
Bug Reports for Desktop Software and Mobile

Apps in GitHub: What is the Difference?

Tao Zhang1,2, Jiachi Chen2, Xiapu Luo2, Tao Li3

1College of Computer Science and Technology, Harbin Engineering University

2Department of Computing, The Hong Kong Polytechnic University

3School of Software, Nanjing University of Posts & Telecommunications

cstzhang@hrbeu.edu.cn, chenjiachi317@gmail.com, csxluo@comp.polyu.edu.hk,

towerlee@njupt.edu.cn

Abstract

With a large number of software products including desktop software and mobile applications (apps),

fixing bugs becomes a challenging task. Since bug reports (BRs) can provide more information to fix bugs,

researchers leverage BRs to explore how to fix bugs automatically. Previous studies focus on traditional

bug tracking systems like Bugzilla rather than GitHub, which is a popular web-based software repository.

Moreover, only a few works study BRs for mobile apps whereas most of the previous studies focus on

BRs for desktop software. This paper presents a systematic study on the difference in BRs for desktop

software and mobile apps hosted in GitHub. First, we collect all BRs from top 100 popular desktop

software and mobile apps, and compare their textual features and main elements. Second, we examine

the different influence of the BRs’ features for desktop software and mobile apps on the fixing time.

As a conclusion, we find that commit messages are important resources to help researchers accomplish

bug-fixing tasks, such as bug localization for both types of software, especially for desktop software.

Keywords

Bug Report, Mobile Applications, Mining Software Repositories, Bug Tracking Systems

I. INTRODUCTION AND LITERATURE REVIEW

As the number of desktop software and mobile apps is rapidly increasing, resolving bugs is a key

task. Developers often examine Bug Reports (BRs) in software repositories to get hints for fixing the

bugs. The quality of BRs is important. Hooimeijer and Weimer [1] created a descriptive model for the

1

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

lifetime of a BR. Bettenburg et al. [2] investigated what makes a good BR. Besides, researchers also

exploit BRs to develop algorithms for automating various tasks like duplicate detection [3, 4], fixer

recommendation [5, 6], feature (e.g., severity/priority prediction) prediction [7, 8], and bug localization

[9, 10]. However, these studies usually focus on a few popular projects (e.g., Eclipse) that use traditional

bug tracking systems such as Bugzilla. Since GitHub has been widely used to host software, it is desirable

to characterize BRs in GitHub and investigate how to perform automated software maintenance tasks for

projects in it.

Moreover, most of the previous studies focus on the BRs for desktop software rather than the BRs

for mobile apps. To the best of our knowledge, only a few studies [11–13] analyzed the BRs for mobile

apps. Syer et al. [11] found that the “best practice” of existing desktop software maintenance cannot

be applied to mobile apps due to their different features such as code’s size. Bhattacharya et al. [12]

conducted an empirical analysis of BRs and bug fixing in Android apps. They investigated the quality of

BRs and analyze the bug-fixing process. Zhou et al. [13] conducted a cross-platform analysis of bugs and

bug-fixing process of open source projects for Desktop, Android, and IOS. These works mainly studied

the BRs for mobile apps in Google Code, which was shut down in January 2016. Recently, more and

more mobile apps select GitHub as their management and bug tracking tool. It is worth noting that the

analysis results for the BRs in Google Code cannot be used for the BRs in GitHub. The major reason

is that the BRs’ features (e.g., the number of labels) in GitHub are different from that in Google Code.

Moreover, these studies did not investigate the relationship between the main elements (MEs) of BRs

and the fixing time of reported bugs. Note that a ME can be a stack trace, code example or

patch. It is necessary to analyze the different features of BRs and the relations with the bug fixing

activities in these two types of software, because such information can help researchers design algorithms

for accomplishing automated software maintenance tasks.

In this paper, we conduct a systematic study on the difference in BRs for desktop software and mobile

apps hosted in GitHub. In the first step, we collect BRs in these two types of software and extract

the textual features and MEs. Then, we analyze these features and explore the relationship between

the features and the bug-fixing time. Moreover, we explain the necessity of adding new data resources

such as commit messages. Finally, we point out that commit messages can facilitate automating software

maintenance tasks by supplementing more MEs to enrich BRs, especially for desktop software.

