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Abstract—In cognitive radio networks (CRNs), a wireless user with primary access right on a channel (called primary user ) has
prioritized access to the channel and the user with secondary access right (called secondary user ) can use the channel when the
primary user is idle. Spectrum auction has emerged as a promising approach to address the access allocation problem in CRNs.
A significant challenge in designing such auction is providing truthfulness to avoid market manipulation. In most previous work, the
primary access rights on channels are pre-determined before the auction and bidders can only compete for the secondary access
rights. However, a user’s requirement on spectrum access rights relies on their QoS demands. Therefore, it is much desirable to
allocate spectrum access rights on the basis of QoS demands as well as to exploit the resulting spatial spectrum reuse opportunities.
To solve this problem, we propose TRUMP, a truthful spectrum auction mechanism, by taking into consideration both QoS demands
and spectrum spatial reuse, which can drastically improve spectrum utilization. The theoretical analysis proves that TRUMP achieves
truthfulness and individual rationality with polynomial-time complexity. Our extensive simulation results show that our proposals
outperform previous work in terms of both social welfare and spectrum utilization.
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1 INTRODUCTION

Radio spectrum is a critical and scarce resource for
wireless communications. Traditionally, it is regulated
by spectrum regulators (e.g., Federal Communications
Commission in USA) and allocated to users by assigning
exclusive licenses. Only users with licenses are allowed
to use the licensed spectrum. In recent years, with the
proliferation of novel wireless technologies, the demand
for radio spectrum is drastically increased. However, in-
vestigations show that most licensed spectrum is vastly
under-utilized while unlicensed portion is increasingly
overcrowded under such kind of static and exclusive
allocation policy [1].

Cognitive Radio Network (CRN) [2], [3] is emerging as
a promising solution to overcome the above dilemma. In
CRNs, the access rights of channels are divided into two
categories: primary access right and secondary access
right. A wireless user with primary access right on a
channel (called primary user) has prioritized access to
the channel and the user with secondary access right
(called secondary user) can only use the channel when
the primary user is idle. In addition, the secondary
user must vacate the channel as soon as the primary
user initiates its transmission activity. CRNs provide a
new venue to exploit the under-utilized portion of the
spectrum band while limiting the interference imposed

• Q. Wang is with National Key Laboratory for Novel Software Technology,
Nanjing University, China, and Department of Military Management,
Army Command College, China. E-mail: qhwang@dislab.nju.edu.cn

• B. Ye and S. Lu are with National Key Laboratory for Novel Software Tech-
nology, Nanjing University, China. E-mail: {yebl, sanglu}@nju.edu.cn

• S. Guo is with School of Computer Science and Engineering, The Univer-
sity of Aizu, Japan. E-mail: sguo@u-aizu.ac.jp

on primary users. The crucial problem faced by the spec-
trum regulator is how to select the users on the access
rights of each channel so as to optimize the spectrum
utilization. Generally, there are two kinds of allocation
schemes, named the two-step allocation [7] and the single-
step allocation [9] respectively. In the former schemes, the
regulator first assigns spectrum to primary users in a
static manner and let the primary users allocate their idle
portion of spectrum to secondary users independently.
In the latter schemes, the regulator dynamically deter-
mines either the primary or secondary access rights on
spectrum to users within one step.

After extensive research during the past five years, the
auction mechanisms for two-step allocation (referred as
secondary spectrum auctions, SSAs) [4], [5], [6], [7], [8]
have been relatively well understood. In SSAs, primary
users are pre-determined before starting the auction and
bidders can only compete for secondary access rights
on channels. In fact, a user’s requirement on spectrum
access rights relies on the QoS demands of his applica-
tions and thus may vary over time. For instance, when a
user runs time-sensitive applications such as live stream-
ing, it would like to request for primary access right
with higher price. On the other hand, when performing
delay-tolerant applications like file transfer, it may prefer
secondary access right with lower price. Therefore, it is
appealing to assign the access rights in accordance with
users’ QoS demands. Under such considerations, single-
step allocation is much more desirable. It enables the
regulator to flexibly assign access rights to users on-the-
fly according to their QoS demands. In addition, it is also
beneficial for users since they can optionally request for
different levels of access rights with optimized prices.

