recover
high-level concepts (e.g., structs, strings, call parameters) from the
input data through an accurate memory model [37]. However,
apart from handling all 23 kinds of memory instructions with a
unified model, resolving the symbolic accesses is also challenging
in modelling memory because the memory instructions may use a
symbolic expression as the address to load memory content. Differ-
ent symbolic expressions as the addresses may point to the same
memory content, but they stay symbolic until the constraints are
solved. Here is an example to explain the symbolic accesses. Con-
sidering 𝑎 and 𝑏 are two symbolic expressions, we may write two
bytes from 𝑎 to 𝑎+2 as 0x0000 and then write 0xffff from 𝑏 to 𝑏+2.
If 𝑎 is equal with 𝑏, then this piece of memory should be written
in 0xffff. However, the symbolic execution engine cannot find it
until it solves some constraints to confirm the relation between 𝑎

and 𝑏. Therefore, some memory contents can be overwritten multi-
ply times with a series of memory addresses during the symbolic
execution [29]. We have to resolve the symbolic accesses, otherwise
we may fail to identify that the overlapped the memory content
should be 0xffff. To ease the problem, the state-of-the-art SE tool
in EOSIO, EOSafe [29] adopts a mapping structure to map the ad-
dress and the memory content. Unfortunately, it is time-consuming
for EOSafe to analyze memory accesses when analyzing deeper
code in the smart contract because, in each memory access, it needs
to search all items in its memory model to merge the overlapped
contents.
Our Solution:We create a memory model based on the concrete
address from the runtime traces, enabling WASAI to recover sym-
bolic expressions from the memory faster than EOSafe, which is
essential to improve the fuzzing throughput. The memory model
returns a symbolic content once the address used in load hits the
key, which is created when we simulate a store. To be specific, we
build a Z3 [51] array to model each byte in the symbolic data. For
each memory instruction, our memory model finds out the length
of the memory content. When simulating the store, we split the
memory content into bytes and store them into the Z3 array with
the concrete address from the runtime traces. For load, we load the
specific symbolic bytes from the Z3 array with the concrete address
and concatenate them into an expression whose size is assigned by
the inline arguments in the load. Moreover, since not all memory
contents are recorded in the simplified traces, we construct a sym-

bolic load object for simulating the load instruction that reads the
implicit memory data. We will discuss more details in § 3.4.1.
C3: Calling Convention. The meaningful input data will be se-
rialized into a byte stream before being fed to the smart contract,
according to the function signatures declared at the ABI. The exist-
ing methods (e.g., Driller [54], EOSafe [29]) for building symbolic
data for input data will usually fail due to timeout because their
symbolic execution engines have to emulate a massive of code to
deserialize the arguments, starting the analysis from the execu-
tion entry, i.e., void apply(). To boost the symbolic execution,
WASAI simulates the execution of action functions and skips the
execution of the deserializing methods. However, we may lose the

mapping from the input data to the arguments of the action func-
tions, and consequently seed mutation will be affected. Without
the arguments,WASAI cannot build symbolic constraints for the
conditional branches that depend on the input data.
Our Solution: WASAI infers the specific arguments in the Wasm
layout of each input data. As mentioned in § 2.2, the initial values
in the Local section indicate the arguments of a Wasm function.
Thus, we can find the deserialized input in the Local section of the
action function and build symbolic expressions for the arguments
directly without simulating the deserializing methods. To locate
the executed action function, we parse the indirect calls in the ap-
ply function, i.e., void apply() and identify the executed action
function’s ID [49]. The indirect call pattern is widely used in all
EOSIO smart contracts as it is introduced by the EOSIO SDK [49].
At the beginning of symbolic execution, we initiate the Local sec-
tion of the action function to create symbolic expressions as the
input data. Therefore, we can analyze the execution of the action
function without emulating its prior traces, e.g., produced from
the dispatcher function. This solution relaxes the constraints reso-
lution and allowsWASAI to mutate specific parameters based on
executed seeds. Besides the basic data types, i.e., i32/64 and f32/64,
WASAI can find seeds for array, struct, name, string, etc. (§ 3.4.2).

3.3 Engine

Engine is the skeleton of WASAI, which is responsible for capturing
the runtime traces and feeding seeds to the fuzzer.

3.3.1 Trace Acquisition. To tackle C1, we insert low-level hooks
after eachWasm instruction. Each low-level hook consists of several
Wasm instructions, which not only capture the instruction name
but also duplicate the runtime values, i.e., operands. During the
smart contract execution, the hooks invoke some library APIs to
output the traces through the EOSVM IO methods. For example,
to capture the trace of i32.const 1024, we replace the Wasm code
with i32.const 1024; i32.const 1024; call logi, where logi
is a library API provided by the EOSVM. At runtime, the EOSVM can
bind the low-level hooks and print the trace, i.e., 𝜏 (“const”, 1024). As
a result, WASAI has the capability to instrument all kinds of Wasm
instructions. Additionally, some low-level hooks can output specific
traces for labeling the different stages of the function invocation. For
example, each function invocation in Wasm will be instrumented
with the five low-level hooks shown in the Table 1.

All the low-level hooks are developed based on the Wasabi [39].
Wasabi generates a Node.js script to bind the instrumented low-
level hooks in the Wasm binary and to output traces. To capture
traces for Wasm smart contract, we further extend the Wasabi
hooks to output the traces through the library API provided by
the EOSVM without depending on the Node.js scripts. Specifically,
we only need to extend a few library APIs in the EOSVM to print
different types of data, such as i32, i64, f32, and f64. The extended
instrumentation tool can analyze other Wasm blockchain platforms
as long as they implement the library APIs at their customized
Wasm virtual machines. For EOSIO, we propose an optimization for
filtering unnecessary traces. We redirect the traces to offline files
when the action function finishes its execution, enablingWASAI to
analyze specific action functions on demand. In the cross-contracts
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Table 1: Five low-level hooks for function invocations.

