
1

Compact Wakeup Scheduling in Wireless

Sensor Networks

Junchao Ma and Wei Lou

Department of Computing,

The Hong Kong Polytechnic University, Kowloon, Hong Kong

{csjma, csweilou}@comp.polyu.edu.hk

Abstract

Wakeup scheduling has been widely used in wireless sensor networks (WSNs), for it can reduce

the energy wastage caused by the idle listening state. In a traditional wakeup scheduling, sensor nodes

start up numerous times in a period, thus consuming extra energy due to state transitions (e.g. from the

sleep state to the active state). In this paper, we address a novel interference-free wakeup scheduling

problem called compact wakeup scheduling, in which a node needs to wake up only once to communicate

bidirectionally with all its neighbors. However, not all communication graphs have valid compact wakeup

schedulings, and it is NP-complete to decide whether a valid compact wakeup scheduling exists for an

arbitrary graph. To tackle this problem, we define the compact wakeup deficiency of a graph to extend

the scheduling to general graphs. In particular, tree and grid topologies, which are commonly used

in WSNs, have valid compact wakeup schedulings. We propose polynomial-time algorithms using the

optimum number of time slots in a period for trees and grid graphs. Simulations further validate our

theoretical results.

Keywords: energy efficiency, compact wakeup scheduling, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of hundreds to thousands of tiny, inexpensive

and battery-powered wireless sensing devices which organize themselves into multi-hop radio

networks. As the batteries of most sensor nodes are non-rechargeable, one key challenging issue

is to schedule the activities of nodes to minimize the energy consumption. The major source of

energy wastage [1], [2] in WSNs is the idle listening state in the radio modules, which in fact



2

consumes almost as much energy as receiving. Therefore, nodes are generally scheduled to sleep

when the radio is not in use [3], and wake up when necessary. By using wakeup scheduling,

nodes could operate in a low duty cycle mode, and periodically start up to check the channel

for activity.

The previous studies [4], [5] in the wakeup scheduling did not, however, consider all possible

energy consumption, especially the energy consumed in the state transitions, for example, from

the sleep state to the listening state or transmitting state. After such a scheduling, a node may

start up numerous times in a period to communicate with its neighbors. Note that the typical

startup time is on the order of milliseconds, while the transmission time may be less than the

startup time if the packets are small [6]. Take Tmote Sky [7] as an example, the time and energy

consumption to activate a node is about 1.4 ms and 17 µJ, respectively; whereas the time and

energy consumption to transmit 1 byte is about 0.032 ms and 1.7 µJ, respectively. If a sensor

node starts up too frequently, it not only needs extra time, but also consumes extra energy for

state transitions. Moreover, it reduces the battery capacity due to the current surges in the state

transitions.

Fig. 1 shows the battery voltage of Tmote Sky sensors with different startup frequencies but

with the same duty cycle (50%): One starts up every 20ms, stays in the receive state for 10ms

and turns to the sleep state for the rest period; the other one starts up every 100ms, stays in the

receive state for 50ms and turns to the sleep state for the rest period. We can see that about 8%

battery voltage can be saved by reducing the startup frequency from five times to once in every

100ms. Therefore, the state transitions should be considered in the wakeup scheduling design.

In [8], energy efficient centralized and distributed algorithms are proposed to reduce the

frequency of state transitions of each node to twice in a data gathering tree: once for receiving

data from its children, and once for sending data to its parent. If the network topology is a

directed acyclic graph (DAG) where each node vi has ki parents, the scheduling in [8] would

require vi to wake up ki + 1 times as the parent nodes are not scheduled together. Moreover,

the two-way (or bidirectional) communication is not taken into consideration. An interesting

problem is to design an efficient scheduling where a node could wake up only once and finish

all communication tasks with its neighbors consecutively and bidirectionally.

In this paper, we propose compact wakeup scheduling, a novel time division multiple access

(TDMA) approach to the wakeup scheduling problem, to minimize the frequency of state



3

(a) Tmote Sky (b) Battery

Fig. 1: (a) Tmote Sky sensor. (b) The battery voltage of Tmotes with different startup frequency.

AA Carbon-Zinc batteries are used in the experiment. 10ms and 50ms are active time in each

period.

transitions. Compact wakeup scheduling assigns consecutive time slots to all the links incident to

a node vi so that vi can start up only once to communicate bidirectionally with all its neighbors

in one scheduling period T .

Apart from reducing the transient time and energy cost in the state transitions, compact wakeup

scheduling also has other benefits. The network delay, which is a major concern in time-critical

monitoring systems like [9], can be reduced. For instance, a sensor may need to wait until all

its neighbors wake up so that it can collect the real time data from these neighbors to make the

local computation on these data. Note that, compact wakeup scheduling can not only reduce the

state transitions of transceivers, but also reduce the state transitions of other components in the

nodes, such as external memory and sensing devices.

The main contributions of this paper are summarized as follows. (1) We formulate the compact

wakeup scheduling problem in WSNs to minimize the frequency of state transitions, and prove

it to be NP-complete. (2) We present polynomial-time algorithms using the optimum number of

time slots in a period for trees and grid graphs. In grid graphs, we point out all the possible

coloring patterns and give the lower bound as well as the upper bound of the compact wakeup

scheduling. (3) We define the compact wakeup deficiency of a graph in the case of graphs

without valid compact wakeup schedulings. (4) We develop simulations to show the efficiency

of compact wakeup scheduling.



4

The rest of this paper is organized as follows. Section II reviews the related work. Section III

describes the system model and formulates the compact wakeup scheduling problem. Section IV

presents polynomial-time algorithms for trees and grid graphs. Section V defines the compact

wakeup deficiency for graphs without valid compact wakeup schedulings. Section VI shows

the performance evaluation. Section VII concludes the paper and provides directions for future

research.

II. RELATED WORK

Wakeup scheduling has attracted a lot of interest in WSNs in virtue of its energy efficiency.

S-MAC [1] is a contention-based MAC scheme. In S-MAC, nodes periodically sleep and wake

up, and each active period is of a fixed size with a variable sleep time. T-MAC [2] improves

S-MAC by adopting a dynamic duty cycle, i.e., transmitting all messages in bursts and ending

the listening period when nothing is heard within a limited time. DW-MAC [3] allows nodes to

wake up on demand during the sleep period and ensures that data transmissions do not collide at

their intended receivers. TreeMAC [10] is a localized TDMA MAC protocol, which is designed

to achieve high throughput and low congestion with low overhead.

Link scheduling is time slot assignments to communication links in TDMA MAC protocols.

