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Abstract—Current commercial mobile streaming applications call for innovative technologies for stable QoS guarantee. In this paper,
we provide a comprehensive treatment of QoS guarantee through a contract-ruled approach. In particular, we envision a peer-assisted
mobile peer-to-peer streaming system as a QoS trading market, where all parties involved in the system, i.e., Service Provider (SP),
End User (EU) and Assisting Peers (APs), are real economic entities that are organized with contractual constraints to achieve a stable
and guaranteed QoS output. The QoS trading in the market is divided into two parts. One is a basic contract that establishes the
business agreement between an interested EU and a SP. We propose a QoS contingent payment to mitigate the EU’s concern on
the uncertainty of QoS delivery and derive an optimal contract that achieves Pareto efficiency. The other is a subcontract, in which we
model transactions between the SP and contracted peers as a principal multi-agents problem, that achieves a desired joint QoS output.
We further design a sharing scheme with team penalty that could overcome the free-riding problem existed in the subcontract and show
that the Pareto efficiency can be achieved by setting a proper team penalty. Both numerical evaluations and prototype experiments
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1 INTRODUCTION

The increasing capability and versatility of mobile devices
have fueled a growing thirst for mobile streaming services [1].
In fact, mobile multimedia services are deemed to be a
new source of revenue for the wireless networks like 3G.
However, current mobile streaming services are far from
meeting customers’ expectations, in aspects of not only the
high price of transmitting data but also the lack of QoS
guarantee. This is primarily due to the fact that current mobile
streaming services are mostly based on a costly centralized
server approach, which is characterized by poor scalability,
limited access points and low user experience. The lack of
QoS guarantee together with a relatively high service price
significantly hinders the commercialization of mobile stream-
ing applications and has awaken market interests in alternative
solutions.

One promising solution is to introduce peer-to-peer (P2P)
technology into current infrastructure to improve the service
quality, namely mobile peer to peer (MP2P), where the peers
close to an End User (EU) can assist a Services Provider (SP)
to provide services in a fashion of P2P mode, namely peer-
assisted mode. A typical application scenario is that, a mobile
user can watch popular programs provided by the SP, which
are actually hosted by some potential users roaming nearby
through Wi-Fi communications. The popularity of mobile
devices capable of accessing to multiple wireless networks,
e.g., 3G and Wi-Fi, opens up the possibility of providing such
services. In fact, MP2P has stimulated an interesting new trend
that users share their content information with each other. Very
recently many research projects have been reported, which

implement this basic idea of mobile content sharing [2] [3] [4].
However, introducing the peer-assisted mode into mobile

applications poses new challenges, among which QoS man-
agement is one of the most crucial ones. Typical mechanisms
taken for the QoS performance in P2P networks, such as
using optimal source scheduling [5] or incentives [6] [7], may
improve the cooperation degree of the system, yet they are
far from meeting the requirement of the QoS in the wireless
networks. EUs in such networks tend to keep stationary tempo-
rally while nearby peers that can provide peer-assisted services
are limited. Moreover, because of the limits of computation
and battery power capabilities of handsets, mobile users likely
decline to participate such peer-assisted services. Thus, it is
important to develop a pertinent mechanism to enable an
effective QoS management while allowing all participants to
benefit from MP2P streaming services significantly.

Comparatively, very little attention has been focused on
handling the QoS guarantee problem in mobile streaming
applications in the form of contract. The contract theory,
also known as principal-agent theory, investigates the dilemma
between a principal (employer) and an agent (employee),
where the agent has to fulfill the obligations specified in
the contract, and in return it will receive some remuneration
from the principal. The contract theory is appropriate for
providing mobile streaming services since it can efficiently
regulate the roaming peers in the context of contracts to fulfil
contractual obligations, as well as motivate peers’ self-interests
in participating in the provision of peer-assisted services.

In this paper, we propose a comprehensive framework for
QoS guarantee in mobile P2P streaming scenarios through a
contract-ruled approach. We envision a mobile P2P streaming
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system as a QoS trading market, the parties involved in this
system, including SP, EUs and Assisting Peers (APs), are all
real economic entities. Specifically, we organize the involved
parties with contractual constraints and divide the QoS trading
in the market into two parts (as shown in Fig. 1(a)): One
is a basic contract that establishes the business agreement
between an interested EU and a SP, where the EU acts as a
principal and the SP is an agent. The basic contract specifies
the corresponding QoS requirements of the EU for a given
service price. The other is a subcontract that models the
transactions between the SP and APs, where the SP acts as a
principal and the APs are agents, respectively.

A realization for peer-assisted mobile streaming services is
exhibited in Fig. 1(b): Consider a service region where 3G and
Wi-Fi are both available for EUs, e.g., in an airport lounge
or at a sport arena. Generally, streaming services provided
through Wi-Fi are more stable and economical than through
3G. However, by taking consideration of the fact that the
commercial Wi-Fi may be difficult for EUs to connect due
to various reasons, e.g., a large number of users or poor
signal quality, SP may prefer to employ APs to improve its
mobile streaming services through self-built Wi-Fi hotspots,
for the purposes of enhancing programs’ QoS and reducing
their operating cost1. The procedure of the QoS trading is
briefly described as follows:

1) An EU discovers its favorite video program via a client
terminal and sends a service request to the SP. The EU
could also choose a proper bandwidth according to the
per-unit bandwidth price given by the SP and its price
elasticity.

2) On receiving the service request, the SP indicates the
EU to start a Wi-Fi hotspot.

3) The EU launches a Wi-Fi hotspot by using its client
terminal. Note that the Wi-Fi hotspot built by EU should
have a special SSID to distinguish itself from other Wi-
Fi hotspots.

4) The EU notifies the SP after the self-built Wi-Fi hotspot
is launched successfully.

5) The SP calculates the needed bandwidth resource for the
EU and initiates a sealed bid auction for the prospective
candidate peers {P1, ..., Pn} within the EU’s Wi-Fi cov-
erage. Here the prospective candidate peers refer to the
peers that have reserved the caches (e.g., peers have ever
watched the requested program) and are willing to get
payoff by providing their resources.

6) The candidate peers submit their bids that represent their
QoS information to the bidding pool.

7) The SP selects a proper number of APs {A1, ..., Am} from
the candidate peers according to the submitted bids.

8) The APs join the Wi-Fi hotspot and provide the agreed
joint QoS to the EU after signing a subcontract with the
SP. At the same time, all the APs keep 3G connections
with the SP to periodically get the update information.
In exchange, they get compensations to subsidize their

1. We deem the available bandwidth as the major metric of QoS in
this paper, because for mobile streaming services, the available bandwidth
determines the services’ loss rate and time delay that have dominant impacts
on EUs’ estimation on the services.
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Fig. 1. The contract-ruled approach: (a) Illustration; (b)
Procedure.

dissipative power and bandwidth costs.
The proposed contract-ruled approach can be viewed as

a more rigorous case of incentive mechanisms with several
additional specifications. To the best of our knowledge, we
are the first to tackle the QoS guarantee problem in mobile
streaming applications by using a contract-ruled approach.
It should be noted that the goal of this work is to design
effective incentive mechanisms for MP2P streaming services.
We emphasize more on the economic analysis of the approach
from a macroscopic view, regardless of concentrating on the
detailed technical issues of system implementation. We believe
that this work can shed some light on the deployment and
evolution of practical mobile streaming services.

Our major contributions in this paper are summarized as
follows:

1) We present a QoS trading architecture that allows eco-
nomic strategies to be employed in managing the parties
involved in the QoS contracts. We concentrate on the
design of both basic contract and subcontract in the
context of the proposed architecture.

2) In the case of the basic contract, we propose a QoS
contingent payment scheme to mitigate the uncertainty
of QoS delivery for mobile streaming services. We
derive the optimal price for this contingent contract
and show that whether the SP possesses the private
information of QoS plays a critical role in the choice of
a pricing scheme. We further explore an optimal contract
that achieves Pareto efficiency.

3) In the multi-agents subcontract, we find that there always
exists a free-riding problem if we follow the full-sharing
allocation scheme in which SP distributes the profits
collected from agents’ bandwidth output among the
agents according to a certain specification, e.g., the
contributions of the team members. To address this
problem, we design a feasible allocation scheme with
team penalty, in which SP sets a target of bandwidth
output that the QoS work team should achieve, and
a monetary profit for the joint bandwidth output will
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be assigned to all of the team agents if the target
is achieved; otherwise, each team agent will suffer a
penalty. The proposed scheme can induce an efficient
equilibrium with desired joint QoS output among the
team agents.

The remainder of the paper is organized as follows. Section
2 studies the basic contract. Section 3 studies the multi-agents
subcontract. Section 4 presents the numerical analysis of the
proposed approach. Section 5 discusses the prototype system’s
implementation and performance evaluation. Related work is
briefly surveyed in Section 6. Conclusions and future work are
given in the last section.

2 BASIC QOS CONTRACT
In this section, we study the basic contract that deals with
the economic relationship between an EU and a SP and then
construct a basic contract.