Hook name Instrumentation place Behavior

call_pre before the invocation duplicate the invocation
parameters from callers’ stack

call in the invocation duplicate the function ID
of the invoked function;

function_begin begin of the body of
the invoked function print a function_begin label

function_end end of the body of
the invoked function print a function_end label

call_post after the invocation duplicate the returns

analysis, this strategy enables us to understand the internal behavior
of each smart contract.

3.3.2 Seed Selector. We use the data dependency of the persistent
data to guide Engine to construct transactions sequences for track-
ing the transaction dependency. The persistent state variables are
all stored in the database tables, which can be accessed by the li-
brary APIs provided by EOSVM (see § 2.2). For example, if an action
function asserts that its database must contain data, we first invoke
another action function, which can write the database. We use
𝐷𝐵𝐺 (database dependency graph) to record the database accesses,
representing the transaction dependency implicitly. At the begin-
ning, Engine executes a random seed (denoted as Γ1) to initiate the
𝐷𝐵𝐺 and the seed pool. We analyze the used database APIs from
the traces and then update 𝐷𝐵𝐺 with the data dependency of the
persistent data. Each database API is a pair ⟨△.𝑟𝑒𝑎𝑑 |△.𝑤𝑟𝑖𝑡𝑒, 𝑡𝑏⟩,
referring to an operation on a database table 𝑡𝑏. In the next round,
Engine selects an adaptive seed based on the 𝐷𝐵𝐺 content and the
seed pool. Firstly, if Γ1 reads 𝑡𝑏, Engine will select a new action
function 𝜑2 from 𝐷𝐵𝐺 to write the same table. Secondly, taking 𝜑2
as the index, Engine selects Γ2 from the seed pool. The seed pool is
a mapping, where each key is an action name and each item is a
circular queue saving the seed candidates. Engine pops the head of
the seed candidates of 𝜑2 and then pushes it back to the queue tail
(denoted as 𝑠𝑒𝑒𝑑𝑠 [𝜑2]).

3.4 Symback

We build an EOSVM simulator for constructing symbolic con-
straints from the Wasm traces and solving them to feedback the
seed mutation. We show the memory model, calling convention,
trace simulation and constraint solver in §3.4.1, §3.4.2, §3.4.3 and
§3.4.4, respectively.

Since each Wasm function has its Local section frame and stack
frame, we use ˆ as the namespace of the executing function. For
example, 𝜇𝑠 is the stack frame of the executing function, and 𝜇𝑠 [0]
is the current stack top.

3.4.1 Memory Model. We first describe the semantics of memory
instructions and then introduce the strategies used to address the
memory modelling challenge (see § 3.2).
Memory Instructions. There are 23 kinds of Wasm memory in-
structions. 𝑒𝑥𝑡1.load[𝑠𝑖𝑧𝑒]_[𝑒𝑥𝑡2] shows the format of load in-
structions, which loads 𝑠𝑖𝑧𝑒 bits of data from the memory and

Table 2: An example of input inference

𝜌 Type Local Linear Memory

from name 𝜇
𝑙
[1] -

to name 𝜇
𝑙
[2] -

quantity asset 𝜇
𝑙
[3] 𝜇𝑚 [𝜇𝑙 [3] : 𝜇𝑙 [3] + 8] ← amount item

𝜇𝑚 [𝜇𝑙 [3] + 8 : 𝜇𝑙 [3] + 16] ← symbol item

memo string 𝜇
𝑙
[4] 𝜇𝑚 [𝜇𝑙 [4]] ← string length

𝜇𝑚 [𝜇𝑙 [4] + 1 : 𝜇𝑙 [4] + 𝜇𝑚 [𝜇𝑙 [4]] + 1] ← string content

pushes a result to the stack. The store instructions store 𝑠𝑖𝑧𝑒 bits
of ext data into the memory without type conversion, as follows:
𝑒𝑥𝑡 .store[𝑠𝑖𝑧𝑒].

To simulate the byte-addressable memory, we define the simpli-
fied models as follows:
• △.𝑙𝑜𝑎𝑑 (𝜇𝑚, 𝑎𝑑𝑑𝑟, 𝑠𝑖𝑧𝑒) ↦→ 𝑣𝑎𝑙 : Load 𝑠𝑖𝑧𝑒 bytes memory data from
the offset 𝑎𝑑𝑑𝑟 , and return the result 𝑣𝑎𝑙 to the stack.
• △.𝑠𝑡𝑜𝑟𝑒 (𝜇𝑚, 𝑎𝑑𝑑𝑟, 𝑠𝑖𝑧𝑒, 𝑣𝑎𝑙) ↦→ 𝜇𝑚 : Store 𝑠𝑖𝑧𝑒 bytes of 𝑣𝑎𝑙 into
memory from the offset 𝑎𝑑𝑑𝑟 , and return the updated memory.

Memory Access. To address C2, we build a memory model with
a Z3 [51] byte array. The symbolic expression is split into byte
vectors and stored in the memory model. Specifically, we use the
Z3 API, i.e., Store to insert data and Select to load data from the
memory model. The address is concrete data read from the runtime
traces. SinceWASAI performs symbolic execution starting from the
action function rather than void apply(), we may fail to load some
memory contents because not all of them are recorded from the
simplified traces. To recover the semantics of memory instructions,
we construct a symbolic load object for each load instruction that
reads the unsaved memory data. A symbolic load object would be an
operand of a Wasm instruction and become the part of the symbolic
constraints. If a symbolic constraint contains a symbolic load object,
the SMT solver will resolve its value by finding a certain address
first. To be specific, each symbolic load object is a symbolic pair
⟨𝑎, 𝑠⟩, showing the memory maintains 𝑠 bytes data at the offset 𝑎.