According to our best knowledge, [9] is the only work
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designed for this scenario till date. The authors propose
an auction framework to allow bidders to bid for pri-
mary and secondary access rights in accordance with
their traffic model. They present truthful auctions by us-
ing the Vickery-Clarke-Groves (VCG) mechanism [11], a
generally well-known incentive compatible mechanism,
to maximize the social welfare of networks. Although
the VCG mechanism is a possible choice enforcing that
users bid their true valuations, it is also well known
to suffer from several drawbacks such as low revenue
[12], [13]. Moreover, the spatial reuse of spectrum has
not been exploited. It has been widely accepted that the
spatial reusability of spectrum can drastically improve
spectrum utilization by addressing the interference con-
straints [6]. Unfortunately, finding an interference-free
spectrum allocation is NP-hard [10]. As a result, it be-
comes more challenging to guarantee the truthfulness of
such spectrum auction. Firstly, it is well-known that the
truthfulness of VCG mechanism is achievable for only
optimal solution [20]. Secondly, the spatial reusability
makes traditional auction mechanisms, e.g., k-position
[21], lose truthfulness. This is because multiple well-
separated buyers can use the same spectrum band simul-
taneously, which constitutes the fundamental difference
between spectrum and traditional goods (e.g., paintings).
Finally, earlier SSAs with interference constraints are
unsuitable for single-step allocation since a bidder in
SSAs has only two states (win or lose) while three states
exist (primary, secondary and lose) in the latter.

In this paper, we investigate the single-step allocation
problem and propose TRUMP, a TRUthful spectruM
auction considering QoS demands and sPatial reuse.
TRUMP dynamically assigns spectrum access rights to
users according to their QoS demands. TRUMP provides
a bidding language to allow users to independently
express bids for their valuations on spectrum in terms
of QoS demands. To exploit the spectrum reusability,
we formulate the QoS-aware spectrum access allocation
with interference constraints as an integer programming
problem where the social welfare could be maximized.
While finding such optimal solution is shown to be NP-
hard, we focus on computationally efficient spectrum
allocation and pricing algorithms to support large s-
cale networks. We first propose TRUMP for the single-
secondary-user case, where each channel is allocated to
one primary user and at most one secondary user.
TRUMP consists of a computational-efficient allocation
algorithm and a finely designed pricing scheme. Fol-
lowing that, we extend it to r-TRUMP for multiple-
secondary-user case, where one primary user and at most
r secondary users can be allocated to each channel. Both
TRUMP and r-TRUMP are shown to be truthful and
computationally efficient. We evaluate the performance
of our proposals by extensive simulations. Simulation
results show that TRUMP can effectively and efficiently
improve both social welfare and spectrum utilization
compared with prior work. To the best of our knowledge,
we are the first to exploit the spatial spectrum reusability

for single-step allocation. The main contributions of this
paper are as follows:

• We present a QoS-aware auction framework for
single-step allocation. A novel bidding language is
provided for bidders to dynamically bid for primary
or secondary access rights according to their QoS
demands.

• We design practical and efficient auction mecha-
nisms that are simple and scalable, yet provide
powerful performance guarantee. Spectrum utiliza-
tion are drastically improved by taking into account
spectrum reusability.

• The proposed mechanisms are shown to be truthful
and individually rational. The former guarantees no
additional profit could be awarded for bidders by
cheating. The latter ensures that the profit of each
bidder is no less than zero, which incentivizes bid-
ders to voluntarily participate the auction.

The rest of the paper is organized as follows. Sec-
tion II introduces the system model. Section III gives
the problem statement. Sections IV and V presents the
auction design of TRUMP and its extension r-TRUMP,
respectively. Performance evaluation is shown in section
VI. Section VII concludes the paper. Related work and
analysis of truthfulness and individual rationality are
given in the supplementary file.

2 SYSTEM MODEL

2.1 QoS-aware Auction

In heterogeneous multiuser networks, QoS demands
may vary from user to user. Without loss of generality,
we consider two categories of services: QoS-guaranteed
and best-effort services [16], [17]. The former is provided
either with sufficient resources such that the QoS require-
ment is guaranteed, or with no resources at all. The latter,
with low priority, is served through the network’s best-
effort. In our QoS-aware spectrum allocation scheme,
primary access rights are suitable for QoS-guaranteed
services like online-video, while secondary access rights
are suitable for best-effort services like FTP and HTTP.

Accordingly, we consider these two types of bidders
as follows using a tuple bidding language bi = ⟨bpi , bsi ⟩,
where bpi and bsi represent the bid issued by bidder i for
primary and secondary access, respectively.

• TYPE-I: Bidders with QoS-guaranteed services who
only accept primary access on channels. Since the
secondary access right is unacceptable, it is reason-
able to set bpi > 0 and bsi = −∞ for any bidder i of
TYPE-I.