Ramanathan and Lloyd [11] consider both the tree networks and arbitrary networks, and the

performance of the proposed algorithms is bounded by the thickness of a network. In [12],

Gandham et al. propose a link scheduling algorithm involving two phases. In the first phase, a

valid edge coloring is obtained in a distributed fashion. In the second phase, each color is mapped

to a unique time slot, and the hidden terminal problem as well as the exposed terminal problem

is avoided by assigning each edge a direction of transmission. The overall scheduling requires

at most 2(∆ + 1) time slots when the topologies are acyclic, where ∆ is the maximum degree

of a graph. In [5], Wang et al. propose a degree-based heuristic algorithm with performance

guarantee to obtain a good interference-free link scheduling to maximize the throughput of the

network. In the algorithm, the sensors are scheduled individually in a predefined order without

consecutive assignment of time slots, and each node is assigned the best possible time slot to

transmit or receive without causing interferences to the already-scheduled sensors. In [13], Wu

et al. propose efficient centralized and distributed scheduling algorithms that reduce the energy

cost of state transitions, and also propose an efficient method to construct an energy-efficient



5

data gathering tree. In [8], Ma et al. address the contiguous link scheduling problem by applying

the interval vertex coloring in a merged conflict graph, and assigning consecutive time slots to

the links incident to one node to achieve better energy efficiency.

III. PROBLEM FORMULATION

In this section, we first present the system model, then formulate the compact wakeup schedul-

ing problem.

A. System Model

We assume that a WSN has n static sensor nodes equipped with single omni-directional

antennas, and all the nodes have the same communication range. The network is represented

as a communication graph G = (V, E), where V = {v1, v2, · · · , vn} denotes the set of nodes,

and E = {e1, e2, · · · , em} denotes the set of edges referred to all the communication links. If

{vi, v j} ⊆ V , the edge e = (vi, v j) ∈ E if and only if v j is located within the communication range

of vi. We assume that nodes have the ability of data aggregation and can use one time slot to

transmit data in one link.

Each node operates in three states: active state (transmit, receive and listen), sleep state and

transient state (state transition). The transient state comprises two processes: startup (from the

sleep state to the active state) and turndown (from the active state to the sleep state). The startup

process from the sleep state to the active state includes radio initialization, radio and its oscillator

startup, and the switch of radio to active [14]. The startup process is slow due to the feedback

loop in the phase-locked loop (PLL) [15], and a typical setting time of the PLL-based frequency

synthesizer is on the order of milliseconds.

In wireless networks, the packets transmitted by a node can be received by all the nodes

within its communication range. Therefore, interferences may occur among these nodes due to

the broadcast nature of the wireless medium. Effective wakeup scheduling should allow every

node to start up and transmit or receive its messages without interferences, such as hidden

terminal problem [16].

B. Problem Formulation

In TDMA wakeup schedulings, each bidirectional communication link li j is assigned two time

slots: one time slot is that vi is a transmitter and v j is a receiver, while the other one is that v j



6

(a)

N ode a

N ode g

N ode f

N ode e

N ode d

N ode c

N ode b

(b) (c)

T ransmit Receive

a

ge fd

cb

N ode a

N ode g

N ode f

N ode e

N ode d

N ode c

N ode b

Fig. 2: Wakeup scheduling and compact wakeup scheduling: (a) network topology, (b) wakeup

scheduling, (c) compact wakeup scheduling

is a transmitter and vi is a receiver. In the two time slots, nodes vi and v j start up, and switch

from the sleep state to the active state. After that, nodes vi and v j switch to the sleep state

again. We can see that node vi may start up 2wi times to communicate bidirectionally with its

neighbors in a scheduling period T in the worst case, where wi is the number of neighbors of

vi. To minimize the frequency of state transitions, we propose a new scheduling approach called

compact wakeup scheduling.

Definition 1. Compact wakeup scheduling is an interference-free wakeup scheduling to assign

consecutive time slots to all the links incident to a node vi, and then vi needs to start up only

once to communicate bidirectionally with all its neighbors. Such a scheduling is said to be valid

if all the links incident to vi are assigned consecutive time slots.

In the compact wakeup scheduling, the two time slots assigned to each bidirectional link

li j are adjacent, and node vi can finish its bidirectional communication with v j in consecutive

time slots. Fig. 2 (a) shows the given network topology. Fig. 2 (b) shows a wakeup scheduling,

in which a node starts up numerous times in a period. Fig. 2 (c) shows a compact wakeup

scheduling, in which a node could start up only once to communicate bidirectionally with its

neighbors. Compact wakeup scheduling can reduce the time for a node to collect the data from

its neighbors. As shown in Fig. 2 (b) and (c), node c needs 5 more time slots to communicate

with all its neighbors without the compact wakeup scheduling.

An edge coloring of graph G is called a valid coloring if any two adjacent edges of G are

assigned different colors. A valid coloring of G is called an interval (or consecutive) edge-

coloring if, for each vertex v, the colors of edges incident to v form an integer interval.



7

(b) Interval edge-c oloring(a) Class 1

1 2

3

2 3 1

3

1 2

Fig. 3: Class 1 graphs without valid compact wakeup schedulings

Theorem 1. The problem of deciding whether a valid compact wakeup scheduling exists for an

arbitrary graph G is NP-complete.

Proof: The problem is clearly in NP since an assignment can be verified in polynomial

time.

To prove that the compact wakeup scheduling problem is NP-hard, we first restate the interval

edge-coloring problem with forbidden colors which is NP-complete [17], [18], “Given a graph

G, a forbidding function F which represents the colors that cannot be assigned to each edge e,

and an integer k, does there exist an interval edge-coloring of G using k colors and avoiding F?”.

The interference, such as the hidden terminal problem, in the compact wakeup scheduling is a

special case of the forbidding function in the interval edge-coloring. Thus, the compact wakeup

scheduling is equivalent to the interval edge-coloring with forbidden colors, which is NP-hard.

Therefore, the problem is NP-complete.

Theorem 2. A communication graph G with a valid compact wakeup scheduling has an interval

edge-coloring, and belongs to Class 1 graphs.

Proof: If graph G has a valid compact wakeup scheduling, any node vi in G can wake up

once to communicate with all its neighbors. Each two-way communication link can be colored

with one color, and then the links incident to one node are assigned consecutive colors. Thus,

graph G has an interval edge-coloring. According to [18], graph with an interval edge-coloring

belongs to Class 1 graphs where the edge chromatic number is equal to the maximum degree ∆

of graph G. Therefore, graph G is a Class 1 graph.