For instance, f32.store32 is modelled as follows:

𝜇𝑚 ← △.𝑠𝑡𝑜𝑟𝑒 (𝜇𝑚, 𝜏𝑝 , 4, 𝜇𝑠 [1]),

where 𝜏𝑝 is the concrete address read from the trace, and the four
bytes of data 𝜇𝑠 [1] is inserted into the memory 𝜇𝑚 . If there are sym-
bolic expressions for i32.load16_u to load, its model is as follows:

𝑣𝑎𝑙 ← △.𝑙𝑜𝑎𝑑 (𝜇𝑚, 𝜏𝑝 , 2)

In this example, we return the 16-bits result (𝑣𝑎𝑙) to the stack
by converting the loaded data into unsigned 32bits-integer data.
When there is no symbolic content in the 𝜇𝑚 [𝜏𝑝 ], we assign 𝑣𝑎𝑙 as
⟨𝜇𝑠 [0], 2⟩.

3.4.2 Calling Convention. To accelerate the feedback process, we
skip the redundant paths and perform symbolic execution starting
from the action function directly. We first identify the user input
from the context of the action function and create symbolic expres-
sions for them (C3). According to the specifications of EOSIO SDK,
the input parameters (denoted as ®𝜌) must be in the Local section
of the action function, i.e., 𝜇

𝑙
. Specifically, there is a consistent

one-to-one mapping between the runtime values in 𝜇
𝑙
and the seed
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Table 3: The operational semantic of Wasm instructions. We build symbolic machine states along the traces.

Instruction Machine state changes Instruction Machine state changes Instruction Machine state changes

const im 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑖𝑚) global.get im 𝑥 = 𝜇𝑔 [𝑖𝑚]; 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑥) br -

drop 𝜇𝑠 .𝑝𝑜𝑝 () global.set im 𝑥 = 𝜇𝑠 .𝑝𝑜𝑝 (); 𝜇𝑔 [𝑖𝑚] = 𝑥 br_if 𝜇𝑠 .𝑝𝑜𝑝 ()
select 𝑧, 𝑥,𝑦 = 𝜇𝑠 .𝑝𝑜𝑝 (3); 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑧?𝑦 : 𝑥) load △.𝑙𝑜𝑎𝑑 br_table 𝜇𝑠 .𝑝𝑜𝑝 ()
unary 𝑥 = 𝜇𝑠 .𝑝𝑜𝑝 (); 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑜𝑝 (𝑥)) store △.𝑠𝑡𝑜𝑟𝑒 return -

binary 𝑥,𝑦 = 𝜇𝑠 .𝑝𝑜𝑝 (2); 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑜𝑝 (𝑥,𝑦)) call_pre 𝑎𝑟𝑔𝑠 = 𝜇𝑠 .𝑝𝑜𝑝 ($); 𝜇𝑙 .𝑝𝑢𝑠ℎ(𝑎𝑟𝑔𝑠) unreachable -

local.get im 𝑥 = 𝜇
𝑙
[𝑖𝑚]; 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑥) call_post 𝜇𝑙 .𝑝𝑜𝑝 (); 𝑟𝑡𝑠 = 𝜇𝑟 .𝑝𝑜𝑝 (); 𝜇𝑠 .𝑒𝑥𝑡𝑒𝑛𝑑 (𝑟𝑡𝑠) nop -

local.set im 𝑥 = 𝜇𝑠 .𝑝𝑜𝑝 (); 𝜇𝑙 [𝑖𝑚] = 𝑥 begin_function 𝜇𝑠 .𝑝𝑢𝑠ℎ(∅) memory.grow 𝜇𝑠 .𝑝𝑜𝑝 (); 𝜇𝑠 .𝑝𝑢𝑠ℎ(4096)

local.tee im 𝜇
𝑙
[𝑖𝑚] = 𝜇𝑠 [0] end_function 𝑟𝑡𝑠 = 𝜇𝑠 .𝑝𝑜𝑝 (); 𝜇𝑟 .𝑝𝑢𝑠ℎ(𝑟𝑡𝑠) memory.size 𝜇𝑠 .𝑝𝑢𝑠ℎ(4096)

parameters (®𝜌) in the context of the action function:

𝜇
𝑙
[𝑖 + 1] ⇐⇒ ®𝜌𝑖 ;when 0 ≤ 𝑖 ≤

��®𝜌 ��
Since the maximum unit of Wasm is 64-bit long, Wasm leaves

the oversized data in the memory and allocates a local data as a
pointer to fetch it. Taking the asset type as an example, which is a
128-bit struct composed of two 64-bit elements named amount and
symbol, respectively. When a Wasm function uses the asset type
parameter, a pointer is allocated in its Local section. The pointer
points to a 128-bit memory piece, which saves a amount type data
and a symbol type data, accordingly. Similarly, to utilize string
data, EOSVM allocates a pointer for a continuous piece of memory.
The first byte is the length of the string, and the following bytes
save the string content.

Table 2 shows the data layout of an action function, i.e., transfer
(name from, name to, asset quantity, string memo). The table
guides us to build symbolic expressions for the input data. In the
entry of the action function, we initiate 𝜇

𝑙
with the following sym-

bolic expressions, where 𝜇
𝑙
[𝑖] denotes the 𝑖𝑡ℎ unit of Local section.

from is the first argument declared in action header, denoted as ®𝜌0,
thus the second local data stores its value (from). Similarly, the third
local data saves to. 𝜇

𝑙
[3] is an i32 address pointing to the certain

content of the asset struct. 𝜇
𝑙
[4] points to a string indicating the

parameter named memo.