2

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

TABLE I

DATA SCALE

Date sets overview

Software Type # Project # BRs # Contributors Average Period/Project

Desktop software 100 117,814 125,941 1033 (days)

Mobile apps 100 19,774 30,077 851 (days)

Top-10 popular projects in our data sets

Software Type Project # BRs # Contributors Period

Desktop software

Atom 8,329 329 02/02/2012-11/11/2016

Brackets 6,221 312 13/12/2011-09/11/2016

Chosen 1,956 101 18/07/2011-10/11/2016

Docker 11,421 171 20/01/2013-11/11/2016

Gitlab 6,668 1,127 13/10/2011-29/10/2016

Homebrew 17,041 5,641 18/11/2009-01/11/2016

Lodash 2,135 221 28/08/2012-10/11/2016

Oh-My-Zsh 3,024 1,032 21/03/2010-11/11/2016

Select2 3,024 360 24/03/2013-08/11/2016

Socket.io 1,688 124 01/09/2010-10/11/2016

Mobile apps

ActionBarSherlock 795 53 10/03/2011-20/03/2016

Android-Universal-Image-Loader 749 35 08/12/2011-28/09/2016

Butterknife 474 59 27/03/2013-08/11/2016

Fresco 1,242 63 27/03/2015-08/11/2016

Glide 1,242 43 08/08/2013-11/11/2016

Iosched 82 31 10/06/2014-25/08/2016

MPAndroidChart 1,918 53 28/03/2014-10/11/2016

Picasso 944 73 14/03/2013-10/11/2016

ViewPagerIndicator 143 15 04/08/2011-15/06/2016

Zxing 525 60 18/01/2014-09/11/2016

II. DATA COLLECTION

According to the Repositories Ranking (https://github-ranking.com/repositories) in GitHub, we devel-

oped a crawler to collect all closed BRs from top-100 popular desktop and mobile apps. Then, according

to the apps’ description, the second author verifies whether each app really runs in mobile platforms

instead of desktop, and filter out the libraries, frameworks and templates related to web because they can

be used in both desktop and mobile applications. Finally, the first author checks each decision to ensure

a more reliable categorization. Table I lists the information of the collected data. During the periods, the

average number of BRs and that of contributors per project in desktop software are much larger than

that in mobile apps. Moroever, the average period per project of the former is also larger than that of the

latter. We further compare the textual features and MEs of BRs for these two types of software.

3

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

To help researchers reproduce our work, we publicly share all data sets and analysis results at https:

//github.com/PolyUCJC317/IEEE-Software.

III. TEXTUAL FEATURES IN BRS FOR DESKTOP SOFTWARE AND MOBILE APPS

A. Textual features in BRs

For each BR, textual features describe what is the bug and how the bug occurs. The main body of

BRs are composed of title and description. Title briefs what is the bug while description

details how the bug occurs.

The upper part of Fig. 1 shows an example of Atom (desktop software) BR-#6662, and the bottom part

shows an example of Fresco (mobile app) BR-#665. Both BRs include title and description. For

instance, BR -#6662 has the title “Cursor position forgotten between tabs” while BR -#665 contains the

title “ImagePipelineFactory doesn’t use the PlatformBitmapFactory that is set in ImagePipelineConfig”.

We present their differences in Section III-B.

B. Comparison of textual features

Textual features help fixers understand why the bug appears and how to fix it. To show the difference,

we compare the length of BRs for desktop software and mobile apps by counting the number of words in

the description, because it details the bug. Then, we compute the average number of words (246.4

VS 180.5) per BR in desktop software and mobile apps. Moreover, we calculate the median values (126

VS 95) of BRs’ lengths in these two types of software. Note that the average and the median lengths of

BRs for desktop software projects are larger than that for mobile apps.