Unfortunately, the converse proposition is not true. The graph in Fig. 3 (a) belongs to Class



8

G raph

C lass 1
Interval
edge-co lo ring

C ompac t
s leep
scheduling

Fig. 4: The relationship among Class 1 graphs, graphs with valid interval edge-colorings and

graphs with valid compact wakeup schedulings

1 graphs, but has no valid interval edge-coloring, and thus it has no valid compact wakeup

schedulings. The Class 1 graphs even with valid interval edge-colorings may not have valid

compact wakeup schedulings. For example, the graph in Fig. 3 (b) has an interval edge-coloring,

but all valid interval edge-colorings could not avoid the hidden terminal problem. Thus, graphs

with valid compact wakeup schedulings are a proper subset of graphs with valid interval edge-

colorings, and also a proper subset of Class 1 graphs, as shown in Fig. 4.

Since not all communication graphs have valid compact wakeup schedulings and the problem

of deciding whether a valid scheduling exists for an arbitrary graph is NP-complete, we will

focus on particular graphs, such as tree and grid topologies. Interestingly and surprisingly, we

can obtain polynomial-time algorithms using the optimum number of time slots in a period. By

minimizing the number of time slots, the overall network throughput can be maximized.

IV. COMPACT WAKEUP SCHEDULING ALGORITHMS

In this section, we propose polynomial-time algorithms to produce valid compact wakeup

schedulings for tree and grid topologies, which are commonly used in WSNs. Note that com-

pact wakeup schedulings also exist in other types of graphs, such as line and hexagonal grid

topologies, and the schedulings can be obtained using algorithms similar to that in tree and grid

topologies.

A. Trees

To obtain a valid compact wakeup scheduling of a tree, we first obtain an interval edge-coloring

of a tree, then try to assign time slots to each edge and make it interference-free. If graph G is a



9

tree of degree ∆, we could get an interval edge-coloring of G using color 1, · · · ,∆. In the coloring

process (lines 1 to 9 in Algorithm 1), when coloring a new uncolored edge, the consecutiveness

of edge-coloring remains invariant, and the edges already colored form a consecutively colored

subgraph. After all edges are colored, we could get an interval edge-coloring and the total number

of colors assigned is ∆.

Algorithm 1 Compact wakeup scheduling of a tree

Input: A tree G = (V, E).

Output: A valid compact wakeup scheduling.

// Interval edge-coloring of a tree

1: Color any edge with 1.

2: while there are uncolored edges do

3: Find a uncolored edge e whose end vertex v is adjacent to an already colored edge. Let

{a, · · · , b} be the interval of colors assigned to v.

4: if a > 1 then

5: Color edge e with a − 1.

6: else

7: Color edge e with b + 1.

8: end if

9: end while

// Time slot assignment

10: Map each color to two consecutive time slots, and use Algorithm 2 to determine a valid

direction of transmission assignment to avoid interferences.

We now describe how the interval edge-coloring is used to assign time slots to each edge.

The idea is to map each color to two consecutive time slots and assign a valid direction of

transmission to avoid interferences. In Fig. 5, link lab and lce are assigned the same color “1” in

the interval edge-coloring, while time slot ts1 and ts2 are allocated for color “1”. If time slot ts1

is assigned in the directions of transmission as shown in Fig. 5 (a), the hidden terminal problem

would happen because the reception at node vb is garbled due to the collision of transmission

from nodes va and vc. Alternatively, if time slot ts1 is assigned in the directions of transmission



10

a

b

dc

e

1

2 3

1

a

b

dc

e

1

2 3

1

(a) (b) (c)

+

_

+

_

+

_

+

_

a

b

dc

e

1

2 3

1

_

+

_

+

Fig. 5: Compact wakeup scheduling of a tree: (a) hidden terminal problem, (b) avoid the hidden

terminal problem, (c) avoid the exposed terminal problem

as shown in Fig. 5 (b), the hidden terminal problem could be avoided. Similarly, time slot ts2

is assigned in the reverse directions of transmission as shown in Fig. 5 (c). Inspired by this, we

should determine the directions of transmission along each link carefully to avoid the hidden

terminal problem, i.e., determine a node when to transmit and when to receive.

We first introduce how to avoid the hidden terminal problem after a valid coloring is obtained.

In this paper, the transmitter is marked with a sign “+” and the receiver is marked with a sign

“−”. Given a coloring of graph G and a color k, a subgraph Gk = (Vk, Ek) is defined as follows:

a) Vk is the set of vertices incident to the edges colored with k. b) Ek is the set of edges with

both end vertices in Vk. When a node is assigned a sign “−”, the only neighbor assigned a sign

“+” in Gk is the neighbor incident to the edge colored with k, and the other neighbors in Gk are

individually assigned a sign “−”. Then, nodes incident to an edge colored with k always have

an opposite sign, and nodes incident to an edge colored with other colors have the same sign.

Algorithm 2, based on Depth First Search (DFS), can provide a valid direction of transmission

assignment to Gk. Note that the time slot assignment also avoids the exposed terminal problem

[16], as shown in Fig. 5 (c).

Definition 2. The span of a valid compact wakeup scheduling of graph G is the number of

colors assigned. The minimum and maximum span over all valid compact wakeup schedulings

of G are denoted by χcw(G) and ζcw(G), respectively.

As any valid coloring in a tree requires at least ∆ colors and an interval edge-coloring can

be obtained using ∆ colors, χcw(G) is equal to ∆. Then, the number of time slots assigned in



11

Algorithm 2 DFS-based sign assignment algorithm

Input: A subgraph Gk = (Vk, Ek).

Output: A valid direction of transmission assignment.

1: Start by visiting any node in Vk, and assign a sign “+” to it.

2: Initiate a DFS procedure.

3: while there are unvisited nodes do

4: Let edge e be traversed from a visited node vi to an unvisited node v j using the DFS

procedure.

5: if e is colored with k then

6: Assign v j the sign opposite to vi.

7: else

8: Assign v j the sign same to vi.

9: end if

10: end while

the compact wakeup scheduling is 2∆, which is the optimum number of time slots. Algorithm 1

describes the compact wakeup scheduling for trees. Both the interval edge-coloring of a tree and

the time slot assignments can be obtained using O(n), where n is the number of vertices in a tree.

Thus, the algorithm to produce a valid compact wakeup scheduling for trees is polynomial-time.

B. Grid Graphs

A V ×H grid graph (3 ≤ V ≤ H) is a square lattice graph composed of VH vertices. The

grid graph has H vertical paths and V horizontal paths, where each vertical path consists of V
vertices and each horizontal path consists of H vertices.

Definition 3. In a V ×H grid graph, V i j (1 ≤ i ≤ V − 1, 1 ≤ j ≤ H) denotes the ith vertical

edge in the jth vertical path, and Hi j (1 ≤ i ≤ V, 1 ≤ j ≤ H − 1) denotes the jth horizontal edge

in the ith horizontal path.