2.1 Economic Model for Basic Contract
Consider a peer-assisted mobile P2P network with n mobile
peers and a SP, which are all risk neutral, i.e., they make
decisions merely based on the expected utility and price of
the program. Each mobile peer can either be an EU or an AP.
Being an EU, it entertains programs provided by the SP. As an
AP, it can get payoff by contributing its idle resources in the
peer-assisted mode, with the cost of sacrificing its mobility.
Each peer is free to decide to be an AP or EU before it signs
a contract. According to the contract, APs should provide the
contracted bandwidth to the specified EU at the agreed time
and place for the purpose of QoS guarantee. A peer’s role is
determined after signing a contract with the SP and cannot
switch between AP and EU during the contract period. This
arrangement is mainly due to two reasons. One is that the peer
that acts as an AP should sacrifice its mobility to guarantee the
QoS of EU it serves. The other one is due to the limitation of
Wi-Fi channels such that a peer cannot play duel roles of AP
and EU at the same time. For example, an EU, while building
a Wi-Fi hotspot to allow other peers to join it, cannot associate
with other Wi-Fi hotspots built by other EUs as an AP at the
same time.

Normally, the SP sets a price for providing mobile streaming
services with QoS guarantee to the EU, which is obligated by
a contract called basic contract. According to the contract, the
EU pays for the streaming services provided by the SP, and in
return it will be served with a contractual QoS. The contract
mainly consists of three components: 1) a performance compo-
nent which specifies the agreed QoS metric, i.e., the bandwidth
that the SP promises to provide; 2) a payment component
that specifies the EU’s payment; 3) a time component which
defines the effective time of the contract.

In this basic contract, the SP earns revenue by providing
QoS-promised MP2P streaming services. However, there may
be inherent uncertainty in the MP2P streaming services due
to many factors, such as unexpected disturbance in the trans-
mission process, inefficient management of APs. Obviously,
such uncertainty has negative business effects on EUs, since
EUs always value a mobile streaming service in respect to

its delivered quality. The service with unsatisfied quality will
lead to a reduced trading probability between the SP and EUs,
especially when the SP and EUs have different expectations
about its service quality. To mitigate the EUs’ concerns about
the QoS uncertainty, a possible solution is to apply a QoS
contingent price tariff with a money rebate [8], [9]. For
example, when the SP promises a QoS level for the EU, the
EU monitors the long-term QoS. The EU will get compensated
in the form of money rebate if the actual performance is below
the promised level. In other words, the SP takes the QoS
uncertainty into account when setting the price for its services.

Assume the SP adopts the QoS contingent price tariff
with a constant rebate, thus the basic contract can also be
considered as a QoS contingent contract. We formally define
a contingency price structure in the following way. The SP
announces a price P associated with the promised QoS level.
The final price paid by the EU is contingent, which depends
on the realized QoS level. For instance, if the SP and EU have
reached an agreement on a standard bandwidth B̃, the EU will
receive a rebate r ∈ [0, P] when the QoS performance falls
below the promised bandwidth B̃2. Generally, the rebate r can
be set as a fixed value or a discount, since r is used more
for symbolic meaning, which is used as a tool to strengthen
EUs’ confidence in streaming services provided by the SP, i.e.,
the SP uses the rebate r as a sign to declare SP’s belief on
its service quality. Similar approaches can be found in some
works of P2P networks [10], [11]. r is assumed the same for
all EUs for ease of discussion; otherwise, it will incur more
cost SP has to withstand, which will also make the discussion
more complicated.

However, due to the inherent uncertainty of the mobile
streaming services, in this basic contract, the committed QoS
level is judged by an average QoS. This can be achieved by
dividing a period of the contract time into many time slots
and letting SP calculate the average QoS in this period. We
consider the average QoS as the actual bandwidth received by
EU. Therefore, the contingent price structure can be mathe-
matically formulated as:

PEU =

{
P , B ≥ B̃;
P − r , B < B̃. (1)

Here, B is the bandwidth received by the EU and B̃ is the
promised bandwidth level. For ease of discussion, we assume
the standard bandwidth B̃ is same for all EUs . In fact, B
is the expected bandwidth of the EU. We deem it as the
actual bandwidth received by the EU until the transmission
uncertainty is introduced into the model in Section 3.4.

We adopt the concept of the service estimation and apply it
to our model. As EUs are heterogeneous in their valuations on
the services, we denote the EU’s valuation on the streaming
service as v to identify EU’s preference on the same service
and assume it is uniformly distributed in [0, 1] for simplicity. v

2. SP can get the realized QoS information of EU by executing a back-
ground process in the client application. The process collects the realized QoS
information and sends it to SP regularly. All transmissions of QoS information
occur over an encrypted channel. This means that all the information is
encrypted and cannot be read or tampered by EUs.
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can also be interpreted as the “type” of the service from EU’s
perspective, which is different from the “quality of service”.

For ease of presentation, the utility of EU, denoted as UEU ,
will be v when the delivered service meets the promised
QoS level; otherwise, if the promised QoS level is missed,
the EU’s utility will be negatively affected by additional
utility φv, which indicates a utility loss caused by the miss
of the promised QoS level. Here φ ∈ [0, 1] is a coefficient
that denotes the ratio of the negative utility of EU to its
positive utility. We set φ in [0,1] to ensure that EU will
receive a positive utility. Otherwise, if φ is greater than 1,
the utility of EU will be less than 0 and EU will terminate the
service. For the purpose of illustrations, we have adopted some
linear functions to make the results more readable and easily
understood. Note that similar treatments can be found in some
works of network economics [8], [9], in which linear functions
are used in their models. Of cause, more complex non-linear
functions for positive or negative utilities can also be used in
our model. We believe that they do not fundamentally alter
the results obtained in the paper.

Thus, the expected utility of the EU is

UEU =

{
v , B ≥ B̃;
(1 − φ)v , B < B̃. (2)

The concept of QoS defines the parameters a service
provider should guarantee. However, these parameters of QoS
do not take the user experience into consideration. In our
model, we assume that EU has a risk estimation about the
performance of the QoS, which can be represented as a
probability µ that the realized QoS is below the promised QoS
level.3 This is common for many works in IT services, e.g.,
voice over IP, video streaming applications [9] [12], owing to
the factors such as unobservability of products, stochasticity
in manufacturing or delivery processes, lack of end-to-end
control. Much alike the perceived brand quality, in practice
the parameter µ can be used for EU to evaluate the perceived
QoS, i.e., the user’s opinion about the QoS that does not meet
his or her expectation, which is considered available to the SP4.
For ease of discussion, we assume µ is the same for all EUs
in this paper. Therefore, the EU with different v can estimate
its expected revenue by taking account of its risk estimation
µ, which is represented as follows:

REU = (1 − µφ)v − (P − µr). (3)

As for the SP, it has to undertake a constant cost C for
providing the MP2P streaming services, and if the SP fails
to deliver the promised bandwidth level, an additional cost
c incurs due to the failure handling process, i.e., some extra
efforts, such as customers’ service calls or error handling, are
required to manage the failure of not delivering the promised

3. Generally, the probability µ will increase with the increasing of B̃ if the
other parameters are fixed. However, with the given B̃, the probability µ has
little relation with B̃.

4. As a service provider, it is reasonably assumed that SP can obtain more
information than EUs by taking the consideration that the SP collaborates
the whole MP2P streaming system and it could get this information through
various activities, e.g., coupon or survey. While an EU just starts to use the
service, it is very likely that SP’s belief will be higher than EU’s.

QoS level to EU. Obviously, the term c should be positive.
Thus, the cost of the SP can be described as

CS P =

{
C , B ≥ B̃;
C + c , B < B̃. (4)

The SP possesses the private information about its QoS,
represented as a risk probability θ. θ is used to describe the
expectation of the service fallibility from SP’s perspective.
Thus, SP’s expected revenue function can be expressed as:

RS P = (P − θr) − (C + θc). (5)

Next, we investigate the benefits of applying the contingent
contract. Intuitively, the contingent contract may enhance EUs’
interests in the MP2P streaming services, thereby expand the
trading opportunities between the SP and EUs. Especially, the
SP and EUs may not agree on a single price, since they may
have different estimations on the performance of the QoS.
Proposition 1 formulates the intuition and shows that it is
beneficial to the SP to offer a contingent contract.

Proposition 1: The QoS contingent contract is able to
attract more EUs to subscribe MP2P streaming services com-
paring with the single price contract, when EUs underestimate
the SP’s QoS.

Proof: In the QoS contingent contract, for an EU staying
in the system, its revenue should satisfy

REU = (1 − µφ)v − (P − µr) ≥ 0. (6)

For the SP, its revenue should also be positive, i.e.,

RS P = (P − θr) − (C + θc) ≥ 0. (7)

Combining Eq. (6) with Eq. (7), we get

(µ − θ)r ≥ (C + θc) − (1 − µφ)v.

In terms of the QoS contingent contract, EU’s marginal
value vm, which is the minimum utility the EU achieves for
staying in the system, is

vm =
(C + θc) − (µ − θ)r

1 − µφ .

Meanwhile, in the single price contract without a money
rebate, i.e., r = 0, the marginal type of the EU is

v′m =
C + θc
1 − µφ .

When the SP applies the QoS contingent contract in which
the SP’s QoS is underestimated by the EU, i.e., r > 0 and
µ > θ, which lead to (µ − θ)r > 0, we can get

1 − vm > 1 − v′m.

