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Abstract

Gossiping is to broadcast the message of every node to all the other nodes in multi-hop wireless

networks (MWNs). This operation plays an important role and is widely used in MWNs. Interference-

aware gossiping scheduling (IAGS) aims to provide an interference-free scheduling for gossiping with

the minimum latency. Previous work on IAGS mostly assumes that nodes are always active, and thus is

not suitable for duty-cycled scenarios. In this paper, we investigate the IAGS problem in uncoordinated

duty-cycled multi-hop wireless networks (IAGS-UDC problem) under protocol interference model and

unbounded-size message model. We prove that the IAGS-UDC problem is NP-hard. We propose a novel

approximation algorithm called MILD for this problem. The MILD algorithm achieves an approximation

ratio of 3β2(∆ + 6)|T |, where β is d 2
3 (α + 2)e, α denotes the ratio of the interference radius to the

transmission radius, ∆ denotes the maximum node degree of the network, and |T | denotes the number

of time-slots in a scheduling period. Moreover, the number of transmissions scheduled by the MILD

algorithm is at most 3 times as large as the minimum number of transmissions.
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I. INTRODUCTION

Uncoordinated duty-cycled multi-hop wireless networks (UDC-MWNs) consist of nodes with

limited transmission ranges and different duty cycles. Nodes in UDC-MWNs are powered by

batteries, so they often switch between the active state and the sleep state to conserve the

energy, and this switching operation is uncoordinated. Broadcast is one of the most important

communications in UDC-MWNs, and one kind of the broadcast communications is gossiping,

which is to broadcast the message of every node to all the other nodes. Gossiping is widely used

in UDC-MWNs for data collection and code update, etc. In many time-critical applications of

UDC-MWNs, gossiping is required to be completed with low latency.

There are many interference models in UDC-MWNs, such as graph-based interference model

and protocol interference model. Under the graph-based interference model, the interference is

treated as the collision, and if two nodes send messages to their common neighboring node

concurrently, the common neighboring node will receive neither of the two messages. Under the

protocol interference model, if one node lies in the interference range of one transmitter node,

it cannot receive the messages from other nodes when this transmitter node is transmitting

messages. Two common message models in UDC-MWNs are unit-size message model and

unbounded-size message model. Under the unit-size message model, one node cannot combine

its received messages as one message. Under the unbounded-size message model, one node can

combine its received messages as one message, and can broadcast the combined message in one

time-slot.

Interference aware gossiping scheduling (IAGS) aims to provide an interference-free schedul-

ing for gossiping with the minimum latency. The IAGS problem in conventional multi-hop wire-

less networks (MWNs) is known to be NP-hard no matter whether the networks are modeled as

general graphs [1] or unit disk graphs [2]. Many efficient approximation algorithms [2]–[7], which

follow the assumption that all nodes always keep active, have been presented for this problem.

Unlike in conventional MWNs, one node in UDC-MWNs may require transmitting several times

to inform all its neighboring nodes with different active time. Hence, these algorithms are not

suitable for the IAGS problem in UDC-MWNs.

In this paper, we investigate the IAGS problem in UDC-MWNs (IAGS-UDC problem) un-

der both protocol interference model and unbounded-size message model. To the best of our
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knowledge, this is the first work to study this problem under these two models. Our main

contributions include: 1) We prove that the IAGS-UDC problem is NP-hard; 2) We propose a

novel approximation algorithm called MILD for this problem; 3) We show the correctness of the

MILD algorithm, and prove that the approximation ratio of this algorithm is at most 3β2(∆+6)|T |,
where β is d 2

3 (α + 2)e, α denotes the ratio of the interference radius to the transmission radius,

∆ denotes the maximum node degree of the network, and |T | denotes the number of time-slots

in a scheduling period; 4) We prove that the number of transmissions scheduled by the MILD

algorithm is at most 3 times as large as the minimal number of transmissions.