• TYPE-II: Bidders with best-effort services who
would accept either primary or secondary access
on channels, but primary access is much preferable.
These can interpreted as bpi ≥ bsi > 0 for any bidder
i of TYPE-II.

Note that these settings are based on different valuations
for primary and secondary access. In a similar way, we
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use vi = ⟨vpi , vsi ⟩ to denote the true valuation of bidder i
for primary and secondary access, respectively.

An auction consists of an allocation algorithm along
with a pricing scheme. All bidders simultaneously sub-
mit their bids privately to the regulator without any
knowledge of others. After collecting bids, the auctioneer
determines the winners of primary and secondary users
according to the allocation scheme, and a price τi will
be charged from each winner i accordingly. The utility
ui (i.e., profit) of bidder i is computed as follows.

ui =

 vpi − τi, if i wins primary access,
vsi − τi, if i wins secondary access,
0, otherwise.

(1)

2.2 Network Model
We consider a spectrum market with M orthogonal
channels denoted as M = {1, 2, · · · ,M} and N buyers
(or bidders) denoted asN = {1, 2, · · · , N}. The auction is
conducted by the spectrum regulator (called auctioneer)
and we assume the bidders do no collude. To avoid
transmission conflicts on the same channel, the protocol
interference model [14], [15] has been widely adopted to
formulate the impact of interference for resource alloca-
tion problems. Interference information can be obtained
from statistics collected during operation or extensive
spectral measurement (e.g., on the packet level seek) [19],
which is the basic assumption underlying the general
model of spectrum auctions [6], [7], [8].

Under such model, the interference can be well cap-
tured by a conflict graph G(N , E), where E is a collection
of L = |E| edges. An edge (i, j) ∈ E between any two
bidders i and j (i, j ∈ N ) indicates that they interfere
with each other when using the same channel simul-
taneously. In SSA-based auction mechanisms, bidders i
and j will be assigned different channels if both win.

Different from the traditional SSA-based scheme, our
QoS-aware auction allows the following two basic allo-
cation types A1 and A2 by differentiating bidders for
their various service demands:

• A1: A channel is allocated to only one bidder as
primary. All its neighboring bidders in the conflict
graph must not be assigned the same channel.

• A2: A channel is allocated to a pair of bidders which
are connected in the conflict graph, one as primary
and the other as secondary. All their neighboring
bidders in the conflict graph will not be assigned
the same channel.

Note that the same channel can be reused for multiple
basic allocations if they are apart from each other, i.e.,
they are not connected in the conflict graph. Therefore,
our proposal improves the spectrum reusability because
of A2 compared to the traditional ones. In formal, we
use notation a

c↔ a′ to indicate that two different basic
allocations a and a′ (a ̸= a′) are connected because of
sharing a common node or being attached by an edge
in the conflict graph. In the following, we use a node

and an edge in the conflict graph to indicate the basic
allocation of types A1 and A2, respectively.

3 PROBLEM STATEMENT

3.1 Design Goals
A common goal of designing the allocation scheme is to
maximize social welfare, i.e., the sum of all winners’ bids,
which is a strong indicator of how well positioned the
buyer is to make good use of the sold spectrum bands.

In auction design, truthfulness (or incentive-
compatibility) is of supreme importance because it
can avoid the manipulation that a bidder may be
selfish by declaring a false bid instead of his own true
valuation (i.e.,bpi ̸= vpi or bsi ̸= vsi ) so as to increase his
profit. An auction is truthful if each bidder always
maximizes his profit by bidding with his true valuation,
i.e., ui(vi,b−i) ≥ ui(bi,b−i) for any bi when fixing
b−i, where b−i = (b1, . . . , bi−1, bi+1, . . . , bN ) is the list
of bidding prices without i’s bid. Therefore, truthful
auction makes the bidding easier for bidders. Otherwise,
each bidder has to figure out the bidding strategies of
others before making an optimal bidding decision for
himself.

Another economic property, individual rationality, is
also required to be satisfied in auction. An auction is
of individual rationality if no winner is paid more than
its bid. This property guarantees non-negative profit for
bidders who bid truthfully, and thus provides them with
the incentives for the participation.