Moreover, we apply hypothesis testing to examine the difference in the lengths of BRs for desktop

software and mobile apps. More precisely, we define the null hypothesis: The lengths of BRs for desktop

software show no noteworthy difference against that for mobile apps. If the p-value is less than the

significance level (i.e., 0.05 by default), we can reject the null hypothesis in favor of the alternative

hypothesis. Then, we perform two sample t-test [14] for all BRs in two sets, and get a p-value of 2.2e-

16. Since it is less than 0.05, we reject this null hypothesis. In other words, the lengths of BRs for

desktop software are significantly different from that for mobile apps.

We summarize the BRs’ textual features in two different types of software as follows:

Compared with BRs in desktop software, the average length per BR in mobile apps is shorter.

The investigation result poses a question on whether the short BRs for mobile apps affect the bug-fixing

process. Before answering this question, we first analyze the BRs’ MEs in the next section.

4

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

 Cursor position forgotten between tabs #6662
 Closed adambuczynski opened this issue May 6, 2015 · 15 comments

 New issue

 adambuczynski commented May 6, 2015

When you are working in multiple files and going back and forth between the file tabs, the cursor position for that
 tab is forgotten and you can't type text right away.

This is rather frustrating behaviour, as it forces you to grab your mouse and click somewhere in the code before
 you can start typing.

Sublime remembers the cursor position per tab/file, so that when you go back to a tab, the cursor is at the
 position where you left off, and you can start typing right away.

Can this be enabled for Atom as well? I couldn't find a package that does it.

 mnquintana added the enhancement label May 6, 2015

 veloxy commented May 6, 2015

I just switched to atom and I agree that it is very annoying that the cursor isn't remembered when switching tabs.
 (OSX)

 Labels

 Milestone

 No milestone

 Assignees

 nathansobo

 10 participants

atom

bug

 ImagePipelineFactory doesn't use the PlatformBitmapFactory
 that is set in ImagePipelineConfig. #665

 Closed rey5137 opened this issue Oct 19, 2015 · 1 comment

 New issue

 rey5137 commented Oct 19, 2015

You can set a custom PlatformBitmapFactory object via

 ImagePipelineConfig.Builder.setPlatformBitmapFactory() method, but ImagePipelineFactory seem like
 not using the config value, and create a new ones in buildPlatformBitmapFactory(PoolFactory) method.

 michalgr added the bug label Oct 19, 2015

 aagnes was assigned by michalgr Oct 19, 2015

 aagnes added the needs-details label Oct 19, 2015

 aagnes commented Oct 19, 2015

If you want to use your own config, you'll need to pass it when you create your own ImagePipelineFactory. The
 sequence here really matters. Can you please share your code, or steps how you do?

We expect the usage is

ImagePipelineConfig config = ImagePipelineConfig.newBuilder()
 .setPlatformBitmapFactory(platformBitmapFactory)

 Labels

 Milestone

 No milestone

 Assignees

 aagnes

 4 participants

bug

needs-details

 .build();

ImagePipelineFactory factory = new ImagePipelineFactory(config);
ImagePipeline pipeline = factory.getImagePipeline();

Fig. 1. Example BRs for desktop software and mobile apps

5

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

IV. MES IN BRS FOR DESKTOP SOFTWARE AND MOBILE APPS

A. MEs in BRs

The quality of a BR is decided by its MEs. Bettenburg et al. [2] summarize that a good BR should

include stack traces, code example, and patches.

We explain these features as follows:

• Stack traces: A stack trace is a part of the active stack frames at a certain point when a program

throws the exception.

• Code example: A code example can indicate the reason why the bug appears.

• Patches: A patch is a piece of software designed to update a program, it is used to fix (or improve)

it.

B. Comparison of MEs

We collect statistics for all BRs, which include the three MEs in our data sets. Specifically, for stack

traces, we can recognize JAVA stack traces, GDB stack traces, python stack traces, and C++ stack

traces. Since the stack traces consist of a start-line and trace lines, we recognize them using regular

expressions (i.e., at + path+ : numbers). For code example, we identify C++, python, and JAVA

code examples using techniques from island parsing [15]. We can recognize declarations, comments,

condition statements, and loops from the programs. patches include several start lines indicating the

files to be patched and blocks showing the changes to be made. We also used regular expressions (i.e.,

file types such as **.**.**.py and **/**/**.py) to recognize them in BRs. We randomly select

200 BRs and double-check the accuracy of the identification method. The results show that the accuracy

is 99.5% for stack traces, 94.5% for code example, and 99.5% for patches.