Hence, the QoS contingent contract can attract more EUs
to subscribe the SP’s services comparing with the single price
contract.



5

2.2 Optimal Basic Contract Payment Scheme

Given the revenue functions of EU and SP, we concentrate
on investigating the strategic interaction between two parties:
EUs and SP. Note that in the context of the QoS contingent
contract, we consider the EUs of the entire system as a single
party. In what follows, the singular term “EUS” is used to
refer to all the EUs as a whole.

In the QoS contingent contract, the SP has the power to
determine the service price so as to maximize its revenue.
According to the given price, the EUS can decide its service
demand. We define EUS’ demand function as a participating
probability, i.e., the probability that EUS will participate in
the system, to denote EUs with different valuations to use the
service. Let D(P, r) denote the demand function of EUS, which
characterizes the changing of the EUS’ service demand in face
of the SP’s price changing. The bargain between the SP and
EUS is naturally a two-stage Stackelberg game [13], where in
the first stage, the SP acts as a leader by setting the price P
and rebate r, and the EUS acts as a follower to determine
the service demand. Following the market discipline, the
increasing price will cause the EUS to lower its probability
to participate in the system as it is less likely to get a positive
revenue from the service, and thus results in the decreasing
service demand, and vice versa. The SP can choose its optimal
price to maximize its revenue by expecting EUS’ demand
function. We can derive the Sub-game Perfect Equilibrium
(SPE) of the Stackelberg game by applying the concept of the
backward induction. The method works as follows: Firstly, in
the second stage, for the given price P and rebate r, the EUS
determines its service demand. Then back to the first stage,
the SP, acting as the leader of the Stackelberg game, is aware
of the EUS’ demand function D(P, r) and seeks to choose
its optimal P∗ and r∗ to maximize its revenue. Hence, the
sub-game perfect equilibrium {P∗, r∗} of the Stackelberg game
can be found by the backward induction. The EUS’ demand
function is depicted in Lemma 1.

Lemma 1: Given EUS’ valuation on the services is uni-
formly distributed in [0, 1], the EUS’ demand function, i.e.,
the probability that EUS has the willingness to subscribe the
services is

D(P, r) = 1 − P − µr
1 − µφ. (8)

Proof: It can be verified that the expected revenue of EU
depicted in Eq. (3) is increasing when v increases. By setting
REU = 0, we can get the marginal type of the EU that wishes
to subscribe the services:

vd =
P − µr
1 − µφ.

As the EUs with type below vd will not subscribe the
services, by further considering that EUS’s type is uniformly
distributed in [0, 1], we can get that the service demand, i.e.,
the probability that the EUS has the interest to subscribe the
services from the SP, is

D(P, r) = 1 − vd = 1 − P − µr
1 − µφ .

Given the EUS’ demand function, the SP needs to decide
how to carefully set the price so as to extract maximal surplus
from the EUS. The SP’s expected revenue under the contingent
contract is

RS P = (P − θr −C − θc) · D(P, r), (9)

where (P− θr−C − θc) is the SP’s expected marginal revenue
that the SP could extract from a single EU, D(P, r) is the
EUS’ demand function indicated in Eq. (8). Thus, the optimal
contingent payment provided by the SP that achieves its
maximal revenue should satisfy

(P∗, r∗) ∈ arg max
(P,r)
{(P − θr −C − θc) · D(P, r)}. (10)

By solving the above problem, we can obtain the SPE
of the QoS contingent contract, which contains two possible
optimal price schemes when the information about the QoS is
asymmetric, i.e., µ , θ. The result is depicted in Lemma 2.

Lemma 2: The SPE of the QoS contingent contract con-
tains two possible optimal price schemes:
(1) contingent price with full rebate (r = P)

P∗ =
1
2

[
1 − µφ
1 − µ + (C + θc)

1 − µ
1 − θ

]
, (11)

(2) single price without rebate (r = 0)

P∗ =
1
2

(1 − µφ +C + θc). (12)

Proof: By applying the first order condition of Eq. (10)
with respect to P and r, we get

∂RS P

∂P
=

1 − µφ − P + µr − P + θr +C + θc
1 − µφ ;

∂RS P

∂r
=

(P − θr −C − θc)µ − (1 − µφ − P + µr)θ
1 − µφ .

Applying the second order condition of ∂RS P
∂P and ∂RS P

∂r with
respect to P and r, we obtain M = ∂

2RS P
∂P2 = − 2

1−µφ , N = ∂
2RS P
∂r2 =

− 2µθ
1−µφ , and L = ∂

2RS P
∂P∂r =

θ+µ
1−µφ .

Notice that the Hessian is MN − L2 = − (θ−µ)2

(1−µφ)2 , which
is always negative when θ , µ. Therefore, the SP gets
the maximal revenue at the boundary r = 0 and r = P,
which correspond to the two possible optimal price schemes:
contingent price with a full rebate and single price without
any rebate, respectively.

By substituting r = P into Eq. (10) and applying the first
order condition with respect to P, we can get the corresponding
optimal contingent price of the SP as Eq. (11). The optimal
price under the single price contract can also be obtained as
Eq. (12) by substituting r = 0 into Eq. (10) and applying the
first order condition.

The essential idea of Lemma 2 is that, if the SP is able to
gain benefits by offering a rebate r when the EU underesti-
mates the SP’s QoS, a larger rebate will be offered by the SP
since the SP’s revenue increases with the increasing of r. The
maximal possible rebate finally equals to the optimal price P∗,
which induces the maximal revenue.

From Lemma 2, we show that the SP has two possible
optimal contracts at the equilibrium state. We proceed to deter-
mine the conditions where the SP chooses the corresponding
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optimal contract. We find that the existence of the optimal
contingent contract depends mainly on whether or not the SP
has the private information about the performance of services.
Especially, the SP will prefer to offer a full rebate contract
when the EUS underestimates the performance of services,
i.e., µ > θ. Otherwise, it is beneficial to the SP to offer a
single price contract. We express this result in Proposition 2.

Proposition 2: The SP will prefer to offer a contingent
contract when the EUS underestimates the performance of
services, i.e., µ > θ; otherwise the SP will prefer to offer
a single price contract.

Proof: We first compute the SP’s revenue in the presence
of the two different optimal contracts. When the SP applies
the full rebate payment scheme, i.e., r = P, the SP maximizes
its revenue by setting a proper price P∗:

P∗ ∈ arg max
P
{(P − θP −C − θc)D(P)}. (13)

By applying the first order condition of Eq. (13) with respect
to P, we could get the optimal price P∗ in the QoS contingent
contract with a full rebate as follows:

P∗ =
1
2

[
1 − µφ
1 − µ + (C + θc)

1 − µ
1 − θ

]
,

and the corresponding optimal revenue, denoted by R∗S P1
, is as

follows:

R∗S P1
=

(1 − µφ)2(1 − θ)2 − (C + θc)2(1 − µ)2

4(1 − µφ)(1 − µ)(1 − θ) . (14)

Likewise, we can also obtain the corresponding revenue
R∗S P2

when the SP applies the single price payment without
any rebate (i.e., r = 0):

R∗S P2
=

(1 − µφ)2 − (C + θc)2

4(1 − µφ)
. (15)

By comparing the revenue of the SP under the two different
payment schemes, we can verify that the profit difference
between the two pricing schemes is a function of µ and θ:

R∗S P1
− R∗S P2

=
(µ − θ)

[
(1 − µφ)2(1 − θ) + (C + θc)2(1 − µ)

]
4(1 − µφ)(1 − µ)(1 − θ) .

(16)
Notice that 0 < µ < 1, 0 < θ < 1 and 0 < φ < 1, we can see

that R∗S P1
− R∗S P2

> 0 when µ > θ, thus the SP will prefer to
choose the QoS contingent payment if the EUS underestimates
the performance of services; otherwise, the SP will prefer to
offer a single price contract.

We can see that the SP’s private information about its
QoS plays a crucial role in making the contingent payment
attractive, and the value of contingent payment increases when
SP is more confident of the QoS, relative to EUS. Since
MP2P streaming services are new and deployed rapidly, EUS
may be unfamiliar with them. There may exist a significant
gap in belief of QoS between SP and EUS, the contingent
payment can serve as an effective signaling mechanism for
new entrants.
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 R'SP

 R'EUS

G

Fig. 2. Illustration of Pareto improvement. The solid lines
represent the indifference curves of SP and EUS; the
dashed lines represent the indifference curves of SP and
EUS that reach Pareto efficiency. Point G indicates that
the system achieves the Pareto optimum.

2.3 Pareto Improvement in Basic Contract

Up to now, we have obtained the equilibrium of the basic
contract. However, it is shown that the equilibrium of a game
may not achieve full efficiency in [14]. A classic concept in
game theory quantifying the efficiency of a game is Pareto
efficiency, which characterizes an efficient condition of the
system in which no party in the system can be better off
with no other parties being made worse off. We can verify
that P∗ is the equilibrium price of the basic contract, but
it is not the Pareto efficient price. The implication of the
analysis is that the SP non-cooperatively maximizing its own
revenue will result in the corresponding loss of EUS’ welfare.
In fact, if the SP makes some compromise, for instance, the SP
decreases its price and the EUS expands its service demand,
i.e., increases its participating probability, both parties can
derive better revenues. Conceptually, we can illustrate this in
Fig. 2. In the shaded area enclosed by two indifferent curves
RS P and REUS

5, the revenues of the SP and EUS can both be
improved to R′S P and R′EUS from RS P and REUS , respectively. It
should be noted that, in Fig. 2 the lower curve R′EUS represents
the higher revenue for the EUS, so the EUS attains a higher
revenue through Pareto improvement.