II. RELATED WORK

Since gossiping plays a very important role in MWNs, a lot of studies have been done on this

problem [1]–[9]. Gossiping is known as the all-to-all broadcast, and the simplest implementation

of broadcast is flooding, which may cause a large number of contention and collision [8]. The

multi-hop wireless network is often modeled as a unit disk graph (UDG) when the nodes have

the same transmission radius. The IAGS problem, which aims to provide an interference-free

gossiping scheduling with the minimum latency, is known to be NP-hard in both the general

graphs [1] and the unit disk graphs [2].

Much work [3]–[5] has focused on the gossiping problem under graph-based interference

model and unbounded-size message model. Chrobak et al. [3] have proposed a gossiping al-

gorithm for unknown multi-hop radio networks, and shown that their algorithm can finish

in O(n3/2 log2 n) time. They have further presented a gossiping algorithm in [4], which is a

randomized algorithm and can finish in O(n log4 n) time. For networks with diameter δ = O(nε)

(ε > 1), an efficient gossiping algorithm running in O(
√
δn log2 n) is proposed in [5].

Many algorithms [2], [6], [7], [9] have been presented for the gossiping problem under unit-

size message model. Recently, Gandhi et al. [2] have investigated the IAGS problem under

graph-based interference model and unit-size message model, and proposed an approximation

algorithm of a constant ratio. In [6], Huang et al. have shown that this ratio is more than 1000,

and given a 27-approximation algorithm. This ratio has been further improved to 20 by Gandhi

et al. in [7]. Wan et al. [9] have proposed a constant approximation algorithm to tackle the IAGS

problem in multi-channel MWNs under protocol interference model and unit-size message model.
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None of the work mentioned above, however, has taken the active/sleep cycles into considera-

tion. The broadcast problems in duty-cycled scenarios have been extensively studied in [10]–[13].

The only work to study the IAGS-UDC problem is [13], which investigates this problem under

the graph-based interference model and both two message models. To the best of our knowledge,

none of previous work has focused on the IAGS-UDC problem under both protocol interference

model and unbounded-size message model. In this paper, we will investigate this problem under

these two models and give an efficient approximation algorithm for this problem.

III. PRELIMINARIES

A. Network Model

We model the uncoordinated duty-cycled multi-hop wireless network as a UDG G = (V, E),

where V contains all the nodes in the network, and E is the set of edges, which exist between

any two nodes u and v if their Euclidean distance d(u, v) is no larger than the transmission radius

r. We consider protocol interference model as the interference model, and regard unbounded-size

message model as the message model. We denote by r f the interference radius, and by α the

ratio of r f to r. Every node cannot send and receive the message at the same time. We denote

by n the number of nodes in the network and by NG(u) the set of neighboring nodes of node u.

We assume that nodes independently determine the active/sleep time in advance. The duty cycle

is defined as the ratio of the active time to the whole scheduling time. The whole scheduling

time is divided into multiple scheduling periods of the same length. One scheduling period T is

further divided into fixed |T | unit time-slots {0, 1, ..., |T |−1}. Every node v independently chooses

one time-slot in T as its active time-slot A(v). A node can transmit the message at any time-slot,

but is only allowed to receive the message at its active time-slot.

B. Problem Formulation

This paper studies the gossiping problem in UDC-MWNs. In this IAGS-UDC problem, every

node has a message to send to all the other nodes. The gossiping task completes when every

node receives the messages from all the other nodes. We model the gossiping scheduling as

assigning the transmitting time-slots for every node, i.e., assigning a function TTS : V → 2N .

The objective of gossiping scheduling is to minimize the largest transmitting time-slot. It is easy

to have the following result.
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Lemma 1: The IAGS-UDC problem is NP-hard.

Proof: If we set T = {0} and α = 1, then all the nodes are active all the time, and the

interference can be treated as the collision. In this case, the IAGS-UDC problem reduces to the

conventional IAGS problem. The conventional IAGS problem has been proved to be NP-hard

in [2], so the IAGS-UDC problem is NP-hard.