Sample grids with labeled vertical and horizontal edges are illustrated in Fig. 6 (a) and (b).

V i j is called parallel to Vmn if i = m, Hi j is called parallel to Hmn if j = n. For example, H11,



12

11V 12V 13V 14V

21V 22V 23V 24V

(a) Vertical edges (b) Ho rizo ntal edges

21H

31H

12H

22H

32H

13H

23H

33H

11H

Fig. 6: Vertical and horizontal edges in grid graphs

3

3

3

3

3

3

3

3

3

3

3

3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

3 4 4 4 4 3

3 4 4 4 4 3

(a)

3

3

3

(b)

Interference

_
++

_
+

_

Fig. 7: An interval edge-coloring of a grid graph: (a) interval edge-coloring, (b) hidden terminal

problem

H21 and H31 are parallel in Fig. 6 (b).

Grid graphs can be consecutively colored with ∆ colors, and one interval edge-coloring

approach is given below: For a V × H grid graph, let c be a consecutive coloring of each

horizontal path with colors 2 and 3. For each i = 1, 2, · · · ,V, we color the edges of ith

horizontal path according to c. Let {a, · · · , b} be an interval of colors assigned at each vertex in

the corresponding horizontal path, then edge V1 j is colored with a− 1, V2 j with b + 1, V3 j with

a− 1, and so forth, where 1 ≤ j ≤ H . By repeating this for all edges, we could obtain a interval

edge-coloring of G, and a sample of the edge-coloring is shown in Fig. 7 (a).

A valid direction of transmission assignment can be obtained to avoid the hidden terminal

problem using Algorithm 2 in acyclic subgraphs Gk. But grid graphs contain cycles, a valid

assignment does not exist if we use the interval edge-coloring approach above. For example,

this edge-coloring cannot avoid the hidden terminal problem as shown in Fig. 7 (b). Interestingly,

Gandham et al. [12] prove that all the nodes in a cycle of Gk can be given a valid sign “+” or



13

“−” if and only if there are an even number of edges with color k in the cycle.

If the edges colored with “3” in the cycle of Fig. 7 (b) are assigned with other colors, the

consecutiveness of the colors assigned to the edges incident to one node cannot be held. Our

solution for a grid graph first considers the property of the hidden terminal problem in the grid

graph, and then deals with the consecutiveness of the edge-coloring. Our key results for grid

graphs are summarized below:

(1) We obtain an interval edge-coloring according to the parity of V and H .

∗ If both V and H are even, χcw(G) = 4.

∗ If one of V and H is even and the other is odd, χcw(G) = 5.

∗ If both V and H are odd, χcw(G) = 6.

(2) We point out all the possible coloring patterns.

(3) We give the upper bound of the compact wakeup scheduling.

Definition 4. In a grid graph, the maximum degree of vertices is ∆ = 4. The vertices of degree

4 are inner vertices, the vertices of degree 2 or 3 are boundary vertices, the edges incident to

at least one inner vertex are inner edges, and the edges incident to two boundary vertices are

boundary edges.

Definition 5. In the compact wakeup scheduling of a grid graph, the colors assigned to the inner

edges incident to an inner vertex form an interval of 4 integers. When the total number of colors

assigned is less than 8, certain color must appear in one of the inner edges and this color is

referred to as a critical color.

In grid graphs, if the total number of colors assigned is M (4 ≤ M ≤ 7), then the number of

critical colors is 8 −M. For example, if M = 4, the set of critical colors is {1, 2, 3, 4}; if M = 5,

the set of critical colors is {2, 3, 4}; if M = 6, the set of critical colors is {3, 4}.

Lemma 1. If K is a critical color assigned to an inner edge e incident to two inner vertices in

the compact wakeup scheduling of a grid graph, the inner edges parallel to e are all colored

with K.

Proof: Without loss of generality, we assume that an inner horizontal edge Hi j (2 ≤ i ≤
V− 1, 2 ≤ j ≤ H − 2) is colored with K in a V×H grid graph. The cases of colorings shown



14

K

K

K

(a) (b) (c)

K

K

K

K

K

K

Fig. 8: Invalid colorings in the compact wakeup scheduling

(a) Lemma 1 (b) Lemma2

K

K

K

K

K

K

K

K

K

K

K

K

K

K

Fig. 9: Coloring pattern in the compact wakeup scheduling

in Fig. 8 would lead to odd number of edges with color K in subgraph GK (see the thick lines

in Fig. 8), and no feasible direction of transmission can be obtained. Since K is a critical color,

H(i+1) j (i + 1 ≤ V − 1) must be colored with K. By applying recursion, the horizontal edges

Hm j (2 ≤ m ≤ V − 1) are in a parallel pattern, as shown in Fig. 9 (a).

Lemma 2. If K is a critical color, the inner edges colored with K are in an interlined pattern.

Proof: Without loss of generality, we assume an inner horizontal edge Hi j (2 ≤ i ≤ V−1, 2 ≤
j ≤ H − 2) is colored with K in a V × H grid graph. According to Lemma 1, the horizontal

edges Hm j (2 ≤ m ≤ V − 1) are colored with K. Let k = j + 2 (k ≤ H − 2), H3k must be

colored with K, since K is a critical color and H3(k−1), V2k as well as V3k cannot be colored

with K. According to Lemma 1, the horizontal edges Hmk (2 ≤ m ≤ V− 1) are colored with K,

and the result still holds when k = j − 2 (k ≥ 2). By applying recursion, the horizontal edges

Hmk (k = j± 2n, n ∈ N, 2 ≤ m ≤ V− 1, 2 ≤ k ≤ H − 2) are colored with K. If k = 1 (or H − 1)

and k = j± 2n, n ∈ N, the horizontal edges Hmk (3 ≤ m ≤ V− 2) are colored with K, since K is

a critical color. Hence, the inner edges colored with a critical color are in an interlined pattern,

as shown in Fig. 9 (b).



15

(a) even even (pattern 1) (b) even even (pattern 2)×

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

4 4 4 4 4 4

4 4 4 4 4 4

×

1

1

1

1

1

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

4 4 4 4 4 4

4 4 4 4 4 4

Fig. 10: The coloring patterns in the compact wakeup scheduling (Both V and H are even.)

(a) even even (status 1) (b) even even (status 2)× ×

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

B B

B B B B

B B

C C C C

C C C C

D

D

D

D

D

D

D

D

D

A

A

A

A

A

A

A

A

A

A

A

B B B B

B B B B B

B B

C C C C C

C C C C

Fig. 11: The coloring in the compact wakeup scheduling (Both V and H are even.)

Theorem 3. A V×H grid graph (3 ≤ V ≤ H , both V and H are even) can be consecutively

colored with 4 colors in the compact wakeup scheduling, and the possible colorings must be the

patterns as shown in Fig. 10, and χcw(G) = 4.