Following the analysis in Subsection 2.2, our goal is to
design an optimal basic contract so that the system consisting
of the EU and SP can achieve Pareto efficiency. Notice that
the revenue function of a single EU with type v is depicted
in Eq. (3), thus the total revenue of the entire EUS can be
represented as

REUS =

∫ 1

vd

[(1 − µφ)v − (P − µr)]dv, (17)

where vd is the marginal type of EUs.
Let Z = 1− vd denote the service demand of EUS, Eq. (17)

can be further reduced to

REUS =
1
2

(1 − µφ)(2 − Z)Z − (P − µr)Z. (18)

5. In microeconomic theory, an indifference curve shows that a consumer’s
preference is indifferent in the face of different bundles of goods. In the case
of Fig. 2, the points on the curve represent the different combinations of the
price P and the service demand Z, which render the same level of revenue
for the SP or EUS.
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Accordingly, the revenue of the SP can also be rewritten as

RS P = (P − θr)Z − (C + θc)Z. (19)

Note that the first item (1− µφ)(2− Z)Z of Eq. (18) can be
interpreted as the utility that the EUS gets from the service
demand Z, the second item (P − µr)Z is the total payment
caused by the demand Z. Essentially, it can be observed that
the payment (P − θr)Z in Eq. (19) (or (P − µr)Z in Eq. (18))
serves only to allocate the total revenue between the EU and
SP. We may find an optimal basic contract that maximizes
the total revenue through a bargain process, i.e., the SP sets
the services’ price to maximize its revenue, the EUS bargains
with the SP by varying its service demand. With this concept,
we can use the Nash Bargain Solution (NBS) [15] to get a
Pareto efficient contract. Mathematically, we seek the optimal
strategy profile {P∗, Z∗} by solving the following problem:

max
P≥0,Z≥0

REUS · RS P. (20)

Proposition 3: There exists an optimal Nash equilibrium
with Pareto efficiency for the basic contract, and the equilib-
rium {P∗,Z∗} satisfies:

P∗ = C + θ(c + r),

Z∗ = 1 − (C + θc) − (µ − θ)r
1 − µφ .

Proof: We use the Nash Bargain Solution (NBS) [15] to
get a Pareto efficient contract. In fact, the Pareto efficiency
is an outcome of the Nash Bargain Solution according to the
conclusions of the work [16]. The optimal condition for the
Pareto efficiency to occur in this Nash Bargain process is that
EUS and SP reach a Nash equilibrium through negotiations.
If they cannot reach an agreement, the utilities of EUS and
SP become zero. Similar models are also used in some works
of game theory [17].

The optimal solution can be uniquely determined by apply-
ing the first order condition of Eq. (20) with respect to P and
Z:

∂(REUS · RS P)
∂P

= 0,

∂(REUS · RS P)
∂Z

= 0.
(21)

Rearranging Eq. (21), we get

∂REUS

∂Z
/
∂REUS

∂P
=
∂RS P

∂Z
/
∂RS P

∂P
. (22)

Notice that ∂REUS
∂Z /

∂REUS
∂P is the slope of EUS’ indifference

revenue curve and ∂RS P
∂Z /

∂RS P
∂P is the slope of SP’s indifference

revenue curve. As shown in Fig. 2, the revenues of two parties
RS P and REUS (i.e., the solid lines) could be further improved
by adjusting P and Z, until the curves of two parties R′S P
and R′EUS (i.e., the dash lines) are tangent to each other
at point G, which has optimal Z∗ and P∗. Obviously, the
solution of Eq. (22) is Pareto efficient, since the slope of
EUS’ indifference revenue curve is equal to the slope of SP’s
and neither of their revenues can be further improved. By

substituting Eq. (18) and Eq. (19) into Eq. (22), Eq. (22) can
be further reduced to

Z∗ = 1 − (C + θc) − (µ − θ)r
1 − µφ . (23)

The corresponding optimal price is P∗ = C + θ(c + r).
Proposition 3 shows that the basic contract could improve

both parties’ welfare and achieve Pareto efficiency by applying
the Nash Bargain Solution. This bargain process possibly
happens, especially under a competitive market with multiple
SPs, where the EUS will obtain a certain bargain power and
the SP cannot get a high revenue by setting an arbitrary price.
Notice that the optimal price P∗−θr = C+θc, i.e., the expected
marginal profit of the SP, P∗ − θr, equals to its marginal cost
C + θc, which indicates that the SP cannot further improve
its revenue by reducing its price. From the optimal service
demand of the NBS indicated in Eq. (23), we can see that
the optimal EUS’ service demand Z∗ is related to the SP’s
marginal cost C + θc, and the less the SP’s marginal cost,
the larger the EUS’ service demand. We can further verify
that Z∗ varies directly with the changing of (µ − θ)r, which
implies that when the EUS underestimates the QoS of the SP,
i.e., (µ − θ) > 0, the SP is able to extract a higher service
demand by offering a larger rebate r, which verifies the result
in Proposition 1.

3 MULTI-AGENTS QOS SUBCONTRACT

In this section, we describe the subcontract where the SP and
multiple APs act as principal and agents, respectively. We
first analyze the free-riding problem existed in the subcontract,
which leads to an inefficient Nash equilibrium. Following this
analysis, we propose a new profit allocation scheme with
team penalty and show that a Pareto efficient optimal Nash
equilibrium can be reached by setting a proper team penalty.

3.1 Economic Model for Subcontract
When the SP signs a basic QoS guarantee contract with an EU,
the SP first needs to arrange its contracted task (i.e., providing
streaming services to the EU with promised QoS) to the APs.
Here the APs refer to the prospective peers within the coverage
of the EU’s Wi-Fi hotspot which reserve the cache and wish
to make benefits from contributing their idle resources. The
SP then initiates an auction process in order to select a proper
number of APs to carry out the QoS task. The selected peers
form a QoS work team and the SP will sign a bandwidth
exporting subcontract with them, namely multi-agents QoS
subcontract, where the SP and all AP members are principal
and agents, respectively.

According to the multi-agents QoS subcontract, the work
team should export a promised joint bandwidth output to a
given EU which has reached a deal with the SP in the basic
contract. In return, the team members will receive some mon-
etary compensation from the SP in respect of the QoS output
they have provided. The team profits will be distributed among
team members based on the proportion of their contributions
in the QoS work. We use the available bandwidth as the
major measure of individual agent’s contribution. The joint
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bandwidth of the work team directly determines the monetary
profits of the whole QoS work.

Consider a subcontract between the SP and a work team
of m agents. We assume the useful bandwidth supplying of
the agents is {b1, ...bm}, the bandwidths provided by the whole

team determine a joint bandwidth B =
m∑

i=1
bi that exports to

the EU. We use monetary function M(B) to indicate how
much profit that the joint bandwidth contributed by APs
could convert. Note that the team profits are closely related
to the committed bandwidth to the EU. Here M(B) can be
considered as a utility function to capture the revenue that
SP could collect from EU by providing a certain bandwidth.
The revenue extracted from bandwidth may include multiple
incomes, e.g., the traffic fee paid by EU and the incomes due to
the network externality. As the primary contribution measure
is the bandwidth, we assume that the joint bandwidth can be
quantitatively evaluated by a monetary function M(B), where
M(B) is strictly increasing, concave, and differentiable with
bi.

In the subcontract, the SP derives a monetary bandwidth
output M(B) from the QoS task, it should also pay some
remuneration to the agents. Let the remuneration of agent
i be ri(bi), the revenue of the SP in this subcontract is
RS P = M(B) −

m∑
i=1

ri(bi).

For agent i in the work team, its revenue comes from the
remuneration ri(bi) on a basis to its bandwidth providing.
Generally, providing such bandwidth will generate a cost
denoted by ci(bi). Here we assume that the cost function ci(bi)
is differentiable and strictly convex as bi increases. Hence, the
revenue of agent i can be described as Ri = ri(bi) − ci(bi).

For the subcontract that consists of the SP and multiple
agents, there exists a noncooperative game where the agents
always seek to maximize their own revenues by deciding how
much bandwidth they will provide and the SP aims to obtain
a desired team bandwidth output. What merits our concern is
whether there exists a profit allocation scheme that leads to a
Pareto optimal Nash equilibrium. Here, the Nash equilibrium
implies that agents can satisfy their self-interests and none
of them would violate this equilibrium. The Pareto optimality
means that both the SP and agents can obtain a certain degree
of revenue, and the aggregated revenue of the SP and all
agents are maximal. Mathematically, the optimal bandwidth b∗i
provided by agent i that achieves the Pareto optimality should
satisfy:

b∗i ∈ arg max
bi

M(B) −
m∑

i=1

ci(bi)

 , (24)

where B =
m∑

i=1
bi. However, such Pareto optimality is not easy

to achieve. In the following subsection, we demonstrate that
the free-riding problem always yields and leads to an ineffi-
cient Nash equilibrium due to the inadequate profit allocation
scheme.