3.4.3 Traces Simulation. During symbolic execution, we need to
lift low-level information in runtime traces to high-level machine
states, so that Symback can build and solve symbolic constraints for
fuzzer feedback. According to the operational semantics of Wasm
instructions shown in Table 3, we update the machine states (i.e.,
𝜇) along the runtime traces. The symbols are defined in § 3.1. For
the memory instructions, we use △.𝑙𝑜𝑎𝑑 and △.𝑠𝑡𝑜𝑟𝑒 to lift the
semantic of load and store, respectively (see § 3.4.1 for more
details.). We use 𝑝𝑢𝑠ℎ() and 𝑝𝑜𝑝 () to control the stack-based Wasm
components, i.e., 𝜇𝑠 , 𝜇𝑙 and 𝜇𝑟 . For example, 𝜇𝑠 .𝑝𝑢𝑠ℎ(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)
means we push a constant into the current stack frame of the
executing function. 𝑝𝑜𝑝 (𝑥) means we pop 𝑥 element(s) from the
stack top, where the default value of 𝑥 is one. 𝑎.𝑒𝑥𝑡𝑒𝑛𝑑 (𝑏) is used to
extend the stack 𝑎 with the values in the 𝑏. Based on the low-level
hooks shown in Table 1, we label function invocations and capture
corresponding traces such as function parameters and the return

results. For example, we update 𝜇 along the traces to recover the
calling convention in Wasm:
• call_pre: the callee’s Local section (𝜇𝑙 [0]) is initiated with the
invocation parameters from callers’ stack (𝜇𝑠 [0 : $]), ‘$’ is the
parameter amount of the invoked function, fetched from the traces;
• function_begin: an empty stack frame (denoted as ∅) is created
for callee;
• function_end: callee prepares the returns (denoted as 𝑟𝑡𝑠) from
the callee’s stack, maintaining in the 𝜇𝑟 ;
• call_post: the context switches to the caller who loads the returns
from 𝜇𝑟 to its stack, i.e., 𝜇𝑠

Hence, we can obtain the returns from library APIs without
simulating their function bodies in the EOSVM simulator. Since we
perform the symbolic execution along the executed traces, we omit
the jump destinations used in the control flow traces such as call,
br, br_if and br_table. For memory.grow and memory.size Wasm
instructions, we only balance the stack with a constant value, i.e.,
4096, because they cannot affect the control flow or the data flow.
Note that 4096B is the default size of the Wasm memory in EOSIO.

3.4.4 Constraints Solver. For each fuzzing seed, we mutate one
parameter in ®𝜌 to touch new branches of the executed paths. To
this end, we construct new constraints for the parameter we choose.
Firstly, we flip the constraint used in the conditional state as long as
it contains the symbolic input built in § 3.4.2. We flip the jumping
condition for the opposite branch. Besides, we require the constraint
used in the assertion must be satisfied. The formal representation
is shown as follows:

𝑓 𝑙𝑖𝑝 (𝜇, 𝜏 (𝑖, ®𝑝)) :=
{

𝜇𝑠 [0] == ( ®𝑝1 ⊕ 1), if 𝑖 ∈ {𝑏𝑟_𝑖 𝑓 , 𝑖 𝑓 }
𝜇𝑠 [0] == 1, if eosio_assert is invoked

Secondly, the path to the conditional state must be feasible. We con-
catenate the flipped constraint and the path constraints with an AND
operator. Symback can identify what additional conditions should
be satisfied in 𝜌 if it wants to explore deeper. At last, we generate
adaptive seeds by solving the constraints with the Z3 Solver [51]. To
improve the throughput, we collect the target constraints together
and solve them in parallel. Thus we can solve more constraints at
the same time and generate more adaptive seeds before reaching
the timeout.
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3.5 Vulnerability Scanner

We abstract the function calls chain as a list called ®𝑖𝑑 , recording
the IDs of the executed functions. For example, 𝑖𝑑0 represents void
apply(). 𝑖𝑑𝑒 records the function ID of the eosponser, which is
located from a valid EOS transaction traces. To trigger the vulner-
abilities, Engine executes payload transactions according to the
oracles discussed in § 2.3. After that, Scanner detects the exploit
events via 𝑣𝑢𝑙 (𝜏) and outputs True for a vulnerable sample.
Fake EOS Detector. After transferring fake EOS to the target
contract (see § 2.3.1), if the eosponser is actually invoked, Scanner
will report a Fake EOS vulnerability, as follows:

𝑣𝑢𝑙 :=𝑖𝑑𝑒 ∈ ®𝑖𝑑

Fake Notif Detector. During the fuzzing, if the guard code is
executed for resisting the adversary oracle (see § 2.3.2), the contract
is safe. Therefore, it is necessary to search as many paths as we can,
otherwise, a false positive may be produced. The guard code should
be an instruction (i.e., i64.eq, i64.ne) in the eosponser, where the
two stack operands 𝜏𝑝 [0], 𝜏𝑝 [1] are the values of fake.notif and
_self, respectively. If no guard code is detected (till timeout), the
detector would label it as vulnerable; that is:

𝑣𝑢𝑙 := 𝑖𝑑𝑒 ∈ ®𝑖𝑑 ∧ ®𝜏 ∌ (𝑖64.eq|𝑖64.ne, (fake.token, _self))

MissAuth Detector. The side-effect behavior is achieved via some
library APIs, such as send_inline and db_*, denoted as 𝐸𝑓 𝑓 𝑒𝑐𝑡𝑠 . If
a side-effect is produced without checking the granted authority
before, we report a MissAuth vulnerability. We use 𝐴𝑢𝑡ℎ𝑠 denotes
the permission APIs (see § 2.2).