3.2 Problem Formulation
In this section, we develop an optimization model for the
social welfare maximization problem. We here consider
the single-secondary-user case. First, we define binary
variables xp

i (m) and xs
i (j,m) as follows to characterize

the two basic allocation types A1 and A2, respectively,
where i ∈ N , (i, j) ∈ E , and m ∈M.

xp
i (m) =

 1, if i is allocated channel m as
primary,

0, otherwise.
(2)

xs
i (j,m) =

 1, if i and j are allocated channel m
as seconary and primary, respectively,

0, otherwise.
(3)

The interference constraints in our proposal are there-
fore to guarantee that any two basic allocations, e.g., a
and a′, should not be assigned the same channel if they
are connected, i.e., a c↔ a′. All possible combinations are:
both of type A1 (node-node case), both of type A2 (edge-
edge case), and one of type A1 and the other of type A2
(node-edge case), as formulated in constraints (4),(5) and
(6), respectively.

These constraints are explained as follows by Fig. 1,
where any dotted line in the conflict graph indicates that
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Fig. 1: Constraint illustration for (1) node-node case,
(2) edge-edge case and (3) node-edge case. Black and
white nodes represent winning bidders as primary and
secondary, respectively. Solid lines represent edges in the
conflict graph.

the two corresponding basic allocations in constraints
(4), (5) and (6) are connected. In other words, they
should not be assigned the same channel. For example,
constraint (4) for the node-node case describes that a
conflict will occur when the primary access right is
assigned to both i and j if i

c↔ j, i.e., (i, j) ∈ E . In
fact, this condition is very similar to the interference in
SSA. Constraint (5) for the edge-edge case shows that the
connected basic allocations (i, g) and (j, k) will lead to
conflict if they share the same channel. Constraint (6)
defines the conflict condition for node-edge case in a
similar way.



xp
i (m) + xp

j (m) ≤ 1, ∀m ∈M, ∀i, j ∈ N : i
c↔ j (4)

xs
i (g,m) + xs

j(k,m) ≤ 1,

∀m ∈M, ∀(i, g), (j, k) ∈ E : (i, g)
c↔ (j, k) (5)

xp
i (m) + xs

j(k,m) ≤ 1,

∀m ∈M, ∀i ∈ N , ∀(j, k) ∈ E : i
c↔ (j, k) (6)

Furthermore, each bidder requests only one channel
and each channel can be allocated to at most one sec-
ondary bidder. These can be formulated by the following
constraints.


∑

m∈M

∑
j:(i,j)∈E

xp
i (m) + xs

i (j,m) ≤ 1, ∀i ∈ N (7)

∑
i:(i,j)∈E

xs
i (j,m) ≤ 1, ∀j ∈ N , ∀m ∈M (8)

Finally, the maximum social welfare problem can be
formulated as the following integer programming:

max
∑

m∈M

∑
i∈N

bpi x
p
i (m) +

∑
m∈M

∑
(i,j)∈E

bsix
s
i (j,m) (9)

s.t.(4)− (8)

3.3 Complexity Analysis

Theorem 1: The problem of maximizing social welfare
in this setting is NP-hard.

Proof: Consider a simple case where all bidders are
of TYPE-I, i.e., xs

i (j,m) = 0 for all (i, j) ∈ E and m ∈M.
Then the problem is equivalent to the well studied graph

TABLE 1: Notations

B The set of primary bids {bp1, b
p
2, ..., b

p
N}.

W The set of edge weights {w1, w2, ..., wL}.
N(i) The set of nodes sharing edge with node i

in G.
Sort(·) A function that sorts a set in a descending

order.
Top(·) A function that returns the first element in

a sorted set.
Avai(i) The set of available channels for node i.
State(i) The state of node i.
Remove If i ∈ N , it removes the bid of node i and
(X, i) all associated edges (i, j) ∈ E from set X .

Otherwise, it recursively invokes Remove(i1)
and Remove(i2), where i1 and i2 are the two
endpoints of edge i.

PriceTable A function for charging i to compete channel
(i, j, k,m) m, where edge (j, k) is a neighbor of i.

colouring problem, where channel is equivalent to ‘color’
and bidder is equivalent to ‘node’. It is known that the
graph colouring problem is NP-hard.

With the optimal solution, we can get a truthful auc-
tion by applying VCG mechanism directly. However, to
solve (9) with optimal solution is impractical and non-
optimal solution makes VCG mechanism untruthful. On
the other hand, the prior truthful SSAs like [6] cannot
be applied to our setting, since a bidder has only two
states (either win or lose) in SSA while three states exist
in our setting (primary, secondary and lose).