3.2 Free-riding Problem in Subcontract
Assume the work team has accomplished the contractual QoS
work, SP needs to allocate the team profits among the agents.

Note that the team profits are closely related to the committed
bandwidth to EU. Hence we can use a monetary function M(B)
to denote the team profits, where B is the committed bandwidth
provided by the whole team. A typical profit allocation scheme
is full-sharing allocation, which is a common profit allocation
scheme with budget-balance in economic studies. In this
profit allocation scheme, SP distributes the profits collected
from agents’ bandwidth output among the agents according
to a certain specification, e.g., the contributions of the team
members. A full-sharing allocation scheme can be expressed
as:

ri(bi) = si · M(B), s.t. :
m∑

i=1

si = 1, (25)

where B =
m∑

i=1
bi, si · M(B) stands for agent i’s share ratio of

the whole monetary profits. Thus, the revenue of agent i is
rewritten as:

Ri = ri(bi) − ci(bi) = si · M(B) − ci(bi). (26)

Though the full-sharing allocation scheme might be the
most generous allocation scheme that the SP can adopt, we
show that in the following proposition, the system cannot
achieve Pareto optimality even if the SP follows the full-
sharing allocation scheme. The free-riding problem always
occurs since the individual agent cannot satisfy its self-interest
by performing the work of bandwidth providing.

Proposition 4: The full-sharing profit allocation scheme
cannot result in an efficient Nash equilibrium with a desired
bandwidth output.

Proof: For individual agent i, the contributing bandwidth
b∗i that is a Nash equilibrium should maximize Eq. (26) to
satisfy its condition of incentive compatibility. Differentiating
Eq. (26) with respect to bi, we have

∂ri

∂M
∂M
∂bi
− ∂ci(bi)
∂bi

= 0.

Notice that Eq. (24) is a function of bi, we can find the
solution of Pareto optimality of Eq. (24) by differentiating it
with respect to bi, that is

∂

(
M(B) −

m∑
i=1

ci(bi)
)

∂bi
= 0.

By taking consideration that M(B) is also a function of bi,
above equation can be further reduced to

∂M
∂bi
− ∂ci(bi)
∂bi

= 0.

Combining ∂ri
∂M
∂M
∂bi
− ∂ci(bi)

∂bi
= 0 and ∂M

∂bi
− ∂ci(bi)

∂bi
= 0, we

can get the condition of Pareto optimality while satisfying
the incentive compatibility of individual agent, i.e., ∂ri

∂M = 1,
which implies that the marginal shared ratio should be 1 to
meet individual agent’s interest.

However, we can also differentiate Eq. (25) with respect to

M, we then have:
m∑

i=1

∂ri
∂M = 1 which suggests that the sum of

agents’ marginal shared ratio is equal to 1. It can be verified
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that
m∑

i=1

∂ri
∂M = 1 is in conflict with the individual interest ∂ri

∂M =

1. Therefore, with the scheme of full-sharing allocation, all
agents cannot make their revenues maximized and naturally
have incentive to be slacking in the QoS work, which leads
to an inefficient Nash equilibrium.

Following Proposition 4, we can see that the free-riding
problem always occurs in the multi-agents subcontract if
the SP follows the full-sharing allocation scheme, since the
individual agent cannot satisfy its self-interest by performing
the work of bandwidth providing. This problem will become
worse when the individual’s QoS contribution cannot be mea-
sured accurately, e.g., the SP fails to distinguish the exact QoS
contribution of an individual peer from a joint QoS output.
This may happen, as the subcontract is signed between the
SP and work team, but the joint QoS output is received by
the third entity EU. Due to the lack of effective supervision,
agents cannot be penalized sufficiently for the deviation of
performing QoS task, some agents always have incentive to
capitalize on this control deficiency, which finally leads to an
inefficient bandwidth output. This kind of outcome should be
avoided.

3.3 Profit Allocation Scheme with Team Penalty

From the previous analysis, we have known that the free-
riding problem, which results in an inefficient equilibrium,
is essentially due to the deficient profit allocation scheme.
In this regard, we propose the following profit allocation
scheme with team penalty, which is borrowed from economic
literatures [18] [19], so as to assure a sufficient bandwidth
output. The scheme is described as follows: The SP sets a
target of bandwidth output that the QoS work team should
achieve. If the target is achieved, a monetary profit for the joint
bandwidth output will be assigned to all of the team agents.
Otherwise, each team agent will suffer a penalty. The profit
allocation scheme with team penalty can be mathematically
formulated as

si · M(B) =
{

si · M(B) , B ≥ B̃;
si · M(B) − ki , B < B̃. (27)

Here, M(B) is the monetary profit of the joint bandwidth, si

is the shared ratio, si · M(B) represents the allocated profits

of agent i, and
m∑

i=1
si = 1, ki > 0 is the penalty of agent i, B̃

is the target bandwidth output that the SP expects. Note that
as a special case, the SP can set ki = si · M(B) so that agent
i gains zero if the QoS work fails. The scheme in Eq. (27)
prescribes a penalty ki to each agent if the target bandwidth B̃
is not achieved. Otherwise, the entire profit is shared. Though
siM(b∗) − c(b∗i ) could be less than siM(bi, b∗−i) − ki − c(bi)
if we consider the cost of providing bandwidth to the APs,
the SP could force siM(b∗) − c(b∗i ) to be always larger than
siM(bi, b∗−i) − ki − c(bi) by setting a proper penalty value ki

based on the cost function. The efficient equilibrium is that
the joint bandwidth output B achieves the target bandwidth B̃.

Next we will show that the profit allocation scheme with
team penalty can lead to an efficient Nash equilibrium.

Proposition 5: In the multi-agents QoS contract, the profit
allocation scheme with team penalty is able to lead to an
efficient Nash equilibrium.

Proof: Assume the bandwidth that agent i plans to provide
is bi and the bandwidth output of all other agents is denoted
as b−i. Let B′ denote the joint bandwidth output of the work
team that is not less than the target bandwidth output B̃, B′ =
m∑

i=1
b′i ≥ B̃, where b′i is the equilibrium bandwidth of agent i.

Suppose agent i chooses to provide the bandwidth bi < b′i
while other agents choose b′−i. According to the profit alloca-
tion depicted in Eq. (27), it will result in a pay si ·M(bi, b′−i)−ki

since it will receive a penalty due to failing to achieve
the target bandwidth output. Conversely, if agent i chooses
the bandwidth b′i , the corresponding revenue allocation is
si · M(b′i , b

′
−i) > si · M(bi, b′−i) − ki. It is clear that agent i will

make its benefits maximized by providing bandwidth b′i , and
all the agents will choose the bandwidth providing {b′1, ..., b′m}
that leads to an efficient Nash equilibrium.

By applying such profit allocation scheme, each team agent
has incentive to provide bandwidth as the SP expects, and
induces a positive bandwidth output. It can also be verified
that the profit allocation scheme depicted in Eq. (27) does
not violate self-interest of agents, and works well with the
expansion of team size.

It is noted that the above profit allocation scheme assumes
that all the APs participate the QoS work team for the QoS
subcontract. For the scenario that the APs may dynamically
quit the work team, the SP can use a simple mechanism to
manage the list of the APs and adaptively adjust the expected
payoff of each AP as well as the current penalty value of
the subcontract based on the APs’ current statuses. The SP
monitors and updates the APs’ statuses periodically. After each
time slot elapses, the SP identifies the APs that have been
out of touch and removes them from the list. Meanwhile,
the current penalty value of the subcontract is recomputed.
Specifically, if the list becomes empty, the SP will provide the
entire bandwidth to the EU by itself through 3G connection. It
should be noted that the mechanism focuses on dealing with
the scenario that some APs quit the work team. A subcontract
is frozen after it was built, which means that no new AP can
join the subcontract at will.

3.4 Optimal Subcontract with Uncertainty
We have shown that the subcontract with team penalty is
sufficient to regulate team agents’ behavior, meanwhile the
SP could obtain a desired bandwidth output at the state of
Nash equilibrium. However, it should be noticed that such
efficient Nash equilibrium can only be achieved under the
certain condition where each agent in the work team is
confident of accomplishing the target QoS output. In practice,
agents may often work under uncertain conditions that are
beyond the control of individual agent, e.g., high transmission
noise. Obviously, on the condition of uncertainty, an excessive
penalty ki may hurt the benefit of agents and cannot result in
Pareto efficiency, which is an optimal condition that maximizes
the joint revenue of the SP and agents. In what follows, we
investigate how to set team penalty ki so as to achieve Pareto
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efficiency when the providing of target bandwidth output is
uncertain.