To schedule the transmissions efficiently, we construct a shortest path tree as follows. If we

choose one node w as the source node and this node starts broadcasting its message at time-slot

0, the latency Lat(u, v) of every edge (u, v) ∈ E is:

Lat(u, v) =



A(v) + 1, if u = w;

A(v) − A(u), if u , w and A(v) − A(u) > 0;

A(v) − A(u) + |T |, else

(1)

The shortest path tree rooted at node w can be achieved by applying Dijkstra’s algorithm with

this latency. The broadcast tree is constructed based on the shortest path tree, and the gossiping

is scheduled according to the broadcast tree. To distinguish the parent nodes of node v in the

shortest path tree and in the broadcast tree, we call the parent node of node v in the shortest

path tree as the father node of node v, and denote it by F(v); we denote by P(v) the parent node

of node v in the broadcast tree.

C. Graph-Theoretic Definitions

We denote by G[U] the subgraph of G induced by a subset U of V . If there is no edge

between any two nodes in G[U], we call the subset U an Independent Set (IS) of G. A Maximal

Independent Set (MIS) of G is not a subset of any other IS of G. It is known that a node can be

adjacent to at most 5 nodes in an IS. A proper tessellation of hexagons in the whole plane is to

partition the plane into hexagons of the same size. Coloring of these hexagons is to assign every

hexagon one natural number representing the color of this hexagon. According to [14], a proper

3β2 coloring of half-open half-closed hexagons can make sure that the distance between two

hexagons of the same color is larger than 3β − 2 radii of the hexagon. If we set β as d 2
3 (α + 2)e

and set the radius of the hexagon as r/2, the distance between two hexagons of the same color

will be larger than (α + 1)r = r f + r.
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IV. APPROXIMATION ALGORITHM

Since the IAGS-UDC problem is NP-hard, we propose and detail the MILD algorithm in this

section. Recall that one node can combine its received messages as one message and send the

combined message in one time-slot. Therefore, the MILD algorithm contains two processes. In

the first process, the messages of all the nodes are gathered to a special node, which is called as

a data aggregation process. In the second process, the special node combines all the messages as

one message, and broadcasts this message to all the other nodes. The pseudocode of the MILD

algorithm is shown in Algorithm 1.

The MILD algorithm starts with coloring all the nodes. We use a proper tessellation and

3β2-coloring of hexagons with a radius of r/2 in the whole area to color these nodes, where

β = d 2
3 (α + 2)e. We use f : V → {1, 2, ..., 3β2} to denote this coloring method. After coloring

all the nodes, we find a special node s. The maximum latency D of the shortest path tree TS PT

rooted at this node is the minimum. We can build the shortest path trees rooted at all the nodes

based on the latency defined in Eq. 1, and find this special node. The tie can be broken randomly.

Then all the nodes are divided into different layers L0, L1, ..., LD according to the latency of the

shortest paths from node s to these nodes in TS PT .

Next we construct the MIS’es layer by layer. The nodes in V\{s} are partitioned into different

subsets U0,U1,U2, ...,U|T |−1 according to their active time-slots. Recall that every node v in V\{s}
can only receive the message at its active time-slot. The latency of the shortest path from node

s to this node should be in the form of k|T | + A(v) + 1, where k = 0, 1, 2, .... So we can find

that each subset U j consists of nodes at several layers in the TS PT , i.e., U j =
⋃

i∈I Li, where

I = {i|(i− 1) ≡ j mod |T |, 1 ≤ i ≤ D}. At each layer Li, we find the independent set Mi of G[Li]

such that Q j
⋃

Mi is an MIS of G[
⋃

i′∈I′ Li′], where I′ = {i′|(i′ − 1) ≡ j mod |T |, 1 ≤ i′ ≤ i}, and

j = (i− 1) mod |T |. Finally, we can find the MIS Q j of G[U j]. The pseudocode of this process

is shown in Algorithm 2.