Proof: Fig. 10 (a) and (b) show two possible colorings in the compact wakeup scheduling,

if both V and H are even. Since the edges with the same color are in a parallel and interlined

pattern, there are an even number of edges with color k (1 ≤ k ≤ 4) in a cycle in the subgraph

Gk and then the scheduling could avoid the hidden terminal problem. Therefore, χcw(G) = 4.

As χcw(G) is equal to 4, we assume the four critical colors are A, B, C and D. According to

Lemma 1 and Lemma 2, A, B, C and D are all in a parallel and interlined pattern shown as the

status 1 in Fig. 11 (a). To avoid the hidden terminal problem, H13 cannot be colored with D or

C, and can only be colored with A. Then H12 must be colored with D. Similarly, V21 and V31



16

A A A

A A A A A

A A A A A

C C C C C

C C C C C

C C C

B

B

B

D

D

D

D

D

D

D

D

D

D

D

D

D

B

B

B

B

B

B

B

B

B

B

B D

A

C

B D

(a) 4 colors (b) 5 colors

A

C

X X X

X X X X X

X X X X X

C C C C C

C C C C C

C C C

B

B

B

D

D

D

D

D

D

D

D

D

D

D

D

D

B

B

B

B

B

B

B

B

B

B

B D

X

C

B D

X

C

Fig. 12: The colorings in the compact wakeup scheduling using 4 and 5 colors (Both V and H
are odd.)

are colored with C and B, respectively. Then H11, V11, H21 and V12 are colored with A, B, A and

B, respectively. We can color other edges in a similar way. In the status 2 shown in Fig. 11 (b),

we can see the color sets {A, B}, {A, B,D} and {A, B,C} must consist of consecutive numbers

since these colors assigned to the edges incident to the vertices in the dashed circles must be

consecutive. Therefore, {A, B,C} and {A, B,D} belong to {1, 2, 3} and {2, 3, 4}, {A, B} belongs to

{2, 3}. For C and D are symmetrical, we can get C = 4 and D = 1. For the case that A = 2 and

B = 3, the coloring pattern is Fig. 10 (a). For the case that A = 3 and B = 2, the coloring pattern

is Fig. 10 (b).

Lemma 3. A V×H grid graph(3 ≤ V ≤ H , both V and H are odd) cannot be consecutively

colored with 4 or 5 colors in the compact wakeup scheduling.

Proof: 1) If the grid could be consecutively colored with 4 colors A, B, C and D, the four

colors belonging to {1, 2, 3, 4} are all critical colors. For an inner vertex has 4 incident inner

edges, the inner edges are colored with A, B, C and D, respectively. According to Lemma 1 and

Lemma 2, A, B, C and D are all in a parallel and interlined pattern, and the coloring is shown

in Fig. 12 (a). As the colors assigned to the edges incident to the vertices in the dashed circles

must be consecutive, the color sets {A, B,C}, {B,C,D}, {A,C,D} and {A, B,D} must consist of

three consecutive numbers. However, {1, 2, 3} and {2, 3, 4} are the only two possible cases with

three consecutive numbers, which leads to a contradiction.

2) If the grid could be consecutively colored with 5 colors, B, C and D belonging to {2, 3, 4} are



17

(a) even odd (general pattern)×

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

1 X X X X X

1 X X X X X

4

4

4

4

4

3

3

3

5

5

4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

4

4

4

4

3 3 3 3 3 3

3 3 3 3 3 3

3 3 3 3 3 3

1 5 5 5 5 5

1 5 5 5 5 5

4

4

4

4

4

3

3

3

5

5

4

(b) even odd (pattern)×

Fig. 13: The general coloring pattern and coloring pattern in the compact wakeup scheduling

(One of V and H is even and the other is odd. The uncolored edges depend on the edges colored

with X, and X = 1 or 5.)

critical colors and the non-critical color 1 or 5 is denoted by X. For an inner vertex has 3 incident

critical inner edges, the inner edges are colored with B, C and D, respectively. According to

Lemma 1 and Lemma 2, B, C and D are all in a parallel and interlined pattern, and the coloring

is shown in Fig. 12 (b). Since the colors assigned to the edges incident to the vertices in the

dashed circles must be consecutive, the color sets {B,C, X}, {B,C,D}, {C,D, X} and {B,D, X}
must consist of three consecutive numbers. However, {1, 2, 3}, {2, 3, 4} and {3, 4, 5} are the only

three possible cases with three consecutive numbers, which leads to a contradiction.

Similarly, we could get the following lemma.

Lemma 4. A V ×H grid graph (3 ≤ V ≤ H , one of V and H is even and the other is odd)

cannot be consecutively colored with 4 colors in the compact wakeup scheduling.

Theorem 4. A V×H grid graph (3 ≤ V ≤ H , one of V and H is even and the other is odd)

can be consecutively colored with 5 colors in the compact wakeup scheduling, and the possible

coloring must be the pattern as shown in Fig. 13 (a), and χcw(G) = 5.

Proof: Fig. 13 (b) shows a possible coloring in the compact wakeup scheduling by deter-

mining the colors for the rest uncolored edges in Fig. 13 (a), if one of V and H is even and the

other is odd. Since the edges with the same color are in a parallel and interlined pattern, there

are an even number of edges with color k (1 ≤ k ≤ 5) in a cycle in the subgraph Gk and then the



18

(a) even odd (case 1, status 1) (b) even odd (case 1, status 2)× ×

(c) even odd (case 2)× (d) even odd (case 3)×

B

B

B

B

B

B

B

B

B

B

B

B

X

X

X

X

X

X

X

X

X

X

C C C

C C C C C C

C C C

D D D D D D

D D D D D

X

X

C

D

2

2

2

2

2

2

2

2

2

2

2

2

2

X

X

X

X

1

X

X

X

X

X

3 3 3 3

3 3 3 3 3 3

3 3 3

4 4 4 4 4 4

4 4 4 4 4

5

4

X

X

3

3

4

B

B

B

B

B

B

B

B

B

B

B

B

D

D

D

D

D

D

D

D

D

D

X X X

X X X X X X

X X X

C C C C C C

C C C C C

D

D

X

C

B

B

B

B

B

B

B

B

B

B

D

D

D

D

D

D

D

D

C C C

C C C C C C

C C C

X X X X X X

X X X X X

D

D

C

X

Fig. 14: The colorings in the compact wakeup scheduling (One of V and H is even and the

other is odd.)

scheduling could avoid the hidden terminal problem. By combining with Lemma 4, χcw(G) = 5.