We follow the same multi-agents model. Assume the ex-
pected bandwidth providing of agents is {b1, ..., bm} and the
corresponding expected joint bandwidth supplying is B =
m∑

i=1
bi. Assume the target bandwidth output set by SP is B̃ where

B̃ < B. For ease of explanation, we use X to denote the joint
bandwidth that the EU actually receives for a given expected
joint bandwidth supplying B. X may be less than the target
joint bandwidth supplying B̃ by taking account of network
transmission noise, which may result in a team penalty for
agents. We could define a conditional distribution function
F(B̃, B) to represent the failing probability, i.e., when given
the expected joint bandwidth supplying B, the actual received
joint bandwidth X does not meet the target joint bandwidth
output B̃. F(B̃, B) can be comprehended mathematically as a
probability F(B̃, B) = P{X < B̃|B}. Note that X is embedded
implicitly in F(B̃, B) as an intermediate variable. For simplic-
ity, we use F(B̃, B) to denote the failing probability of agents
in the following discussion.

It is easy to know that, when bi increases, i.e., B increases,
the actual joint bandwidth X received by the EU is likely in-
creasing, and thus, the probability that the received bandwidth
X is less than the target bandwidth B̃ is decreasing. For ease of
analysis, we assume F(B̃, B) is convex and denote the partial
derivatives of F(B̃, B) as F′(B̃, B) = ∂F(B̃,B)

∂bi
for all agents. Since

F(B̃, B) decreases as bi increases, F′(B̃, B) is always negative.
Therefore, in the subcontract with uncertainty, the probabil-

ity agent i gets penalty ki is F(B̃, B) in the case that the joint
bandwidth B is lower than the target bandwidth output level
B̃. In particular, the expected remuneration agent i gets from
bandwidth providing is si ·M(B)− ki ·F(B̃, B), so the expected
revenue of agent i can be expressed as:

ERi = si · M(B) − ki · F(B̃, B) − ci(bi). (28)

The following proposition extends the insights about team
penalty ki that achieves Pareto efficiency under the uncertain
environment.

Proposition 6: In the multi-agents QoS contract, the profit
allocation scheme with team penalty constitutes a Nash equi-
librium with Pareto efficiency if ki satisfies:

ki =
(si − 1) ∂ci(bi)

∂bi

F′(B̃, B)
. (29)

Proof: For b∗i is Pareto efficient, it should satisfy Eq. (24)
which maximizes the sum of revenues of the SP and agents.
We can find the corresponding b∗i by applying the first-order
necessary condition of it with respect to bi

∂M(B)
∂bi

=
∂ci(bi)
∂bi

. (30)

Assume b∗i is a Nash equilibrium, it should also satisfy the
incentive compatible condition of agent i, which implies that
b∗ needs to maximize Eq. (28). Therefore, a necessary and
sufficient condition of the Nash equilibrium to be held is:

si
∂M(B)
∂bi

− ki ·
∂F(B̃, B)
∂bi

− ∂ci(bi)
∂bi

= 0. (31)

Recall that B can be considered as a function related to bi,
i.e., B =

m∑
i=1

bi, rearranging Eq. (31) yields

ki =
si
∂M(B)
∂bi
− ∂ci(bi)

∂bi

F′(B̃, B)
. (32)

Combining Eq. (30) with Eq. (32), we can get the condition
of the Nash equilibrium with Pareto efficient

ki =
(si − 1) ∂ci(bi)

∂bi

F′(B̃, B)
. (33)

Remind that F′(B̃, B) is negative, Eq. (33) can be satisfied
by setting proper values of ki and B̃.

Particularly, if the actual joint bandwidth X follows a uni-
form distribution X ∈ [0, B], i.e., the practical joint bandwidth
output X cannot be larger than the sum of agents’ bandwidth
B by taking account of the influence of transmission noise.
Note that X is an intermediate variable embedded implicitly
in F(B̃, B) = P{X < B̃|B}, the corresponding distribution
function can be represented as F(B̃, B) = B̃

B and its first order
condition with respect to B is F′(B̃, B) = − B̃

B2 . Assume the

cost of agent i is a convex function such as ci(bi) =
τi·b2

i
pi

,
where τi is a cost factor accounting for the heterogeneous
roaming characteristics of an agent, i.e., an agent with higher
τ enjoys more from roaming, and will cost comparative more
for performing the subcontract, pi is the residual power of the
agent’s handset, low pi will bring comparative more cost to the
agent. If the agents are homogeneous, which implies that both
the bandwidth supplying bi and the corresponding allocation
ratio si of agent i are identical to other agents, we can rewrite
Eq. (33) as

ki =

(
2τibi

pi
− 2τibi

mpi

)
(m · bi)2

B̃
. (34)

From Eq. (34), we conclude that, to achieve Pareto ef-
ficiency, the less the target bandwidth B̃ is, the larger the
corresponding ki should be. Meanwhile, the higher roaming
characteristics τi the agent is, the larger ki should be. The
contrary result is suitable for pi. Note that an AP with less
residual power pi is penalized more in our model, since we
believe that an AP with less pi has stronger incentive to escape
the system. It is just like the bank’s credit evaluation system in
which a person with high income is more likely to get a higher
credit limit than the one with low income. We also observe
that the team penalty ki increases with the increasing of the
team member m. This is mainly due to the fact that the impact
of penalty will be diffused as the team size increases. Thus it
suggests that the SP should enhance the degree of penalty to
get the desired QoS output when the team size increases.

4 THE EQUILIBRIUM OF TRIPARTITE GAME

In this section, we will take an overall view of the QoS
trading that involves EU, SP and APs. We model the dynamic
interactions among the three parties as a tripartite game.

In this tripartite game, the SP provides mobile streaming
services to an EU and gets profits by setting proper service
prices (P, r). The EU determines its subscribing probability
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by taking account of its price sensitivity and gets its revenue
from the viewing experience, which can be interpreted as
utility. When the SP signs a QoS guarantee contract (i.e., basic
contract) with an EU, the SP needs to arrange its contracted
task (i.e., providing streaming services to the EU with the
promised QoS) to the APs. For ease of illustration, in this
section, we consider all the APs as a single entity, namely
work team, whose joint bandwidth output is B.

Thus, in addition to its operation cost, the SP should also
undertake some extra cost, i.e., the wage of the APs denoted by
M(B). We can divide the tripartite game into two parts: leader-
follower sub-game and non-cooperative sub-game. The leader-
follower sub-game is introduced to model the interaction
between the SP and EU, where the SP sets the prices (P, r) and
the EU determines its bandwidth requirement. We apply the
non-cooperative sub-game to model the interaction between
the SP and work team, i.e., the work team seeks its revenue
maximization by deciding its bandwidth output.

For the leader-follower sub-game, the SP sets the service
prices (P, r). The EU determines its subscribing probability.
As shown in Eq. (8), the probability that the EU has the
willingness to subscribe the service is D(P, r) in face of the
given prices (P, r). Given the EU’s subscribing probability and
the wage of the work team M(B), the goal of the SP is to
decide how to carefully set the prices (P, r) so as to maximize
its revenue:

RS P = (P − θr −C − M(B) − θc) · D(P, r). (35)

That is, the optimal prices (P∗, r∗) should satisfy:

(P∗, r∗) ∈ arg max
(P,r)
{(P − θr −C − M(B) − θc) · D(P, r)}. (36)

On the other hand, the work team derives a monetary
bandwidth output M(B) from accomplishing the QoS task
successfully. Otherwise, the work team will suffer a penalty
K. According to the discussion in Section 3.4, the probability
that the work team gets the penalty is F(B̃, B) due to the
transmission uncertainty. We assume the joint cost of the work
team as Ca(B). As the APs get the revenue only under the
condition that the EU chooses to subscribe the service, the
revenue function of the work team can be represented as

RWT = D(P, r) · (M(B) − K · F(B̃, B) −Ca(B)). (37)

In this tripartite game, the work team of APs seeks its
revenue maximization by providing an optimal bandwidth
B∗. The following proposition shows the equilibrium of the
tripartite game:

Proposition 7: There exists a Nash equilibrium in this
tripartite game and the equilibrium strategy profile {P∗, B∗}
should satisfy:

P∗ =
 1

2

[
1−µφ
1−µ + (C + M(B∗) + θc) 1−µ

1−θ

]
, r = P;

1
2 (1 − µφ +C + M(B∗) + θc) , r = 0;

(38)

and
∂M(B∗)
∂B

= K · ∂F(B̃, B)
∂B

+
∂Ca(B)
∂B

. (39)
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Fig. 3. The Illustration of Pareto Efficiency.

Proof: In this tripartite game, the APs provide a joint
bandwidth to the EU and get profits from the SP, which
are associated with their bandwidth contributions. The APs
seek their revenue maximization by providing an optimal
bandwidth B∗, i.e., for the APs, the contributing bandwidth B∗

that achieves a Nash equilibrium should maximize Eq. (37) to
satisfy its condition of incentive compatibility. Differentiating
Eq. (37) with respect to B, we can get the optimal bandwidth
of the APs as:

∂M(B∗)
∂B

− K · ∂F(B̃, B)
∂B

− ∂Ca(B)
∂B

= 0,

which leads to Eq. (39).
Given the optimal bandwidth B∗ of APs, SP sets the service

prices (P, r). EU determines its subscribing probability in face
of the prices. As shown in Eq. (8), the probability that EU
has the willingness to subscribe the service is D(P, r). Given
the EU’s subscribing probability and the optimal bandwidth
B∗ of APs, the goal of SP is to decide how to carefully set
the prices so as to maximize its revenue.