Once the MIS’es have been found, we start constructing the broadcast tree TB rooted at node s

as shown in Algorithm 3. For nodes in Mi, we choose some of their father nodes in TS PT as their

parent nodes in the broadcast tree. The choosing process also proceeds layer by layer. In each

layer Li, we pick one of the father nodes of those nodes in Mi as the parent node if this father

node v covers the most unassigned nodes in Q j, where j = (i − 1) mod |T |. These unassigned



7

Algorithm 1 MILD algorithm
Input: G = (V, E), s, A, α, r, T .

Output: Gossiping Scheduling TTS : V → 2N .

1: Apply a proper tessellation and 3β2-coloring of hexagons with a radius of r/2 in the whole

area to color all the nodes. Use f : V → {1, 2, ..., 3β2} (0 ≤ j ≤ |T |−1) to denote this coloring

method, where β = d 2
3 (α + 2)e.

2: Find a special node s such that the maximum latency of the shortest path tree TS PT rooted

at this node is the minimum.

3: Assign MaxLatency(TS PT ) to D, and divide V into L0, L1, ..., LD.

4: Apply Algorithm 2 to construct the MIS’es Q0, Q1, ..., Q|T |−1 with different active time-slots,

and to construct the IS’es M1, M2, ..., MD layer by layer.

5: Apply Algorithm 3 to construct the broadcast tree TB rooted at node s and to get the array

P to maintain every node’s parent node.

6: Apply Algorithm 4 to achieve the scheduling of aggregating the messages to node s and

broadcasting the combined message from node s to all the other nodes.

Algorithm 2 Construct the MIS’es
1: Divide V\{s} into subsets U0, U1, ..., U|T |−1.

2: for j← 0 to |T | − 1 do

3: Q j ← ∅
4: for i← 1 to D do

5: j← (i − 1) mod |T |, I′ ← {i′|(i′ − 1) ≡ j mod |T |, 1 ≤ i′ ≤ i}
6: Construct an IS Mi of G[Li] such that Q j

⋃
Mi is an MIS of G[

⋃
i′∈I′ Li′].

7: Q j ← Q j
⋃

Mi

8: return Q0, Q1, ..., Q|T |−1 and M1, M2, ..., MD
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nodes are set as its children nodes and collected in C1 j(v). This process continues until all the

nodes in Mi have been assigned parent nodes. Since nodes in Li\Mi must be adjacent to some

nodes in
⋃

i′∈I′ Mi′ , where I′ = {i′|(i′−1) ≡ j mod |T |, 1 ≤ i′ ≤ i}, we pick some nodes in this set

as their parent nodes. The choosing process is similar to the previous one. Note that the node v

which covers the most unassigned nodes in U j\Q j will be first chosen. These unassigned nodes

are set as the children nodes of node v and collected in C2 j(v).

Algorithm 3 Construct the broadcast tree
1: TB ← (VB, EB), VB ← V , EB ← ∅
2: for i← 1 to D do

3: j← (i − 1) mod |T |
4: X1 ← {u|P(u) = NIL, u ∈ Mi}, Y1 ← {F(u)|P(u) = NIL, u ∈ Mi}, Z1 ← Q j

5: I′ ← {i′|(i′ − 1) ≡ j mod |T |, 1 ≤ i′ ≤ i}
6: X2 ← {u|P(u) = NIL, u ∈ Li\Mi}, Y2 ← ⋃

i′∈I′ Mi′ , Z2 ← U j\Q j

7: for k ← 1 to 2 do

8: while Xk , ∅ do

9: for each node v ∈ Yk do

10: Ck j(v)← {u|P(u) = NIL, u ∈ Zk
⋂

NG(v)}
11: Find a node v′ with the maximum |Ck j(v′)|.
12: for each node u ∈ Ck j(v′) do

13: P(u)← v′, EB ← EB
⋃{(v′, u)}, Xk ← Xk\{u}

14: return TB and P

Next, we aggregate the messages of all the nodes to the special node s. This process works

from the bottom layer to the top layer. In each layer Li, the scheduling contains two phases:

the nodes in Li\Mi first send their messages to their parent nodes, and then do the nodes in Mi.