𝑣𝑢𝑙 := 𝑎𝑛𝑦 ({ ®𝑖𝑑
0→𝑖
∩𝐴𝑢𝑡ℎ𝑠 = ∅ ∧ 𝑖𝑑𝑖 ∈ 𝐸𝑓 𝑓 𝑒𝑐𝑡𝑠 | 𝑖 > 0})

BlockinfoDep Detector. Following previous work [30], we report
a BlockinfoDep vulnerability whenWASAI identifies an invocation
of an API to load blockchain states such as tapos_block_pre and
tapos_block_num. For a formal description, we use #t to map the
function ID of the function named t.

𝑣𝑢𝑙 := ®𝑖𝑑 ∩ {#𝑡𝑎𝑝𝑜𝑠_𝑏𝑙𝑜𝑐𝑘_𝑝𝑟𝑒 𝑓 𝑖𝑥, #𝑡𝑎𝑝𝑜𝑠_𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚} ≠ ∅

Rollback Detector. If an inline action is invoked by send_inline,
we report a vulnerability warning:

𝑣𝑢𝑙 := #𝑠𝑒𝑛𝑑_𝑖𝑛𝑙𝑖𝑛𝑒 ∈ ®𝑖𝑑

4 IMPLEMENTATION AND EVALUATION

Implementation.We implementedWASAI with over 4,300 lines
of Python code. The contract-level instrumentation is based on
Wasabi [39] (commit-0x01f0e26).We use 24 kinds of low-level hooks
to capture the traces, which guideWASAI to update the machine
states during the symbolic execution. Each low-level hook will
invoke the virtual machine to print out traces with library APIs.
Specifically, we build a local blockchain using Nodeos [46] (version
1.8.6) and further extend Nodeos to support three library APIs (see
§ 3.3.1), including logi(), logsf() and logdf() for i32/i64, f32
and f64 data, respectively. The transaction traces are exported to
offline files once one EOSVM thread finishes, i,e, executing the
apply_context::finalize_trace(). The EOSVM simulator uses
Z3 (version 4.8.6) as the SMT backend, and hence all data used in
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Figure 3: Branch coverage of WASAI and EOSFuzzer (RQ1).

symbolic execution are represented as Z3 bit vectors, e.g., BitVec
and FPVal.
Experimental Setup.Our experiments were performed on a server
running Ubuntu 18.04 with an i9-9900 CPU and 64 GB RAM. We
empirically set the timeout as 5 mins and spend at most 3,000 ms in
solving an SMT problem, because we find it is enough to cover most
cases (see § 4.1). We also apply a state-of-the-art dynamic Wasm
fuzzer (i.e., EOSFuzzer) and a static analyzer (i.e., EOSafe) with the
default settings to the same benchmark for a fair comparison.
Research Questions. Our evaluation is driven by the following
four research questions (RQs):
RQ1 How much code coverage canWASAI achieve?

RQ2 How accurate isWASAI in detecting vulnerabilities?

RQ3 IsWASAI robust to complicated smart contracts with

code obfuscation or sophisticated logic?

RQ4 CanWASAI identify vulnerabilities in real-world smart

contracts? Are the vulnerabilities prevalent?

4.1 RQ1: Code Coverage of WASAI

Approach. We randomly select 100 real-world smart contracts
from the EOSIO blockchain and then measureWASAI’s code cover-
age, which is defined as the number of distinct branches explored
by a fuzzer. As EOSFuzzer is the only available fuzzer for EOSIO
smart contracts, we compare WASAI with it in this setting. For
a fair comparison, we only analyze the traces generated by the
fuzzing target and ignore those from auxiliary smart contracts, e.g.,
eosio.token.
Results. Figure 3 shows the results of WASAI and EOSFuzzer,
where the x-axis is the fuzzing time, and the y-axis is the cumula-
tive number of explored distinct branches for all smart contracts.
In the beginning, WASAI has to spend extra time on SMT solv-
ing, resulting in a slightly lower code coverage than EOSFuzzer.
However, it surpasses the EOSFuzzer after ten seconds, and the
advantage of WASAI becomes very significant in the following
minutes. Overall, WASAI obtains over 75,000 distinct branches for
all these 100 smart contracts, which is about 2𝑥 of that EOSFuzzer
gets. WASAI obviously outperforms EOSFuzzer.

Answer to RQ1:WASAI achieves about twice as much code

coverage than the baseline.

4.2 RQ2: Accuracy of Vulnerability Detection

Approach. Due to the lack of ground truth, we curate a large-scale
dataset via injecting verified vulnerabilities into real-world smart
contracts for comparing WASAI with the baselines [29, 30]. The
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Table 4: Evaluation results on the ground truth (RQ2).

Types

# Cnt

(Vul/Non-Vul)

WASAI EOSFuzzer EOSafe

P R F1 P R F1 P R F1

Fake EOS 254(127/127) 100% 100% 100% 90.7% 84.3% 87.3% 98.3% 44.9% 61.6%
Fake Notif 1,378(689/689) 100% 100% 100% 94.9% 78.7% 86.0% 67.4% 98.3% 79.9%
MissAuth 890(445/445) 100% 96.0% 97.9% - - - 100% 38.9% 56.0%
BlockinfoDep 400(200/200) 100% 100% 100% 0% 0% 0% - - -
Rollback 418(209/209) 100% 95.7% 97.8% - - - 50.5% 97.6% 66.6%
Total 3,340(1,670/1,670) 100% 98.4% 99.2% 94.2% 63.9% 76.1% 67.7% 75.6% 71.4%

benchmark includes 3,340 samples in total, which incorporates 34
samples labeled from the disclosed exploits [29] and 3,306 samples
generated by us via inserting exploitable vulnerability into the real-
world smart contracts [13]. In this balance benchmark, half of them
(#1,670) are vulnerable samples. To the best of our knowledge, it is
by far the largest vulnerable Wasm contract dataset (100𝑥 of existing

benchmarks), and we make it available to the community.