Since χcw(G) is equal to 5, we assume B, C and D belonging to {2, 3, 4} are critical colors

and the non-critical color 1 or 5 is denoted by X. As an inner vertex has 3 incident critical inner

edges, Fig. 14 (a), (c) and (d) are the possible coloring patterns.

Case 1: In the status 1 shown in Fig. 14 (a), H14 cannot be colored with B, C or D, and can

only be colored with X. Then H13 must be colored with B. Similarly, V21, V31, V27, V37 are

colored with D, C, D and C, respectively. We can see that the color sets {B,C, X}, {B,C,D} and

{C,D, X} must consist of consecutive numbers since these colors assigned to the edges incident

to the vertices in the dashed circles must be consecutive. Then, {B,C, X} and {C,D, X} belong

to {1, 2, 3} and {3, 4, 5}. Then, we can get C = 3. If B = 2 and D = 4, H15, V16, H26 and V17

are colored with 2, 3, 5 and 3, respectively, shown as the status 2 in Fig. 14 (b). Then H16 can

only be colored with 4, which leads to interferences in the dashed circle. Similarly, if B = 4

and D = 2, we cannot get an interference-free scheduling either. Hence, the coloring pattern in

Fig. 14 (a) is not valid.



19

Case 2: In Fig. 14 (c), H14 cannot be colored with B, C or X, and can only be colored

with D. Then H13 must be colored with B. Similarly, V21, V31, V27, V37 are colored with C,

X, C and X, respectively. We can see that the color sets {B,D, X}, {B,C, X} and {C,D, X} must

consist of consecutive numbers since these colors assigned to the edges incident to the vertices in

the dashed circles must be consecutive. Moreover, B,C,D ∈ {2, 3, 4} are consecutive. However,

{1, 2, 3}, {2, 3, 4} and {3, 4, 5} are the only three possible cases with three consecutive numbers.

Hence, the coloring pattern in Fig. 14 (c) is not valid.

Case 3: In Fig. 14 (d), V21 cannot be colored with B, C or D, and can only be colored

with X. Then V31 must be colored with C. Similarly, V27 and V37 are colored with X and C,

respectively. We can see that the color sets {B,C, X} and {C,D, X} must consist of consecutive

numbers since these colors assigned to the edges incident to the vertices in the dashed circles

must be consecutive. Then C = 3. For B and D are symmetrical, we can get B = 2 and D = 4.

By assigning the possible colors in other edges, the coloring pattern in Fig. 13 (a) is obtained.

(a) odd odd (general pattern 1)× (b) odd odd (general pattern 2)×

6 2

6 2

5 1

5 1

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

1

2

5

6

3

4

3

2

1

1

2 5

3

3 4 6

5
4

5 3

4

3 4

2 5

4

6

2

5 2

5 2

6 1

6 1

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

2

1

5

6

3

2

3

1

4

2

4 2

3

3 1 6

5
4

5 3

4

3 4

5

4

6

5

3

2

5 5
4

2
3

2

2

3 4
5

5 2

Fig. 15: The general coloring patterns in the compact wakeup scheduling (Both V and H are

odd. The uncolored edges have various alternatives. )

3 1
4 2

5 3

6 4

4
2

3
5

3 1 3 4
4 2 2 2 5

3 4 3 4
2 5 5 5 3

3 4 6 4

(a) 3 3 (b) 3 5× ×

Fig. 16: The coloring patterns in the compact wakeup scheduling (V = 3 and H is odd.)



20

(a) odd odd (pattern 1)× (b) odd odd (pattern 2)×

2 2 2

6 2 2 2 2

6 2 2 2 2

5 1 1 1 1

5 1 1 1 1

5 5 5

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3 4

1

2

3 4

5

6

3

4

3

2

1

1

2 5

3

3 4 6

5
4

5 3

4

3 4

2 5

4

6

2 5 2 2

5 5 2 2 2

5 5 2 2 2

6 6 1 1 1

6 6 1 1 1

2 5 5

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3 4

2

1

3 4

5

6

3

2

3

1

4

2

4 2

3

3 1 6

5
4

5 3

4

3 4

2 5

4

6

5

Fig. 17: The coloring patterns in the compact wakeup scheduling (Both V and H are odd.)

(a) odd odd (case 1)×

4 4 4 4 4

4 4 4 4 4

4 4 4

3

3

3

3

3

3

3

3

3

3

3

3

3

(b) odd odd (case 1)×

4 4 4 4 4

4 4 4 4 4

4 4 4

3

3

3

3

3

3

3

3

3

3

3

3

3

1

6

5

4

3

2

(c) odd odd (case 2)× (d) odd odd (case 2)×

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

3

3

3

3 4

1

2

3 4

5

6

2

4

1

1 6

5

3

6

Fig. 18: The colorings in the compact sleep scheduling (both V and H are odd)

Theorem 5. A V ×H grid graph (3 ≤ V ≤ H , both V and H are odd) can be consecutively

colored with 6 colors in the compact wakeup scheduling, and the possible colorings must be the

patterns as shown in Fig. 15, and χcw(G) = 6.

Proof: Fig. 17 (a) and (b) shows two possible colorings in the compact sleep scheduling

by determining the colors for the rest uncolored edges in Fig. 15 (a) and (b), if both V and H



21

are odd. Specially, if V = 3, the possible colorings are shown in Fig. 16 (a) and (b). Since there

are even number of edges with color k (1 ≤ k ≤ 6) in a circle in the subgraph Gk and then the

scheduling could avoid the hidden terminal problem. According to Lemma 3, χ′(G) = 6.

Since the grid graph can be consecutively colored with 6 colors, 3 and 4 are critical colors.

For an inner vertex has two incident critical inner edges, Fig. 18 (a) and (c) are the possible

coloring patterns.

Case 1: In Fig. 18 (a), V21, V31 and H31 cannot be colored with 3, can only be colored with

{4, 5, 6}. For V31 and H31 cannot be colored with 4, V21 must be colored with 4. Similarly, H12

must be colored with 3. Then V11, V21 and H21 must be colored with {4, 5, 6}, and H11, H12 and

V12 must be colored with {1, 2, 3}. For V12, V22, H21 and H22 are consecutively colored, V12 is

colored with 2 and H21 is colored with 5. Then, V11 is colored with 6 and H11 is colored with

1, which leads to an inconsecutive coloring, as shown in Fig. 18 (b). Hence, Fig. 18 (a) is not

a possible coloring.

Case 2: In Fig. 18 (c), V21, V23 and H31 cannot be colored with 4, can only be colored with

{1, 2, 3}; V27, V37 and H36 cannot be colored with 3, can only be {4, 5, 6}. According to the

symmetrical property, we suppose V27 and V37 are colored with 6 and 5, respectively. If V21

is colored with 2 and V31 is colored with 1, we can get Fig. 18 (d). By assigning the possible

colors in other edges, the coloring pattern in Fig. 15 (a) is obtained. If V21 is colored with 1

and V31 is colored with 2, we can get the coloring pattern in Fig. 15 (b).