We substitute M(B∗) into Eq. (35). The Nash equilibrium of
the leader-follower sub-game can be solved by applying the
first order condition of Eq. (35) with respect to P and r. Thus,
we can get Eq. (38). The detailed derivation process is similar
to Lemma 2.

Proposition 7 shows the optimal prices of SP increase in this
tripartite game, comparing with the result depicted in Lemma
2 for the game only between the SP and EU. This is mainly
due to the increasing of SP’s cost since SP should undertake
some extra cost, i.e., the wage of the APs. We also notice
that the optimal bandwidth providing of the APs has little
connection with the prices (P, r). However, SP could control
the bandwidth output of the peers by adjusting the penalty K.

5 NUMERICAL ANALYSIS

In this section, we provide numerical examples to illustrate the
insight obtained from previous theoretical analysis. In particu-
lar, we concentrate on analyzing the changing of participants’
revenues. We set up a virtual MP2P streaming system with
20 heterogeneous mobile peers and a SP. At the beginning
of the simulation, an EU and several APs are selected from
mobile peers randomly. We assume the costs of the APs fall
equally within a certain range. The APs bid for the bandwidth
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providing according to their costs and each contracted agent
has 0.01 possibility to run away.

We first investigate the Pareto efficiency of the EUS and SP.
To illustrate the Pareto efficiency, we both increase the price
of the SP and the service demand of the EUS from 0 to 1.
The evolution of joint revenue of the SP and EUS is plotted
in Fig. 3. The arrow indicates the Pareto efficient point, which
is the maximum of joint revenue. At the point, no party in
the system can be better off with no other parties being made
worse off.

We next study the benefits of contingent contract. Fig. 4(a)
shows the corresponding service demand of the EUs when
the SP applies the QoS contingent contract and single price
contract without any rebate. We can observe that the EUs’
service demand in the case of the QoS contingent contract is
always larger than that in the single price contract when the
EUs underestimate the service quality of the SP, i.e., µ > θ.
This illustrates that the QoS contingent contract can expand
the SP’s market coverage. On the other hand, the contingent
contract results in less service demand comparing with a single
price contract, when the EUs overestimate the performance of
the SP’s service, i.e., µ < θ, where it benefits for the SP to
offer a single price contract.

We proceed to study the optimal contract of the SP. For ease
of comparison, we investigate the optimal contract by relaxing
the normal distribution of v for all EUs. We first investigate
the optimal contract under the uniform distribution of v. We
study two cases: µ < θ and µ > θ. The evolution of the SP’s
revenue can be obtained by varying the price P and rebate
r, which is illustrated in Fig. 4(b). As expected, the SP gets
its highest revenue when r = P in the case of µ > θ; on
the contrary, the SP attains the highest revenue when r = 0
in the case of µ < θ. These results confirm the analysis in
Section 2.2, the SP will prefer to offer a contingent contract
when the EUs underestimate the performance of services,
i.e., µ < θ; otherwise the SP will prefer to offer a single
price contract. For ease of comparison, we also investigate
the optimal contract by relaxing the uniform distribution of
v to the normal distribution for all EUs, which is indicated
in Fig. 4(c). We can observe similar results of SP’s revenue
under the normal distribution, which are consistent with the
results under the uniform distribution. This suggests that the
distribution of v has less impact on the strategy of SP.

We now study the subcontract. The impact of team penalty
on the revenue of the SP and agents is shown in Fig. 5(a). The
revenue of the SP increases rapidly as team penalty increases at
the initial range. It indicates that the team penalty is beneficial
to regulate team agents’ behavior and thus results in the
desired SP’s profit. As the team penalty continues increasing,
the expected revenue of agents drops quickly. The reason is
that the agents’ expected revenues are very low when the
team penalty is beyond a point. As a result, agents would
have less incentive to join the system and the SP’s revenue
becomes almost unchanged. It shows that a heavy team penalty
contributes little to improve the SP’s revenue. Instead, it hurts
the benefit of agents. These observations suggest that there
may exist an optimal penalty that is sufficient to guarantee
a relative high revenue for the SP while keeping agents’

expected revenues in a relative high level. As indicated in
Fig. 5(a), the optimal penalty is about 3.2, where the joint
revenue of the SP and agents achieves maximum.

As the work team is composed of multiple agents, individual
agent’s revenue is associated with other agents’ behavior. The
team size will affect individual agent’s revenue. As shown by
Eq. (28), the individual revenue function of an agent consists
of three parts: the remuneration obtained from SP ri(bi), the
cost function ci(bi) and the expected penalty ki · F(B̃, B).
As mentioned in Section 3.1, the cost function ci(bi) is
differentiable and strictly convex as bi increases. Note that
the bandwidth output bi, which the individual agent should
provide, will decrease with the increasing of agents’ number,
resulting in the decreasing of agents’ costs ci(bi) and ri(bi). The
individual revenue will increase by taking the consideration
that the decline of an agent’s cost is faster than the decreasing
of the agent’s remuneration. Fig. 5(b) shows the impact of
team size on individual agent’s revenue. We can observe from
Fig. 5(b)) that, when the team size is small, the individual
agent’s revenue increases as the team size increases. The
agent’s revenue reaches maximum when the team size is 3.
It shows that the bandwidth provided by few agents is very
costly. It calls for more mobile peers to engage in. As the
number of agents continues increasing, the individual agent’s
revenue declines. It suggests that it is better to employ as less
agents as possible if the team size is large enough to carry out
the QoS work.

In practice, some agents may terminate the QoS work
abruptly during the contract life, which may result in the
failure of the QoS work, and decrease the expected revenue
of agents. We have noticed that the churn rate of engaged
agents play an important role in QoS work. We further discuss
the impact of agent’s churn rate on the revenues of SP and
agents. We increase the agent’s churn rate from 0 to 0.6 to
illustrate the evolution of the revenues of SP and agents, which
is indicated in Fig. 5(c). We can observe that the revenue of
agents decreases significantly with the increasing of agent’s
churn rate. In contrast, the revenue of SP decreases much less.
This phenomenon mainly due to the fact that SP shifts the risk
of revenue decreasing to the agents by setting a proper penalty
value. Furthermore, from Figs. 5(a) and 5(c), we can see that
the collective revenue is increasing as the number of agents
increases. This is because the expected penalty and individual
cost will decrease with the increasing of agents’ number if SP
always adopts a constant penalty value.

6 PROTOTYPE IMPLEMENTATION AND EVALU-
ATION

To judge the general feasibility of the proposed system, we
have implemented a peer-assisted mobile streaming proto-
type system and conducted a small-scale test to evaluate its
performance. We have set up a data-source server that can
be performed as a SP. The data-source server stores several
popular videos and provides the internet-accessible HTTP
streaming service. The dynamic APs management mechanism
is also incorporated on the data-source server. Meanwhile, we
have developed an Android application running on mobile
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clients based on the Android multimedia framework. The
Android application mainly includes three parts, (1) player
module, which is a media player that allows EUs to request
and play the videos provided by SP; (2) Wi-Fi hotspot module,
which enables the EU’s Android phone to initiate a wireless
hotspot so that the nearby APs can join in the hotspot and
provide their bandwidths to the EU; (3) AP module, which
allows Android phones to act as APs, e.g., Android phones
can detect the requests around themselves and decide whether
or not to respond the requests for providing their bandwidths.
The AP module also maintains a session with the SP to get
the corresponding job schedule and current award/penalty.

The experiment set-up consists of one data-source server
(IBM server System x3100 M4, running Ubuntu Linux) and
seven identical mobile phones (Samsung GALAXY SIII I9300
with 16GB memory and Wi-Fi/3G connection). Each mobile
node downloads and installs a test suite from the server. The
test suite includes the Android application and a test video
program. The video is encoded by H.264 with a resolution of
320x180 pixels and 24 frames per second. The video lasts for
15.56 minutes and its total volume is 107.6 MB. One mobile
phone is selected to play as an EU and the others are candidate
APs. The entire work flow of the prototype system is briefly
described as follows: The EU sends a program request to the
data-source server through 3G. On receiving the EU’s request,
the server indicates the EU to initiate a Wi-Fi hotspot. The Wi-
Fi hotspot built by the EU has a special Service Set Identifier,

SSID, so that nearby mobile phones, acting as APs, can join
in the hotspot and provide their bandwidths to the EU. At the
same time, each AP keeps a session with the data server to get
the periodical updating information through 3G connection.

We evaluate the performance of the prototype system in
terms of the following three metrics:

• Aggregating bandwidth, which indicates the aggregating
bandwidth of EU provided by the APs;

• Converging time, which measures the time delay from the
time the initial request of the video playback is sent to
the time the video playback actually starts;

• Energy consumption, which indicates the corresponding
battery drainage of the EU and APs during test run.