- For Fake EOS and Fake Notif vulnerability, we first identify non-
vulnerable contracts (i.e., 𝑣𝑢𝑙 (𝜏) = 𝐹𝑎𝑙𝑠𝑒) if the corresponding
guard code is executed. After that, we remove the guard code to
generate new vulnerable samples.
- For MissAuth vulnerability, we remove/add the invocation of the
permission APIs (see § 2.2) to generate both vulnerable and non-
vulnerable contracts.
- For BlockinfoDep and Rollback vulnerabilities, we directly gener-
ate the smart contract with vulnerabilities in C++ code and then
compile it intoWasm bytecode.We generate several nested if-else
branches and insert a fixed template code with both two kinds of
vulnerabilities (see in Line 9-16 in Listing 4) at the branches ends.
Each branch verifies several function parameters with random
constants. Notably, by generating inaccessible branches, we can
generate non-vulnerable samples with ground truth.
Results. Table 4 shows the overall results. WASAI outperforms
all existing techniques. Among the 3,340 smart contracts,WASAI
successfully flags 1,643 as vulnerable with 0 FP and 27 FNs, leading
to the precision and recall of 100% and 98.4%, respectively. Our
manual investigation identifies two main reasons for the FNs. First,
it is difficult forWASAI to resolve the transaction dependency when
the smart contract can operate several database tables at the same
action function, thus leading to FNs. Besides, some smart contracts
with the Rollback vulnerability can only be invoked by the caller
with the specific address, i.e., its administrator. However, we did not
implement an address pool to invoke smart contracts with different
identifications. Therefore, WASAI accidentally reports 9 FNs for
them because the generated seeds cannot pass the address checking.
Nevertheless,WASAI designs oracles to cover all the vulnerabilities
considered in the existing studies.

By contrast, EOSFuzzer only performs well in the Fake EOS
detection and Fake Notif detection and achieves 87.3% F1-score
and 86.0% F1-score, respectively. The FPs of EOSFuzzer come from
the flaws in its oracle. For example, it reports positive no matter
which action is invoked after receiving fake EOS. As a result, it
may produce FP for the honeypot contracts. Besides, due to the
lack of feedback strategy, EOSFuzzer produces FNs for Fake Notif
because of the unexplored guard code and identifies 0 TP in Rollback
because of the unexplored vulnerable code.

EOSafe also performs worse than WASAI. To find the paths
to the action function, EOSafe depends on a heuristic strategy
to match the dispatcher patterns (e.g., code == N(eosio.token)
&& action == N(transfer)). Since the EOSIO SDK does not re-
quire this pattern, i.e., developers can implement it in diverse ways,
EOSafe may fail to locate the paths to action functions and report
FNs due to the timeout. As a result, it reports 359 FNs, leading to
a low recall (75.6%). When detecting Fake Notif, EOSafe regards
timeout as a positive sample, and hence it acquires a high recall of
98.3% but a poor precision of 67.4%. To detect Rollback, EOSafe an-
alyzes all branches in the conditional states, even if the constraints
are impossible to be satisfied, and thus produces FPs. As a result,
EOSafe achieves a precision of 50.5% for detecting Rollback.

Answer to RQ2: WASAI outperforms all state-of-the-art

techniques on a large-scale benchmark, with 100% of precision

and 98.4% of recall.

4.3 RQ3: Robustness of WASAI

Approach.We create two types of complicated samples and use
them to evaluate the robustness of WASAI and the baselines [29, 30].
• code obfuscation. Based on the benchmarks we harvested in § 4.2,
we further generate their obfuscated versions. Since there is no
available obfuscation tool for Wasm bytecode, we develop one
with two obfuscation methods. First, it obfuscates the data flow
by encoding function arguments with the popcount algorithm[27],
which counts the number of ‘1’ bits in the given value. Second, it
obfuscates the control flow by inserting recursion invocations to
the bytecode, where the entry condition is impossibly satisfied. As
a result, we generated 3,340 obfuscated samples.
• complicated verification. Some real-world contracts may verify
the input before allowing users to participate. It requires dynamic
tools to generate adaptive seeds to satisfy the complicated path con-
straints, otherwise, they are prone to FNs due to the low code cov-
erage. To generate samples with complicated verification, we inject
several if code constructs, which verify the input data with random
data. If the verification fails, the injected code will enforce the smart
contract to terminate the execution by a Wasm instruction, i.e.,
unreachable. For example, we can inject the following Wasm code
into the entry of the action function of transfer@eosio.token to
ensure the value of quantity must be "100.000 EOS". As a result,
we generate 2,924 (87.5%) samples with complicated verification
logic.

if(i64.ne local.get 3 (i64.load) i64.const 100000)(then unreachable)

if(i64.ne local.get 3 (i64.load offset=8) i64.const 1397703940)(then

unreachable)

Results on the Obfuscation Benchmark. As shown in Table 5,
WASAI can remain a high accuracy under code obfuscation, with
96.6% of precision and 97.9% of recall. The F1-score of EOSFuzzer
reaches 76.5%, which is not affected much by the code obfuscation.
However, the performance of EOSafe decreases greatly due to
code obfuscation, with 881 TPs (decreased by 20.7%) and 943 FPs.
Notably, EOSafe cannot find any feasible paths to detect Fake EOS
vulnerability and MissAuth vulnerability, leading to 0 TP. To the
end, EOSafe reaches a low F1-score of 61.2% (decreased by 10.2%).
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Table 5: The impact of code obfuscation (RQ3).