We count the ratio of BRs that contain stack traces, patch, or code example to all BRs in

desktop software and mobile apps. The results are shown in Table II. The last column All ratio means

that the ratio of the BRs that include at least one element to all BRs. Note that the overall ratio of BRs

in mobile apps is higher than that of BRs in desktop software. Specifically, even though the ratio of BRs

that include patch in mobile apps is lower than that in desktop software, the difference is only 1.71%.

We summarize the differences of BRs’ MEs in these two types of software as follows:

For MEs, their all ratio in BRs for mobile apps is larger than that for desktop apps.

This conclusion raises a question whether the BRs for mobile apps can speed up the bug-fixing process,

compared to the BRs for desktop software. We discuss it in the following section.

6

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

TABLE II

THE RATIO OF MES IN BRS BETWEEN DESKTOP SOFTWARE AND MOBILE APPS

Platform Ratio of BRs including stack traces Ratio of BRs including patch Ratio of BRs including code example All ratio

Desktop software 2.85% 6.12% 11.64% 18.47%

Mobile apps 10.13% 4.41% 23.40% 31.75%

V. DISCUSSION

A. Relationship between BRs’ features and fixing time in desktop software and mobile apps

We investigate the relationship between BRs’ features and fixing time. Table III shows the details. The

first column shows the length of BRs. The BR-ME ratio describes how many BRs include at least one

ME such as stack traces, code example, and patches while the BR-NME (Non-ME) ratio

indicates how many BRs do not include any ME.

TABLE III

RELATION BETWEEN BRS’ MES AND FIXING TIME

Software Type Feature
Length

0-99 100-199 200-299 300-399 400-499 ≥ 500

Desktop software
BR-ME/NME Ratio(%) 5.75/94.25 16.23/83.77 24.37/75.63 29.96/70.04 35.48/64.52 54.21/45.79

Average Fixing Time(days) 41.94/43.18 58.63/62.04 65.94/69.51 72.26/73.51 76.8/80.21 88.21/95.80

Mobile apps
BR-ME/NME Ratio(%) 13.72/86.28 37.65/62.35 54.15/45.85 63.63/36.37 70.88/29.12 79.18/20.82

Average Fixing Time(days) 30.62/31.82 33.94/39.99 45.37/49.40 51.26/52.83 51.33/64.46 75.95/80.17

Desktop software

Average Number of MEs 0.06 0.17 0.26 0.33 0.40 0.65

Average Size (Words) of MEs 16.38 24.26 28.49 33.68 36.27 77.95

Average Fixing Time(days) 42.91 61.50 68.85 70.33 78.99 92.33

Mobile apps

Average Number of MEs 0.15 0.42 0.66 0.81 0.91 1.11

Average Size (Words) of MEs 29.33 46.23 71.94 85.51 93.28 174.71

Average Fixing Time(days) 30.97 37.71 48.79 50.58 55.15 79.29

We observe that the ME ratio in mobile apps is higher than that in desktop software at all length fields.

To verify this observation, we perform a t-test on ME ratios in these two types of software with the null

hypothesis: The ME ratio in mobile apps shows no noteworthy difference against the ME ratio in desktop

software. We get a p-value of 0.00153, which is less than 0.05, and hence we reject this hypothesis.

For both of desktop software and mobile apps, the average fixing time for BRs that include at least one

ME is shorter than that for BRs without any ME. This fact indicates that MEs may facilitate shortening

bug-fixing time. To verify the relationship between the ME/NME ratio and the fixing time, we conduct a

7

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

t-test for average fixing time of two sets: BRs containing MEs and BRs without any ME. We define the

null hypothesis: The average fixing time for BRs that include MEs shows no noteworthy difference against

the average fixing time for BRs without any ME. The p-value is 0.01547 and 0.03671 for desktop software

and mobile apps, respectively. Since both p-values are less than 0.05, we reject the null hypothesis. In

other words, the average fixing time for BRs that include MEs is significantly different from that for

BRs without any ME in desktop software and mobile apps.