Hence, the possible colorings must be the patterns as shown in Fig. 15 (a) and (b), and

χ′(G) = 6.

Theorem 6. In the compact wakeup scheduling of a V × H grid graph (3 ≤ V ≤ H), 2V +

2H − 6 ≤ ζcw(G) ≤ 1
6 (13V + 13H − 8).

Proof: Lower bound: We can get a valid consecutive edge coloring with a valid direction

of transmission assignment in the compact wakeup scheduling using 2V + 2H − 6 colors. For

example, the number of colors assigned is 22 = 2 × 7 + 2 × 7 − 6 in a 7 × 7 grid as shown in

Fig. 19 (a).

Upper bound: For a consecutive edge coloring in the compact wakeup scheduling of a grid

graph G, the difference in colors of edges incident to a node v cannot exceed deg(vi)−1. Suppose

that v1, v2, · · · , vm is the vertex sequence of a path connecting edges with extremal colors, we



22

4 6 8

6 8 10 12 14

10 12 14 16 18

4 6 8 10 12

8 10 12 14 16

14 16 18

5

7

9

5

7

9

11

13

9

11

13

15

17

15

17

19

7

9

11

13

15

11

13

17

19

15

15 17

6

8

5 7

16

18

1

2

3

4

3

10

12 12

11

11 13 19

20

21

20 22

21

9 11

10 12

13

14

2

H - 1

V
-

1

a

b b

n

a

m m

nB

A

(a) (b)

Fig. 19: ζcw(G) in the compact wakeup scheduling: (a) lower bound of ζcw(G), (b) upper bound

of ζcw(G)

could get ζcw(G) ≤ 1+
∑m

i=1(deg(vi)−1). We suppose vertices A and B are on the path connecting

edges with minimum and maximum colors, respectively, as shown in Fig. 19 (b). We assume

vertex A is on the common point of H(b+1)(a+1) and V (b+1)(a+1), and vertex B is on the common point

of H(V−m)(H−1−n) and V (V−1−m)(H−n). We can get ζcw(G) ≤ 1+3(H−1−a−n+1)+3(V−1−b−m) =

3(V + H − a − b − m − n) − 2 using route 1. We have also known ζcw(G) ≥ 2V + 2H − 6.

3(V +H − a − b − m − n) − 2 should be no less than 2V + 2H − 6. Otherwise, 2V + 2H − 6

should also be the upper bound. Then we get, V + H + 4 ≥ 3(a + b + m + n). Without loss

of generality, we assume a + m ≥ b + n. Then, b + n ≤ 1
6 (V + H + 4). We can also get

ζcw(G) ≤ 1+3b+2(H−a−1)+1+2(V−m−1)+3n = 2(V+H−a−m)+3b+3n−2 using route

2. Then, ζcw(G) = 2(V+H) + 3(b + n)−2(a + m)−2 ≤ 2(V+H) + b + n−2 ≤ 1
6 (13V+ 13H−8).

Thus, ζcw(G) is bounded by 2V + 2H − 6 and 1
6 (13V + 13H − 8).

According to Theorem 3, 4 and 5, the number of time slots assigned is optimum. If both V
and H are even, the number of time slots assigned in a period is 4 × 2 = 8 in a V × H grid

graph. If one of V and H is even and the other is odd, the number of time slots is 5 × 2 = 10.

If both V and H are odd, the number of time slots is 6 × 2 = 12. Algorithm 3 describes the

compact wakeup scheduling of a grid graph and its complexity is O(n).

V. COMPACT WAKEUP DEFICIENCY OF A GRAPH

Since not all graphs have valid compact wakeup schedulings, one approach is to define a

measure of insusceptibility to the problem. We define the compact wakeup deficiency of a graph



23

Algorithm 3 Compact wakeup scheduling of a grid graph

Input: A V ×H grid graph G (3 ≤ V ≤ H).

Output: A valid compact wakeup scheduling.

// Interval edge-coloring of a grid

1: Decide the parity of V and H (even or odd).

2: if both V and H are even then

3: Color G using the pattern in Fig. 10.

4: else if one of V and H is even and one is odd then

5: Color G using the pattern in Fig. 13 (b).

6: else

7: Color G using the pattern in Fig. 17.

8: end if

// Time slot assignment

9: Map color k to two consecutive time slots {2k − 1, 2k}, and use Algorithm 2 to determine a

valid direction of transmission assignment to avoid interferences.

in the case of graphs without valid compact wakeup schedulings.

Definition 6. Given a finite integer set A, deficiency d(A) is the smallest number of sets Bi such

that A ∪ B1 ∪ B2 ∪ · · · ∪ Bk forms a set of consecutive integers and A ∩ Bi = ∅ (1 ≤ i ≤ k), i.e.,

d(A) = k, where Bi is a set of consecutive integers.

Definition 7. Given a graph G = (V, E) and an edge-coloring c in compact sleep scheduling,

d(G, c, v) denotes the compact wakeup deficiency of vertex v in an edge-coloring c of G, which is

the deficiency of the set of colors assigned to the edges incident to v; d(G, c) denotes the compact

wakeup deficiency of coloring c of G, which is the sum of compact wakeup deficiencies of all

vertices, i.e., d(G, c) =
∑

v∈V d(G, c, v); d(G) denotes the compact wakeup deficiency of graph G,

which is the minimum d(G, c) of all possible edge-colorings c. Graph G is called d(G)-deficient.

Theorem 7. Given a graph G and a positive integer k, the problem of deciding whether d(G) ≤ k

is NP-complete.



24

Proof: According to the definition of the compact wakeup deficiency, graphs with valid

compact wakeup schedulings are 0-deficient. By combining with Theorem 1, the problem of

deciding whether G is 0-deficient is NP-complete. Therefore, the problem of deciding whether

the compact wakeup deficiency of G is not greater than k is NP-complete.

(b) 2-defic ient(a) 1-defic ient

1 2

33 3

4

2 1

2

1

3

5

4
2

4 4

Fig. 20: The compact wakeup deficiency of graphs

In the compact wakeup scheduling, the compact wakeup deficiency of a graph indicates the

minimum number of state transitions. Fig. 20 shows the compact wakeup deficiencies of graphs

without valid compact wakeup schedulings shown in Fig. 3. The compact wakeup deficiencies of

the vertices in the dashed circles are 1. The compact wakeup deficiency of the graph in Fig. 3 (a)

is 1 and the compact wakeup deficiency of the graph in Fig. 3 (b) is 2.