We collect the children nodes into the set X, and collect the parent nodes into the set Y . The

transmissions are scheduled iteratively. In each iteration, every parent node y in Y chooses one

of its children nodes x in X, and receives the message from this child node. Note that, to avoid

the interference of the transmissions, we schedule these transmissions based on the chromatic

numbers of nodes in Q j, i.e., f (u) of node u ∈ Q j, where j = (i − 1) mod |T |. If the children
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nodes are in Li\Mi, the scheduling is based on the chromatic numbers of their parent nodes,

which belong to Q j according to Algorithm 3. If the children nodes are in Mi, the scheduling

is based on the chromatic numbers of these children nodes, which is also in Q j. After each

iteration, the current time-slot t advances to multiple times of |T | when all the transmissions in

this iteration can finish. The pseudocode of this process is shown in Algorithm 4 Step I.

Finally, after the messages are aggregated to node s, node s combines all these messages as

one message, and broadcast this combined message to all the other nodes as shown in Algorithm

4 Step II. The scheduling works from the top layer to the bottom layer. In each layer Li, the

message is first delivered to nodes in Mi, and then nodes in Mi broadcast the message to its

children nodes. Like the scheduling in the data aggregation process, to avoid the interference,

we schedule the transmissions from parent nodes to their children nodes based on the chromatic

numbers of nodes in Q j, where j = (i− 1) mod |T |. We denote by m1i the maximum chromatic

number of nodes in Mi, and by m2i the maximum chromatic number of nodes in Mi with children

nodes in U j\Q j. Recall that the children nodes in U j\Q j of node v are collected in C2 j(v). The

message is first delivered to each node u in Mi at t + ( f (u) − 1)|T | + j. The current time-slot t

increases by m1i|T | such that all these transmissions can finish. Each node v in Mi then broadcasts

the message to its children nodes in C2 j(v) at t + ( f (v)−1)|T |+ j. Similarly, the current time-slot

t increases by m2i|T | such that all these transmissions can finish.

Example 1. We take an example to illustrate the MILD algorithm. The network consists of ten

nodes. The network topology of G is shown in Fig. 1(a). The scheduling period T contains ten

time-slots from 0 to 9. The active time-slots of ten nodes are {7, 6, 7, 4, 6, 7, 9, 5, 8, 2}.

According to Algorithm 1, we first color all the nodes by a proper tessellation and 27-coloring

(α = 2) of hexagons as shown in Fig. 1(a), e.g., the color of node 9 is 26. We then find that

node 4 is the special node and construct the shortest path tree rooted at node 4 as shown in Fig.

1(b). All the nodes from node 0 to node 9 are divided into several layers L8, L7, L8, L15, L0, ..., L13

according to the latency of the shortest path from node 4 to every node. Afterward, we construct

the MIS’es layer by layer, and construct the broadcast tree TB as shown in Fig. 1(c).

Next, we aggregate the messages to node 4 from the bottom layer to the top layer according

to Algorithm 4 Step I. In this example, the bottom layer L15 only contains node 3, and this

node will transmit its message to its parent node 2 in TB at time-slot t + ( f (3) − 1)|T | + A(2) =

0+(21−1)∗10+7 = 207. Then the current time-slot advances to time-slot d(207+1)/10e∗10 = 210,
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Algorithm 4 Data aggregation and broadcast the combined message

Step I: Data aggregation

1: t ← 0

2: for i← D down to 1 do

3: if Li , ∅ then

4: j← (i − 1) mod |T |, X1 ← Li\Mi, X2 ← Mi

5: for k ← 1 to 2 do

6: X ← Xk

7: while X , ∅ do

8: Y ← {P(x)|x ∈ X}, t′ ← t

9: for each node y ∈ Y do

10: Find one of its children nodes x in X.