For BRs that contain MEs, the average fixing time in mobile apps is shorter than that in desktop

software. We conduct a t-test with the null hypothesis: The average fixing time for BRs that include MEs

in mobile apps shows no noteworthy difference against that in desktop software. Since the p-value is

0.0005744, which is less than 0.05, we reject this null hypothesis.

As shown in Table III, with the increase of BRs’ lengths, the average fixing time increases. Even

though the ME ratio increases for both of desktop software and mobile apps, it is not a major reason

of increasing fixing time. Instead, it is due to the small number and size of MEs per BR. For example,

when the BRs’ length is more than 500 words, the average number of MEs per BR in desktop software

is 0.65, and the average size of MEs per BR that includes at least one ME is 77.95. For long BRs,

developers have to spend more time on understanding how the bugs are produced and filtering out the

noisy data so that the fixing time increases. However, the average fixing time for mobile apps is less

than that for desktop software. We execute t-test for the values of BR−MERatio
AverageBR lenth at each size range for

these two types of software with the null hypothesis: There is no significant difference between desktop

software and mobile apps on the relationship of BR-ME ratio and average BR length. Since the p-value

is 0.002074, which is less than 0.05, we reject this hypothesis. The higher ratio of MEs in BRs of mobile

apps may be a major reason why their average fixing time is shorter.

To verify whether the MEs can affect the fixing time, we conduct the empirical analysis via a

questionnaire survey. We send the online survey https://www.surveymonkey.com/r/CFZN9FN to the top

100 active contributors who posted the largest number of comments to BRs in the desktop and mobile

apps of our data sets. Among 98 responses, 60 contributors serve desktop software and 38 contributors

work at mobile apps.

Fig. 2 shows the results of the questionnaire survey. We summarize the answers to Q1-Q3 as follows:

• Q1: Most of the contributors in both of desktop software and mobile apps think that the long bug

reports delay the fixing time.

• Q2: Most of the contributors in both of desktop software and mobile apps think that the MEs such

as stack trace, code example, and patch shorten the fixing time.

8

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

42/60

31/38

14/60

4/384/60
3/38

0

10

20

30

40

50

60

70

desktop software mobile apps

Di
st

rib
ut

e
of

 A
ns

w
er

 R
at

io

Software Type

Yes
No
I am not sure

(a) Q1: Do you think whether the bug reports with long-

length delay the fixing time?

37/60

20/38

51/60

29/38

49/60

25/38

18/60

12/38

0/60 0/38

13/60

5/38

0

10

20

30

40

50

60

70

desktop software mobile apps

Di
st

rib
ut

e
of

 A
ns

w
er

 R
at

io

Software Type

stack Trace
Code Example
Patch
natural Language
Noisy Data
Others

(b) Q2: Which element(s) can help you shorten the fixing

time?

49/60

24/38

7/60 6/38
4/60

8/38

0

10

20

30

40

50

60

70

desktop software mobile apps

Di
st

rib
ut

e
of

 A
ns

w
er

 R
at

io

Software Type

Yes
No
I am not sure

(c) Q3: Which element(s) can delay the fixing process?

4/60
2/38

5/60
2/383/60 3/38

11/60
8/38

60/60

38/38

3/60 2/38
0

10

20

30

40

50

60

70

desktop software mobile apps

Di
st

rib
ut

e
of

 A
ns

w
er

 R
at

io

Software Type

stack Trace
Code Example
Patch
natural Language
Noisy Data
Others

(d) Q4: Do you think whether historical commit messages

related to reported bugs can help you shorten the fixing

time?

Fig. 2. Results of questionnaire survey

• Q3: Most of the contributors in both of desktop software and mobile apps think that noisy data

harms the fixing process.