Types

# Cnt

(Vul/Non-Vul)

WASAI EOSFuzzer EOSafe

P R F1 P R F1 P R F1

Fake EOS 254(127/127) 100% 100% 100% 91.4% 92.1% 91.8% 0% 0% 0%
Fake Notif 1,378(689/689) 92.4% 100% 96.0% 94.6% 78.1% 85.5% 67.5% 98.4% 80.0%
MissAuth 890(445/445) 100% 94.2% 97.0% - - - 0% 0% 0%
BlockinfoDep 400(200/200) 100% 100% 100% 0% 0% 0% - - -
Rollback 418(209/209) 100% 95.7% 97.8% - - - 50.4% 97.1% 66.3%
Total 3,340(1,670/1,670) 96.6% 97.9% 97.3% 94.0% 64.5% 76.5% 62.6% 59.9% 61.2%

Table 6: The impact of complicated verification (RQ3).

Types

# Cnt

(Vul/Non-Vul)

WASAI EOSFuzzer EOSafe

P R F1 P R F1 P R F1

Fake EOS 190(95/95) 100% 100% 100% 50.0% 100% 66.7% 100% 43.2% 60.3%
Fake Notif 1,178(589/589) 99.6% 83.0% 90.6% 0% 0% 0% 68.1% 99.3% 80.8%
MissAuth 756(378/378) 100% 97.4% 98.7% - - - 100% 40.5% 57.6%
BlockinfoDep 400(200/200) 100% 100% 100% 0% 0% 0% - - -
Rollback 400(200/200) 100% 100% 100% - - - 50% 100% 66.7%
Total 2,924(1,462/1,462) 99.9% 92.5% 96.0% 50% 10.7% 17.7% 67.4% 77.6% 72.1%

Results on the Complicated Verification Benchmark. With
the effective feedback strategy, WASAI retains 99.9% precision and
92.5% recall. Since the injected code only creates several short paths
in the CFG, EOSafe can cover them by exhaustive searching. As
a result, it can still maintains its performance with 72.1% of F1-
score. However, EOSFuzzer is affected greatly, achieving only 50%
precision and 10.7% recall. Since EOSFuzzer cannot choose a valid
payload for the next fuzzing round after the transaction is reverted
by the injected code, it cannot report any positive cases for the Fake
Notif and BlockinfoDep. Specially, there are some problems in the
EOSFuzzer’s oracles, e.g., it outputs a positive report in detecting
Fake EOS if none of the transactions is executed successfully. Since
only the elaborate input can bypass the complicated verification,
the random seeds generated by EOSFuzzer usually fail to pass the
verification and terminate the execution of smart contract. Accord-
ing to its flaw in the oracle, EOSFuzzer fails to execute the fuzzing
target every time and flags all samples as vulnerable in detecting
the Fake EOS. Hence, EOSFuzzer achieves 1462

1462+1462 ×100% = 50.0%
of precision for the Fake EOS benchmarks.

Note thatWASAI produces FPs in the detection of the Fake Notif
samples in the both benchmarks. It is caused by the assumption
used in the oracle (§ 3.5). We will explain more in RQ4 through
manually analyzing several FPs.

Answer to RQ3: WASAI maintains high detection accuracy

when handling samples with code obfuscation and complicated

verification logic, which is more robust than the baselines.

4.4 RQ4: Vulnerabilities in the Wild

Approach.Wewant to analyze the profitable smart contracts (§ 2.1)
because the vulnerabilities in them may cause losses of cryptocur-
rency. The authors of EOSFuzzer[30] have collected 3,881 real-world
smart contracts from EOSIOMainnet, where 991 (25.5%) of them are
profitable. These 991 samples are identified with the following steps:
1. we allocate some EOS tokens to the fuzzing target; 2. and label it
as profitable if any action is activated in our local blockchain. Next,
we apply WASAI to these 991 smart contracts. Note that EOSIO al-

lows developers to update their smart contracts in Mainnet. Thus, we

further analyze whether these flagged vulnerable smart contracts
have been patched in their later versions, which are downloaded
from the Mainnet blockchain via an RPC service [17]. Moreover,
we manually verify the results. For each kind of vulnerability, we
randomly select ten vulnerable samples and ten bug-free samples
labeled by WASAI(i.e., 100 smart contracts) for verification in total.
We rely on dynamic debugging and reverse engineering to verify
the results.
Overall results. 707 contracts (71.3%) are flagged as vulnerable,
i.e., WASAI identifies 241 Fake EOS, 264 Fake Notif, 470 MissAuth,
22 BlockinfoDep and 122 Rollback. For the latest versions of these
707 flagged contracts, we observe that 58.4% (413) of them are still
operating on the Mainnet, and the remaining flagged vulnerable
ones are abandoned by their developers (i.e., the latest versions are
replaced with empty files). For the 413 working ones, only 72 of
them have been patched1. In other words, 341 vulnerable contracts
are exposed to attackers. We next present the zero-day vulnerability
in batdappboomx

2 identified byWASAI. This bug has been assigned
with a CVE identifier (CVE-2022-27134).WASAI found that anyone
can activate the eosponser (i.e., transfer@batdappboomx) of batdapp-
boomx directly with an fake EOS. Thus attackers can receive the
reward from batdappboomx as long as they set the parameter memo
as “action:buy”. Unfortunately, this smart contract has not been
patched yet.
Manual Analysis.We observed only 2 false positives and 1 false
negative among the 100 samples. WASAI accidentally reports two
false positives in detecting Fake Notif (i.e., paytobtckey1 (deployed
at 2019-05-25, 09:08:30) and zlkggamerobs (deployed at 2019-01-22,
20:24:38)) because of the assumption used by its oracle. The oracle
may flag a false positive due to the insufficient code coverage (§ 3.5).
When testing the paytobtckey1 (see § 2.3.2),WASAI cannot set the
transaction parameter ‘memo’ as a 26 bytes string, thus it fails to
touch guard code in the deeper program states.WASAI also fails to
detect eospindealer (deployed at 2019-01-09, 15:05:54) as Rollback
vulnerability, since its extreme complicated control flow prevents
us from analysing its deep code in five minutes.