VI. PERFORMANCE EVALUATION

In this section, we study the performance of the compact wakeup scheduling of trees and

grid graphs, and we also compare our algorithms with the degree-based heuristic in [5] and the

contiguous link scheduling in [8]. The performance metrics used in the evaluation are the transient

energy consumption and the waiting period. The total energy consumption is an important metric

in WSNs, but the energy consumption except the transient energy consumption is the same among

the three schemes under identical traffic conditions, so we will only focus on the transient energy

consumption. The waiting period is defined as the total time a node stays in the waiting status

from the first neighbor waking up to the last neighbor waking up as the node waits for gathering

the information from all its neighbors. The waiting period reflects the extra delay caused by the

node if it stays in the sleep state for the wakeup of neighbors.



25

We adopt the following parameters in our simulation: the transient energy to activate a sensor

is 17 µJ [7], a scheduling period T is 10 seconds, and the network operating time is 1 day.

In the tree construction of n nodes, the number of children nodes of each sensor is randomly

set from 1 to 4. The root node first determines its children nodes, and then each child node

determines its children nodes, and so on and so forth until the total number of nodes in the tree

reaches n. For each n, 10 trees are generated and the average performance over all these trees

is reported. In the grid graph construction, we use square grid graphs, where V = H .

(a) Tree (b) Grid Graph

Fig. 21: Transient energy consumption

Fig. 21 shows the total transient energy consumption of the following schemes: degree-

based heuristic (degree-based), contiguous link scheduling (contiguous) and compact wakeup

scheduling (compact). In both the tree and grid topologies, the transient energy consumption

increases as the number of nodes increases. The energy consumption in the compact wakeup

scheduling is the smallest among the three schemes, for the frequency of state transitions is

minimized in the scheduling. As shown in Fig. 21 (a), compact wakeup scheduling reduces the

energy consumption significantly by approximately 50% as compared to that in the degree-based

heuristic, and about 35% as compared to that in the contiguous link scheduling.

Fig. 22 shows the total waiting period increases as the number of nodes increases in the

degree-based heuristic and contiguous link scheduling, while the waiting period is zero in the

compact wakeup scheduling. With smaller waiting periods, it would be faster for nodes to gather

the information from their neighbors, thus reducing network delay.



26

(a) Tree (b) Grid Graph

Fig. 22: Waiting period

We summarize observations from the simulation results as follows: (1) The waiting period

of trees and grid graphs with valid compact wakeup scheduling is zero. (2) Compact wakeup

scheduling can significantly reduce network delay and energy consumption.

VII. CONCLUSION

In this paper, we address a new interference-free TDMA wakeup scheduling problem in WSNs,

called compact wakeup scheduling. In the scheduling, a node needs to wake up only once to

communicate bidirectionally with all its neighbors, thus reducing the time overhead and energy

cost in the state transitions. In the case of graphs that have no valid compact wakeup schedulings,

we define the compact wakeup deficiency of a graph to extend the scheduling to general graphs.

We propose polynomial-time algorithms to achieve the optimum number of time slots assigned in

a period for trees and grid graphs. In grid graphs, we point out all the possible coloring patterns

and give the lower bound as well as the upper bound of the compact wakeup scheduling. In the

process of time slot assignments, both the hidden terminal and exposed terminal problems can

be avoided. The simulation results corroborate the theoretical analysis and show the efficiency

of compact wakeup scheduling.

In our future work, we will try to obtain efficient algorithms for other kinds of network

topologies with valid compact wakeup schedulings. Another interesting problem is to design

efficient (i.e. polynomial-time) heuristic algorithms to find an edge-coloring c in a graph G to

make the compact wakeup deficiency of coloring c close to d(G) in general graphs.



27

REFERENCES

[1] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless sensor networks,” in Proc. of IEEE

INFOCOM, 2002.

[2] T. Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wireless sensor networks,” in Proc. of ACM

SenSys, 2003.

[3] Y. Sun, S. Du, O. Gurewitz, and D. B. Johnson, “DW-MAC: a low latency, energy efficient demand-wakeup MAC protocol

for wireless sensor networks,” in Proc. of ACM MobiHoc, 2008.

[4] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in wireless sensor networks,” in Proc. of ACM MobiHoc,

2006.

[5] W. Wang, Y. Wang, X. Y. Li, W. Z. Song, and O. Frieder, “Efficient interference-aware TDMA link scheduling for static

wireless networks,” in Proc. of ACM MobiCom, 2006.

[6] A. Wang, S. Cho, C. Sodini, and A. Chandrakasan, “Energy efficient modulation and MAC for asymmetric RF microsensor

systems,” in Proc. of the 2001 International Symposium on Low Power Electronics and Design (ISLPED), 2001.

[7] Moteiv Corporation, Tmote Sky Datasheet [Online], Available: http://www.moteiv.com/.

[8] J. Ma, W. Lou, Y. Wu, X. Y. Li, and G. Chen, “Energy efficient TDMA sleep scheduling in wireless sensor networks,” in

Proc. of IEEE INFOCOM, 2009.

[9] M. Li and Y. Liu, “Underground structure monitoring with wireless sensor networks,” in Proc. of ACM/IEEE IPSN, 2007.

[10] W. Song, R. Huang, B. Shirazi, and R. LaHusen, “TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate

sensor networks,” in Proc. of IEEE PerCom, 2009.

[11] S. Ramanathan and E. L. Lloyd, “Scheduling algorithms for multihop radio networks,” IEEE/ACM Transactions on

Networking, vol. 1, no. 2, pp. 166–177, 1993.

[12] S. Gandham, M. Dawande, and R. Prakash, “Link scheduling in sensor networks: Distributed edge coloring revisited,” in

Proc. of IEEE INFOCOM, 2005.

[13] Y. Wu, X. Y. Li, Y. Liu, and W. Lou, “Energy-efficient wake-up scheduling for data collection and aggregation,” IEEE

Transactions on Parallel and Distributed Systems (TPDS), 2009.

[14] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor networks,” in Proc. of ACM

SenSys, 2004.

[15] R. E. Best, Phase-locked Loops: Design, Simulation and Applications. McGraw-Hill, 2003.

[16] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: a media access protocol for wireless LAN’s,” in Proc.

of ACM SIGCOMM, 1994.

[17] M. Kubale, “Interval edge coloring of a graph with forbidden colors,” Discrete Mathematics, vol. 121, no. 1-3, pp. 135–143,

1993.

[18] A. S. Asratian and R. R. Kamalian, “Investigation on interval edge-colorings of graphs,” Journal of Combinatorial Theory,

Series B, vol. 62, no. 1, pp. 34–43, 1994.