11: z← (k − 1)x + (2 − k)y

12: TTS (x)← TTS (x)
⋃{t + ( f (z) − 1)|T | + A(y)}

13: if t′ < t + ( f (z) − 1)|T | + A(y) + 1 then

14: t′ ← t + ( f (z) − 1)|T | + A(y) + 1

15: X ← X\{x}
16: t ← dt′/|T |e|T |
Step II: Broadcast the combined message

1: for i← 1 to D do

2: if Li , ∅ then

3: j← (i − 1) mod |T |
4: m1i ← max{ f (u)|u ∈ Mi}, m2i ← max{ f (v)|v ∈ Mi and |C2 j(v)| , ∅}
5: for each node u ∈ Mi do

6: TTS (P(u))← TTS (P(u))
⋃{t + ( f (u) − 1)|T | + j}

7: t ← t + m1i|T |
8: for each node v ∈ Mi and |C2 j(v)| , ∅ do

9: TTS (v)← TTS (v)
⋃{t + ( f (v) − 1)|T | + j}

10: t ← t + m2i|T |
11: return TTS
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and node 9 in the upper layer L13 is scheduled to transmit its message to its parent node 2 in TB

at time-slot t + ( f (9)−1)|T |+ A(2) = 210 + (26−1)∗10 + 7 = 467. Node 4 will ultimately receive

all the messages at time-slot 1260. Next, node 4 broadcasts the combined message from the top

layer to the bottom layer. According to Algorithm 4 Step II, node 4 first sends the message to

node 7 in L6 at time-slot t + ( f (7) − 1)|T | + (6 − 1) mod |T | = 1260 + (21 − 1) ∗ 10 + 5 = 1465,

and then the current time-slot advances to time-slot 1260 + 21 ∗ 10 = 1470. The schedule then

proceeds to the next layer containing nodes, and so on. Node 3, the unique node in the bottom

layer L15, will receive the message from its parent node 2 at time-slot 2300+( f (3)−1)|T |+(15−1)

mod |T | = 2504 . Finally, the total broadcast latency is 2300 + 21 ∗ 10 = 2510 time-slots.1 2 3 45 6 7 8 910 11 12 13 14 1516 17 18 19 2021 22 23 2425 26 27 1510 611 252116 17
15 90 3 12 684 75

(a) G’s topology and colors

90 3 12 684 75
(b) Shortest path tree TS PT

90 3 12 684 75
(c) Broadcast tree TB

Fig. 1. An example to explain the MILD algorithm

V. PERFORMANCE ANALYSIS

In this section, we show the correctness of the MILD algorithm, and then give the approxi-

mation ratio of our algorithm. We also prove that the number of transmissions of our algorithm

is within a constant factor of the minimum number of transmissions. Finally, we give the time

complexity of our algorithm.

Theorem 1: The MILD algorithm provides a correct and interference-free gossiping schedul-

ing.

Proof: First, we prove the correctness of the data aggregation process. This process works

from the bottom layer to the top layer. In each layer Li, the messages are first gathered from
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nodes in Li\Mi to their parent nodes. According to Algorithm 3, these parent nodes belong to an

IS in upper layers or Mi. The messages of nodes in Mi are then aggregated to their parent nodes.

These parent nodes are chosen from the father nodes in the shortest path tree, which must be

in the upper layers. So node s in the top layer will ultimately receive the messages aggregated

from all the other layers.

Next, we prove the correctness of the broadcast process. This process works from the top layer

to the bottom layer, and we prove that all the nodes in each layer can be informed by induction.

The top layer only contains node s, which already owns the message. So it is true for the top

layer. We assume that all the nodes in Li′ (1 ≤ i′ < i ≤ D) have been informed, and prove that

nodes in Li can be informed. The nodes in Li are partitioned into two subsets: Mi and Li\Mi.