We first investigate how the aggregating bandwidth of the
EU is affected by various number of APs. This metric can
reveal the desired number of APs that are able to provide
a stable mobile streaming service. For ease of comparison,
in this experiment we first let the EU access the streaming
services through 3G (3G mode) and record its bandwidth as
the benchmark, which is illustrated as a blue dashed line in
Fig. 6(a). We further study the change of the aggregating
bandwidth of the EU in the Pear-Assisted mode by increasing
the number of APs. Fig. 6(a) shows that the aggregating
bandwidth of the EU first increases when the number of APs
increases from 1 to 2. After this, the aggregating bandwidth
of the EU decreases as more APs participate in the system.
We speculate the intuition behind the phenomenon is mainly
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Fig. 6. The impact of AP number on the EU and AP.

due to the co-channel interference. This observation implies
that the aggregating bandwidth of the EU does not necessarily
benefit from the increasing of the number of APs. We also
observe that the aggregating bandwidth of the EU in the Pear-
Assisted mode always exceeds the bandwidth provided by the
3G mode, even in the worst case that the system has six APs.

We also study the impact of the AP number on the band-
width output distribution of individual AP. The experiment
lasts six test rounds as we increase the engaged AP number
from 1-6. We calculate the average bandwidth output of the
APs that are involved in each test round. Fig. 6(b) shows the
relationship between the number of engaged APs and the av-
erage bandwidth output of AP. We can see that the bandwidth
output of each AP decreases as more APs participate in the
system. This observation is consistent with our intuition, i.e.,
increasing the number of APs could ease the burden of each
AP. However, from the previous experiment, we find that the
system performance does not simply increase along with the
increase of AP number.

We next investigate the impact of APs’ number on the
converging time of EU. In this experiment, the converge time
is closely related to the startup buffer size, since EU has
to buffer a specified size of streaming data before it could
watch program fluently. To give a detailed comparison, we
set the EU’s buffer size to 5 MB and 10MB. Fig. 6(c) shows
the changing of converge time while the participating APs’
number increases from 1 to 6. As depicted in Fig. 6(c), the case
of 5MB has a similar tendency with 10MB, so we take 10MB
as a instance to illustrate. The converge time first decreases
at the initial stage, i.e., the APs’ number increases from 1 to
3. This tendency indicates that the increasing of APs’ number
certainly helps in reducing the converge time. However, the
variation of converge time begins to rise, which implies that
increasing APs’ number has some negative impact on reducing
the converge time. The intuition behind the phenomenon is that
EU’s available bandwidth does not continue increasing with
the increasing of APs’ number. In contrast, the co-channel in-
terference increases with the increasing of participating mobile
devices. In addition, EU has to more computing resources to
handle the increasing sessions from APs, which result in the
increasing of converge time consequently.

We also investigate the energy consumption of EU and APs
under various AP numbers. Fig. 6(d) shows the changes of the
energy consumption of EU and APs with the increasing size
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of AP number. We can observe that the energy consumption
of EU continues to increase with the increasing of the AP
number. This implies that the increased AP number has
negative impact on EU’s energy consumption. The intuition
behind this phenomenon is that the energy consumption of EU
is mainly caused by handling and receiving the aggregating
bandwidth sent from APs, the more APs are, the larger EU’s
energy consumption is. On contrast, the energy consumption of
each AP decreases with the increasing number of APs. This is
consistent with the fact that the bandwidth contribution of each
peer reduces as more APs participant in the system, which
leads to the reductions of AP’s energy consumption.

We further study how the existence of slacking APs affects
the performance of the MP2P streaming system. Specifically,
we consider the scenario that a slacking AP does not perform
for the system. As the slacking AP does not provide any
bandwidth to EU, the subcontract between the SP and the
slacking AP has been violated. Fig. 7 shows the changes of
EU’s converging time when a slacking AP exists in the system
under various number of APs. We can observe that, when there
exists slacking APs in the system, the converging time of EU
increases, comparing with the system without any slacking
AP. This experiment shows that the existence of slacking APs
would decrease the performance of the system. Especially, as
indicated in Fig. 7, when the number of APs is 2, the EU’s
converging time increases about 80%. This suggests that the
contract is necessary to rule the behaviors of APs.

From above experiments, we can conclude that, the peer-
assisted mode could significantly improve the QoS of EU.
However, the aggregating bandwidth does not often increase
responding to the increasing of APs’ number. As suggested
in Fig. 6(a), two or three APs are preferable choices to
satisfy the EU’s demands by taking consideration of QoS



15

improvement and energy consumption. We would like to
state that the optimal AP’s number is just derived from the
experiments of our test runs. It may not be suitable for all
MP2P environments.

7 RELATED WORK

With the advancement in the pervasive use of mobile multime-
dia devices, MP2P technology has been employed in multime-
dia content distribution, such as PhotoChat [20], MobiTip [21],
and mobile YouTube [22]. It can offer instant viewing instead
of download-before-view in social community networks which
exhibits high locality characteristics.

Many studies have also addressed system designs that
leverage MP2P applications. In [23], Venot et al. introduced
a JXTA based P2P video player that is able to operate on
mobile devices. In [24], Eittenberger et al. presented a mobile
P2P streaming prototype in the Android system. In [25],
Stiemerling et al. proposed a scheme that allows several
users to contribute their wireless Internet access resources for
retrieving the content in a joint effort. Similar approaches were
further explored in [26], [27]. More recently, in [2], Keller et
al. implemented a novel system, MicroCast, that uses all the
resources of a group of smartphones in a cooperative way so
as to improve the streaming experience. Wei et al. designed a
scheme for content sharing in a location preserving way [3].
In [4], Venkatramanan and Kumar studied the dissemination
of a single item of content (e.g., a piece of news, a song or
a video clip) in a mobile P2P environment. Each node in the
environment is either a destination (interested in the content)
or a potential relay (not yet interested in the content).

However, all of these MP2P studies have concentrated more
on the technical implementation of MP2P systems. Moreover,
most of the MP2P application prototypes are in an exploratory
stage, which assume mobile peers are altruistic entities, with-
out considering the free-riding problem that widely exists in
P2P systems.

Different from the above MP2P studies, our work, which
integrates mobile wireless devices into reputation or economic
models, puts the focus on incentive schemes of MP2P systems.
Incentives have been recently studied for MP2P systems
in [28], [29]. These works mostly consider incentive mecha-
nisms for resource information dissemination in transportation
applications, where a mobile peer exchanges its information
with the peers it encounters. The peers’ contributions are
mainly measured by reputation or virtual currency, which may
not be attractive enough for peers to engage in information
dissemination. Other incentive schemes in MP2P network
are relevant to economic models [30]. They discuss utility
functions to capture users’ contributions, while trustworthiness
issues are also studied. However, these schemes do not give
any regulations on detailed QoS issues, and thus cannot
achieve the purpose of QoS guarantee.

The contract model, as a typical economic model, has been
employed in the networks [12], [31]–[33]. It can efficiently
motivate as well as regulate the participants in the context of
contracts to fulfil contractual obligations. In [12], a bandwidth
contract integrating with a two-component spot pricing scheme

was proposed for the sake of QoS guarantee. Cheliotis [31]
proposed an economic model called plan contracts for better
utilization of telecommunication network resources. In [32],
contract model was introduced into large scale network ap-
plications to encourage cooperations. In [34], Duan et al.
analyzed and compared different incentive mechanisms for a
client to motivate the collaboration of smartphone users on
both data acquisition and distributed computing applications.
They used the contract theory to study how a client efficiently
decides different task-reward combinations for different user
types. Rebate pricing mechanisms are commonly used in many
IT services, e.g., voice over IP or video streaming applications,
owing to the factors such as unobservability of product,
stochasticity in manufacturing or delivering process, lack of
end-to-end control [8]. In [9], Bhargava et al. showed that the
threshold-performance contingency contract can increase both
profits and fairness relative to the standard pricing scheme.

Note that most of these contract models adopt the traditional
MP2P architecture, i.e., the regular packet forwarding scheme
under the ad hoc mode. However, in this paper we propose
a peer-assisted system architecture, i.e., APs provides mobile
streaming services through self-built Wi-Fi hotspots, for the
purposes of enhancing programs’ QoS and reducing operating
cost. To the best of our knowledge, there is no previous work
that applies the contract model to handle the problem of QoS
guarantee in MP2P streaming applications.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a framework of QoS guar-
antee in mobile P2P streaming systems through a contract-
ruled approach. We model the parties involved in the system
as real economic entities, which are organized as a basic
contract and a multi-agents subcontract. In the basic contract,
we establish the business agreement between an interested EU
and SP. We propose a QoS contingent payment to mitigate
EUs’ concern on the uncertainty of the services and derive
the optimal price that achieves Pareto efficiency. In the sub-
contract, we model transactions between SP and contracted
peers as a principal multi-agents problem which achieves a
desired joint QoS output. We design a sharing scheme with
team penalty to overcome the free-rider problem existing in the
subcontract and show that Pareto efficiency can be achieved
by setting proper team penalty. We believe that the proposed
contracted-ruled framework can shed light on the deployment
and evolution of practical mobile streaming markets.

An interesting future work worthy of attention is the hidden
information problem which may exist in the subcontract, since
the agents may exaggeratedly claim their transit costs for the
remunerations. This opens the way to apply some strategy-
proof methods like VCG to encourage the agents report their
costs truthfully. The other interesting work is to investigate
the dynamic changes of the system if the EUS’ belief on the
service changes based on the service they receive. The problem
will become much difficult if we consider the EUS’ belief to
be changed over time. We would like to further study the
mechanisms of eliciting the EUS’ expectation value θ in the
future work.
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