Answer to RQ4: WASAI reveals the urgency of fixing the

vulnerabilities in EOSIO smart contracts.

5 THREATS TO VALIDITY

AlthoughWASAI achieves promising results, our work faces sev-
eral limitations. First, we limit the resources of the SMT solver for a
larger throughput, and hence WASAI produces some FNs because
of unsolved branches. Actually, we can get better results by ex-
tending the fuzzing time, while it is a trade-off between scalability
and efficiency. Second, we construct the dependency of the per-
sistent data at the table level, which is a coarse-grained strategy
that may not guide WASAI to select a proper seed. In the future,
we can parse the database index and construct more comprehen-
sive transaction sequences to explore more code. Third, we do not
measure the branch coverage in RQ1. Since the vulnerabilities can
only be triggered in the action functions,WASAI only focuses on
exploring branches in the action functions rather than the entire

1Note that we further applied WASAI to analyze their latest version to investigate
whether the vulnerability has been patched.
2SHA256: 1327c04cf4b56183eddb1a897bbebf5a873d3421272b708829a4ed0765bef820
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smart contract. Fourth, the benchmark should be improved. On
the real-world benchmark,WASAI outperforms the baselines. To
emphasize the novelty of WASAI, we further extend the existing
benchmark by modifying the smart contract binary, following the
idea of LAVA [13]. Although the synthetic data only focus on sev-
eral kinds of vulnerabilities, it indeed demonstrates the advantages
of WASAI in terms of robustness and effectiveness. In the future,
we will construct a larger benchmark from cryptocurrency forms
and disclosed exploits.

It is worth noting that we provide interfaces for the ease of ex-
tending WASAI. In particular, the bug detectors can be extended
in two steps: (1) adding oracles and constructing the payload tem-
plates. During the fuzzing,WASAI mutates specific arguments in
such payload templates; (2) analyzing traces to confirm the exploit
events. Moreover, the proposed memory model can be applied to
other languages, as long as we set the size of the memory unit (e.g.,
8 bits for EVM bytecode) and know the length of data accessed by
the memory instructions. Last but not least,WASAI can be extended
to analyze other Wasm applications in different platforms, such
as browsers, IoT, and other blockchain platforms (e.g., Polkadot),
through three steps: (1) obtaining function signatures of the fuzzing
target; (2) customizing Wasm client’s hooks to export traces; and
(3) informingWASAI what APIs can access the persistent storage
in order to find out the transaction dependency.

6 RELATEDWORK

Ethereum Smart Contract Analysis. Many studies have been
proposed for security analysis of Ethereum smart contracts [5, 8, 10,
12, 14, 22, 23, 26, 30, 34, 36, 40, 41, 45, 47, 50, 53, 56, 57, 60, 64, 66, 68].
ContractFuzzer [34] is the first fuzzer framework in detecting vul-
nerabilities in Ethereum [19] smart contracts. Tai et al. implement
the first AFL-Favour fuzzer in EVM. Valentin and Maria [65] pro-
pose a greybox fuzzer, Harvey, which flips the input bytes ac-
cording to the code-coverage information. Harvey measures the
energy cost of comparison operators and storage assignments with-
out identifying whether the operands are tainted by user input,
hence it may fail to explore deep paths because of the complex path
constraints. These work cannot be used directly to analyze Wasm
contracts due to the following difference: (1) Calling convention:
A Wasm contract usually contains several functions in its binary,
and thus the symbolic execution engine needs to identify the func-
tion namespace to construct the symbolic constraints. By contrast,
all functions in an Ethereum smart contract share the same stack
frame. (2) Seed format: In EOSIO, the input data of a smart contract
is a byte stream which will be deserialized and stay in the memory.
Such complex memory operations may make traditional symbolic
execution fail with timeout due to path explosion. Note that for
EVM, smart contracts must load the user input from a fixed-size
vector (i.e., calldata), and thus it is straightforward to perform sym-
bolic execution and find the new seeds. (3) Transaction dependency:
Smart contract is a stateful program that can store persistent data in
its database with specific APIs. The data flow in the persistent data
may indicate transaction dependency. Unlike Ethereum fuzzers that
just need to handle the two Opcodes that can access the storage
(i.e., SLOAD and SSTORE), WASAI has to analyze more storage

APIs to construct the transaction sequences. (4) A unique attack
surface in EOSIO due to its notification mechanism.
Wasm Binary Analysis. There are some recent studies on Wasm
applications [1, 2, 35, 38, 62]. To address the security issues, Jonathan
et al. [48] applied formal verification techniques to those sophis-
ticated cryptographic components written in Wasm. Weikang et
al. [3] model the application’s behavior using the Wasm instruc-
tion execution trace. However, all of these studies focus on Web
applications and cannot be applied to EOSIO directly.
EOSIO Smart Contract Analysis. There are only a few studies[29,
30, 61] on EOSIO contracts. For symbolic execution based tech-
niques, the path explosion is the major challenge, as there are
several kinds of indirect jumping instructions in Wasm. The state-
of-the-art approaches such as WANA [61] and EOSafe [29] are
unable to find exploit payloads. EOSFuzzer, the only fuzzer [30],
lacks a feedback phase and thus it cannot generate adaptive seeds
to explore deep code.

7 CONCLUSION

We design and develop WASAI, the first concolic fuzzer for un-
covering the vulnerabilities in Wasm smart contracts. Extensive
experiment results on well-labeled benchmarks demonstrate the
great performance of WASAI, outperforming state-of-the-art tech-
niques. Applying WASAI to the deployed smart contracts in the
wild, we detect over 300 unpatched vulnerable smart contracts.

DATA AVAILABILITY STATEMENT

WASAI and its dataset are released at 10.5281/zenodo.6517515.
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