4 TRUMP AUCTION DESIGN

Before presenting the allocation algorithm TRUMP-
Allocation and the pricing algorithm TRUMP-Pricing,
we first define the weight of edge i ∈ E that joins nodes
i1 and i2 as:

wi = max(bpi1 + bsi2 , b
s
i1 + bpi2). (10)

The interpretation of weights wi is as follows. If i1 and
i2 are primary and secondary bidders on a channel,
respectively, the sum of their bids is bpi1 +bsi2 . So wi is the
maximum sum of bids if i1 and i2, one as primary and
the other as secondary, are assigned the same channel.
Note that, we use the term node and bidder interchange-
ably. Other symbols and notations are summarized in
Table 1.

4.1 TRUMP-Allocation
Based on the sorted set B

′
= Sort(B ∪ W ), TRUMP-

Allocation allocates channels to edges or nodes sequen-
tially from the highest weight or bid to the lowest one.
Note that an element i in B

′
can be either a node

or an edge. If i is a node, the algorithm first checks
whether there are enough channels for assigning, i.e.,
|Avai(i)| ≥ 1. If so, it assigns a channel with the least
index in Avai(i) to i, and removes this channel from each
of the available channel sets of i’s neighboring nodes.
If i is an edge with endpoint i1 and i2, the algorithm
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Algorithm 1: Procedure Assign(i)

if i ∈ N then
if Avai(i) == ϕ then

return ϕ;
find m ∈ Avai(i);
assign channel m to i;
State(i) = P ;
remove m from Avai(j) foreach j ∈ N(i);

if i = (i1, i2) ∈ E then
if Avai(i1) ∩Avai(i2) == ϕ then

return ϕ;
find m ∈ Avai(i1) ∩Avai(i2);
assign channel m to edge i
if bpi1 + bsi2 ≥ bsi1 + bpi2 then

State(i1) = P and State(i2) = S;
else

State(i2) = P and State(i1) = S;
remove m from Avai(j) foreach
j ∈ N(i1) ∪N(i2) ;

return m;

Algorithm 2: TRUMP-Allocation(B,W ,G)

B
′
= Sort(B ∪W );

Set State(i) = null for i← 1 to N ;
Set Avai(i) =M for i← 1 to N ;
while B

′ ̸= ϕ do
i = Top(B

′
);

call procedure Assign(i);
Remove(B

′
, i);

first checks whether there is a common available channel
of i1 and i2, i.e., |Avai(i1) ∩ Avai(i2)| ≥ 1. If so, it
assigns this channel to the edge and removes it from the
available channel sets of both bidder i1’s and bidder i2’s
neighboring nodes. There are three possible states after
the allocation: P , S and null, which indicate the primary
access, secondary access and none access assigned to
bidder i, respectively. Note that, the initial state of each
bidder is null, and the initial set of available channels
for each node i is the total channels (i.e., Avai(i) =M).
TRUMP-Allocation (see Algorithm 2) contains an assign-
ment procedure which is described in Algorithm 1.

4.2 TRUMP-Pricing
To ensure the truthfulness, the charged price of a bidder
must be independent with his own bid. Otherwise, the
bidder can manipulate his bid to improve the utility. The
design philosophy of pricing is that the charged price
for each bidder is the minimal bid for seizing one of its
neighbors’ channel such that the bidder with any bid
higher than the price will always win an access right.
Note that neighbors includes both neighboring edges
and neighboring nodes.

After allocation, we use pricing method to charge
each winner. The TRUMP-Pricing algorithm works as
follows: for each winner i, it first takes out i and its

Fig. 2: All combinatorial cases for charging bidder i.
Nodes 1 and 2 represent bidder of TYPE-I and TYPE-
II, respectively. Black and white nodes represent winning
primary access and secondary access in TRUMP-Pricing,
respectively. Node x represents a bidder of any type.

associated edges from B
′
, and runs TRUMP-Allocation

on the updated B
′

again. Note that variable Avai() needs
to be reinitialized. Algorithm 3 describes the routine of
TRUMP-Pricing, where MAXNUM represents an infinite
positive number and array d[m] records the maximum
weight/bid of i’s neighbors attached on channel m. Since
the weight/bid set (B

′
) is sorted in a descending order,

d[m] is actually the first neighbor’s weight/bid on m.