The parent nodes of the nodes in Mi are their father nodes in the upper layers of the shortest

path tree. According to the inductive assumption, these parent nodes have been informed, and

hence the nodes in Mi can be informed by their parent nodes. If the parent nodes of the nodes in

Li\Mi belong to an IS in upper layers, our claim is true according to the inductive assumption.

If these parent nodes belong to Mi, since nodes in Mi will be informed before nodes in Li\Mi

according to the scheduling algorithm, our claim is also true. So the MILD algorithm is true.

Finally, we prove the transmissions scheduled by the MILD algorithm are interference-free.

During the data aggregation process, nodes in Li\Mi are first scheduled to transmit their messages

to their parent nodes. We prove these transmissions are interference-free by contradiction. Sup-

pose two nodes u1 and u2 in Li\Mi transmit their messages to their parent nodes P(u1) and P(u2)

at the same time-slot. If P(u1) = P(u2), according to Algorithm 4 Step I, these two transmissions

are scheduled separately in different iterations, which contradicts the assumption. Otherwise,

without loss of generality, we assume that node P(u1) fails to receive the message from node

u1 due to the interference of node u2. Recall that d(u1, u2) denotes the distance between two

nodes u1 and u2. It follows that d(P(u1), u2)) ≤ r f and d(u2, P(u2)) ≤ r. According to the triangle

rule, d(P(u1), P(u2)) ≤ d(P(u1), u2)) + d(u2, P(u2)) = r f + r. According to the construction of the

broadcast tree, both two nodes P(u1) and P(u2) belong to an IS, and therefore these two nodes

are in different hexagons. As what is claimed in Section III-C, the chromatic numbers f (P(u1))

and f (P(u2)) should be different.

If these two transmissions are scheduled in different iterations, the transmitting time-slots

should be different, which contradicts the assumption. If these two transmissions are scheduled
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in the same iteration, the transmitting time-slots are t + ( f (P(u1)) − 1)|T | + A(P(u1)) and t +

( f (P(u2)) − 1)|T | + A(P(u2)) respectively, which are unequal and contradicts the assumption.

Hence we prove these transmissions in this phase are interference-free. The transmissions from

nodes in Mi to their parent nodes, and the transmissions in the broadcast process are also based

on the chromatic numbers of nodes in an IS. We can use the similar proof to the previous one

to prove that these transmissions are interference-free.

Lemma 2: The latency of the data aggregation process is at most 3β2(∆ + 4)|T |D.

Proof: During the data aggregation process, the messages are aggregated to node s layer by

layer. In each layer, nodes in Li\Mi first aggregate their messages to their parent nodes iteratively.

Since each parent node can receive the message of only one of its children nodes during one

iteration, the parent node with the most children nodes will always exist in the set Y during

all the iterations, and the number of its children nodes in the set X will decrease by one after

each iteration. Moreover, this parent node belongs to an IS, which does not include node s, and

therefore it should have one parent node in the broadcast tree. So this parent node has at most

∆ − 1 children nodes, where ∆ is the maximum node degree of the network. The total number

of iterations is bounded by ∆ − 1. f (z) is no larger than 3β2, and A(y) is at most |T | − 1. The

latency of transmissions in one iteration is at most (3β2 − 1)|T | + (|T | − 1) + 1 = 3β2|T |. So the

latency of data aggregation from nodes in Li\Mi to their parent nodes is at most 3β2(∆ − 1)|T |.
Nodes in Mi then aggregate their messages to their parent nodes. Since one parent node has

at most 5 children nodes in Mi, the total number of iterations is bounded by 5. The latency of

data aggregation from nodes in Mi to their parent nodes is at most 5∗3β2|T |. Combine two kinds

of latency as 3β2(∆ − 1)|T | + 5 ∗ 3β2|T | = 3β2(∆ + 4)|T |, which is the latency of data aggregation

in each layer. Since there are at most D + 1 layers, the latency of the entire data aggregation

process is at most 3β2(∆ + 4)|T |D.