Others in Fig. 2(b)-(c) refers to other factors. For desktop software, 5 contributors think that BRs’

quality, writing style, developers’ experience, root cause, and bugs’ recurrence can shorten the fixing time

whereas 8 contributors give the answer “None of the above”. In addition, 3 contributors summarize that

human factor delays the fixing process. For mobile apps, 1 contributor thinks that root cause can shorten

the fixing time while 4 contributors give the answer “None of the above”. Moreover, 2 contributors think

that the correctness of BRs’ descriptions and human factor delay the fixing process.

The investigation results demonstrate that lack of MEs is the major reason why the average fixing time

in desktop software is longer than that in mobile apps.

9

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

B. New resource: commit message

The analysis of the relationship between BRs’ features and bug fixing motivates us to suggest adding

additional data resources to enrich BRs, especially for desktop software, for resolving bugs. The data

resources should have two important characteristics:

• Enrichment: the new data resources should contain rich descriptions of bugs, i.e., high ratio of

MEs.

• Relevancy: the contents of new data resources should be related to the reported bugs in BRs and

are not noisy data.

Commit messages record what information has been changed in source code. Fig. 3 shows an example

of the commit message that includes five parts: 1) Title, 2) Description, 3) Feature, 4) Committer, and

5) Changed code.

Since this method will now construct a placeholder line, we want to use
it only where necessary to keep memory footprint to a minimum.

 spec/token-iterator-spec.coffee

29 29

30 30

31 31

32

32

33 33

34 34

35 35

2

@@ -29,7 +29,7 @@ describe "TokenIterator", ->

 })

 tokenizedBuffer.setGrammar(grammar)

- tokenIterator = tokenizedBuffer.tokenizedLineForRow(1).getTokenIterator()

+ tokenIterator = tokenizedBuffer.tokenizedLines[1].getTokenIterator()

 tokenIterator.next()

 expect(tokenIterator.getBufferStart()).toBe 0

（1）

（2）

（3）
（4）

（5）

Fig. 3. An example of commit message

By analyzing the textual contents shown in Fig. 3, we note that the commit messages meet the

characteristics of the required new data resources. For example, this case contains a code example-

TokenizedBuffer.prototype.tokenizedLineForRow, which is related to the bug reported

in # 12933. Moreover, the code example enriches bug report # 12933 and can help to fix the bug.

For the answer of Q4 as shown in Fig. 2, most of the contributors in desktop software think that

historical commit messages are useful to shorten the fixing time, and the ratio is higher than that in

10

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

mobile apps. The result is in consistence with the statistical analysis on the relation between BRs’ main

features and fixing time shown in Table III. Compared with desktop software, the ratio of MEs in BRs

of mobile apps is higher, and the average fixing time is shorter. Thus, the contents of BRs in mobile

apps may be enough for developers to resolve the reported bugs.

As a conclusion, historical commit messages can enrich related BRs especially in desktop software

because they can provide more detailed information (e.g., MEs) about the reported bugs. Using them,

researchers can develop algorithms to automate software maintenance tasks such as bug localization, fixer

recommendation, and severity prediction for GitHub software, especially for desktop software.

VI. CONCLUSION

We conduct a systematic investigation on the difference between the BRs for desktop software and

that for mobile apps in GitHub. Besides discussing the influence of the BRs’ features, we investigate the

relationship between BRs’ features and the time of bug fixing. We found that the average fixing time

for desktop software is longer than that for mobile apps due to the lack of high-ratio MEs contained in

BRs of desktop software. The results indicate that it is necessary to add new data sources to enrich BRs,

especially for desktop software. By doing so, developers could improve the effectiveness of automated

software maintenance tasks, such as fixer recommendation and bug localization. We find that commit

messages can facilitate these tasks for GitHub projects, especially for desktop software. For instance,

researchers can utilize the useful information (e.g., code example) extracted from commit messages to

improve the accuracy of bug localization using BRs. In future work, we will use commit messages

to develop effective algorithms for automating these software maintenance tasks and compare it with

traditional approaches for GitHub projects.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Natural Science Foundation of China under Grant

61602258 and Grant 61202396, in part by the Fundamental Research Funds for the Central Universities

under Grant HEUCFJ170604, in part by the Hong Kong GRF (No. PolyU 5389/13E, 152279/16E), and in

part by the Shenzhen City Science and Technology R&D Fund under Grant JCYJ20150630115257892.