Theorem 2: The approximation ratio of the MILD algorithm is at most 3β2(∆ + 6)|T |.
Proof: We first claim that D is a trivial bound for the IAGS-UDC problem. The MILD

algorithm contains two processes. The first process is the data aggregation process, and we

have prove that the latency of this process is at most 3β2(∆ + 4)|T |D in Lemma 2. The second

process is the broadcast process, which works layer by layer. In each layer, the schedule contains

two phases. In the first phase, the message is broadcasted to nodes in Mi. Since the maximum

chromatic number m1i is at most 3β2, the latency of this phase is at most 3β2|T |. In the second
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phase, the message is broadcasted from nodes in Mi to their children nodes. Similar to previous

phase, the latency of this phase is at most 3β2|T | because m2i is bounded by 3β2. Combine these

two kinds of latency as 3β2|T | + 3β2|T | = 6β2|T |. In the worst case, there are D + 1 layers, so

the latency of the broadcast process is at most 6β2|T |D. Combine the latency of two processes

as 3β2(∆ + 4)|T |D + 6β2|T |D = 3β2(∆ + 6)|T |D.

Theorem 3: The number of transmissions scheduled by the MILD algorithm is at most 3 times

as large as the minimum number of transmissions.

Proof: Since each node needs to transmit at least once to broadcast its message to others,

the minimum number of transmissions is n. During the data aggregation process, every node

combines its received messages as one message, and is only scheduled once to transmit the

combined message to its parent node. In this process, only node s does not transmit, so the total

number of transmissions is n− 1. During the broadcast process, in each layer Li, the message is

first broadcasted to each node u in Mi. Only one transmission is required to cover node u, so

the number of transmissions in this phase is bounded by |Mi|. The message is then broadcasted

from nodes in Mi to their children nodes with the same active time-slots to them. Note that, each

node in Mi transmits only once to cover its such children nodes, and therefore the number of

transmissions in this phase is bounded by |Mi|. Combine these two numbers of transmissions as

|Mi| + |Mi| = 2|Mi|. The total number of transmissions during the broadcast process is bounded

by
∑

1≤i≤D 2|Mi|, which is at most 2(n − 1). So the number of transmissions scheduled by the

MILD algorithm is at most n − 1 + 2(n − 1) = 3(n − 1), which is at most 3 times as large as the

minimum number of transmissions n.

Theorem 4: The time complexity of the MILD algorithm is O(n2|T |2 + n3).

Proof: The first step in the MILD algorithm is to apply a proper tessellation and 3β2-coloring

of hexgons to color the nodes. It takes O(Area/r2) time to tessellate and color the hexagons,

where Area denotes the area size of the whole area, and takes O(n) time to color all the nodes.

We can regard O(Area/r2) as O(1) if n is large. The next step is to find the special node s. It

takes O(n2) time to construct the shortest path tree rooted at one node, and hence it takes O(n3)

time to construct the shortest path tree rooted at all the nodes and to find node s. It takes O(n)

time to divide all the nodes into different layers. In the worst case, the nodes are connected one

by one, and the latency of each edge is |T |, and the maximum latency of the shortest path tree

rooted at the beginning node is (n − 1)|T |, so D is no larger than (n − 1)|T |. Hence, the running
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time of constructing the MIS’es shown in Algorithm 2 is O(n2|T |2). Moreover, we can get that

the latency of constructing the broadcast tree is O(n2|T |2 + n3). The running time of the data

aggregation process and the broadcast process is O(n3) and O(n2). Combine all the latency as

O(n2|T |2 + n3), which is the time complexity of the MILD algorithm.

VI. CONCLUSION

In this paper, we investigate the IAGS-UDC problem. We prove this problem is NP-hard, and

propose an approximation algorithm MILD. This algorithm provides a correct and interference-

free gossiping scheduling, and achieves a ratio of 3β2(∆ + 6)|T |. The number of transmissions

scheduled by this algorithm is at most 3 times as large as the minimum number of transmissions.

We also show that this algorithm is a polynomial time algorithm.
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