REFERENCES

[1] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE’07, 2007, pp. 34–43.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann, “What makes a good bug

report?” in FSE’08, 2008, pp. 308–318.

11

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

[3] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting duplicate bug reports using

natural language and execution information,” in ICSE’08, 2008, pp. 461–470.

[4] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach towards more accurate duplicate bug report

detection,” in MSR’13, 2013, pp. 183–192.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in ICSE’06, 2006, pp. 361–370.

[6] X. Xie, W. Zhang, Y. Yang, and Q. Wang, “Dretom: Developer recommendation based on topic models for

bug resolution,” in PROMISE ’12, 2012, pp. 19–28.

[7] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the severity of a reported bug,” in MSR’10,

2010, pp. 1–10.

[8] Y. Tian, D. Lo, and C. Sun, “Information retrieval based nearest neighbor classification for fine-grained bug

severity prediction,” in WCRE’12, 2012, pp. 215–224.

[9] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? - more accurate information retrieval-based

bug localization based on bug reports,” in ICSE’12, 2012, pp. 14–24.

[10] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug localization using structured information

retrieval,” in ASE’13, 2013, pp. 345–355.

[11] M. D. Syer, M. Nagappan, A. E. Hassan, and B. Adams, “Revisiting prior empirical findings for mobile

apps: an empirical case study on the 15 most popular open-source android apps.” in CASCON’13, 2013, pp.

283–297.

[12] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical analysis of bug reports and bug

fixing in open source android apps,” in CSMR’13, 2013, pp. 133–143.

[13] B. Zhou, I. Neamtiu, and R. Gupta, “A cross-platform analysis of bugs and bug-fixing in open source projects:

desktop vs. android vs. ios,” in EASE’15, 2015, p. 7.

[14] C. A. Boneau, “The effects of violations of assumptions underlying the t test.” Psychological bulletin, vol. 57,

no. 1, p. 49, 1960.

[15] L. Moonen, “Generating robust parsers using island grammars,” in WCRE’01, 2001, pp. 13–22.

BIOGRAPHY

Tao Zhang is an associate professor in the College of Computer Science and Technology at Harbin

Engineering University. He is also an research associate in the Department of Computing at Hong Kong

Polytechnic University. His research interest includes mining software repositories and empirical software

engineering. Zhang received a PhD in computer science from University of Seoul, South Korea. Contact

him at cstzhang@hrbeu.edu.cn, sites.google.com/site/toddtzhang/home.

Jiachi Chen is a master student in the Department of Computing at Hong Kong Polytechnic Uni-

versity. His research interest includes program analysis and network security. Chen received his bach-

12

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

elor’s in the Institute of Service Engineering at Hangzhou Normal University. Contact him at chenji-

achi317@gmail.com.

Xiapu Luo is an assistant professor in the Department of Computing at Hong Kong Polytechnic Univer-

sity. He is also affiliated with the Shenzhen Research Institute of the Hong Kong Polytechnic University.

His research focuses on Android security, network security and privacy, and Internet measurement. Luo

received his PhD in Computer Science from the same university and then spent two years at the Georgia

Institute of Technology as a postdoctoral fellow. Contact him at csxluo@comp.polyu.edu.hk. He is a

corresponding author of this paper.

Tao Li is a professor in the school of Computer Science and Technology at Nanjing University

of Posts and Telecommunications. He is also a professor in the School of Computing and Information

Sciences at Florida International University. His research interests include data mining, computing system

management, information retrieval, and machine learning. He received his PhD in Computer Science from

University of Rochester, Rochester, NY. He received the US National Science Foundation (NSF) CAREER

Award and multiple IBM Faculty Research Awards. Contact him at towerlee@njupt.edu.cn.

13

This article has been accepted for publication in IEEE Software but has not yet been fully edited.

Some content may change prior to final publication.

Digital Object Identifier 10.1109/MS.2017.377142400 0740-7459/$26.00 2017 IEEE