Algorithm 3: TRUMP-Pricing(B,W ,G,i)

B
′
= Sort(B ∪W );

if State(i) == null then
return τi = 0;

τi=MAXNUM;
Set d[k] = −1 for k ← 1 to M ;
Set Avai(i) =M for i← 1 to N ;
B

′′
= Remove(B

′
, i);

while B
′′ ̸= ϕ do

q = Top(B
′′
);

m = Assign(q);
Remove(B

′′
, q);

case 1: q ∈ N and (i, q) ∈ E
j = q, k = 0, w = bpj ;

case 2: q ∈ E and (i, q1) ∈ E
j = q1, k = q2, w = wq ;

case 3: q ∈ E and (i, q2) ∈ E
j = q2, k = q1, w = wq ;

if d[m] < 0 then
d[m] = w;

τi = min(τi, P riceTable(i, j, k,m));

if |Avai(i)| ≥ 1 then
τi = 0;

return τi;

There are two cases for charging winner i. (1) τi = 0;
(2) τi = min(τi, P riceTable(·)). The former case indicates
that i can always be allocated (penultimate line in Al-
gorithm 3). This is because there are adequate channels
for bidder i. Otherwise, i will compete channels with
its neighbors. PriceTable(·) ensures that i can always
seize one channel from its neighbors by bidding with
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TABLE 2: PriceTable(·) for charging i in Fig. 2

Cases x∈ TYPE-I x∈ TYPE-II && x∈ TYPE-II &&
State(i) == P State(i) == S

(1)(4) d[m] d[m] d[m]− bpj
(2)(6)(7)(8) d[m]− bsj d[m]− bsj d[m]− bpj

(3)(5) impossible impossible impossible

a higher price than its neighbors. In details, if i wants
to seize channel m from its neighbors, its bid or related
edge’s weight must exceed d[m], which is the maximum
weight/bid of i’s neighbors attached on m in TRUMP-
Pricing. Because bidder i needs only one channel, the
final price is the minimal value of all computed τi, which
means i cannot seize any channel by bidding lower than
that. We list all combinatorial cases to seize a channel
from its neighboring nodes or edges in Fig.2, and the
corresponding prices are listed in Table 2. For instance, in
case (4), if bidder i is of TYPE-II and wins primary access
in TRUMP-Allocation, it has to bid higher than d[m] to
seize the channel m from neighbors; On the other hand,
if i wins secondary access in TRUMP-Allocation, bsi + bpj
must be higher than d[m] so as to seize the channel, i.e.,
i must bid higher than d[m] − bpj to share the channel
with j.

It is a straightforward exercise to show that the com-
plexity of procedures Sort(·), Assign(·), and Remove(·)
are O((N + L) log(N + L)), O(L) and O(N + L), re-
spectively. In TRUMP-Allocation(B,W,G), Sort(·) is in-
voked once, while Assign(·) and Remove(·) are in-
voked N times. Its overall complexity is therefore
O((N + L) log(N + L) + NL + N2) time. In TRUMP-
Pricing(B,W,G, i), the sorted bids from TRUMP-
Allocation will be reused and hence its complexity main-
ly comes from invoking Assign(·) and Remove(·) in the
while-loop. Because bidder i is excluded, the loop takes
only N−1 iterations, leading to a complexity O(NL+N2)
for each winner. Finally, since there will be at most N
winners, the complexity of computing payment for all
bidders is O(N3 +N2L). In summary, the complexity of
TRUMP is O((N + L) log(N + L) +N3 +N2L).

The analysis on truthfulness and individual rationality
of our proposed mechanism can be found in the supple-
mentary file. The major theoretical result is summarized
below.

Theorem 2: TRUMP is truthful and individually ratio-
nal.

5 EXTENSION OF TRUMP
In this section, we consider more general cases, where a
basic spectrum allocation can accommodate one primary
user and at most r secondary users. To make the problem
tractable, we assume that all the secondary users on
a channel have equal access rights. This is because
complicated multiple access protocols would be required
to grant access at different priority levels to different
secondary users on a channel. Under this consideration,

we propose r-TRUMP based on TRUMP (r ≥ 1), where
the channel is said to be divided into r secondary parts
for secondary sharing.

5.1 r-TRUMP Allocation Rules

We design the allocation rule based on the TRUMP-
Allocation. We add an auxiliary number for each bidder
i to indicate how many secondary bidders have been
attached to primary bidder i. Moreover, we record which
secondary bidders have been attached to primary bidder
i. Therefore, we introduce an auxiliary array aux[r + 1],
where aux[0] records the total number of attached sec-
ondary bidders and remaining aux[1] to aux[r] record
the index of attached bidders. The outline of r-TRUMP-
Allocation algorithm is described as follows:

STEP 1: Execute TRUMP-Allocation algorithm, and
create an array aux[r + 1] for each primary winner (the
bidder that wins primary access right) to record the
index of attached bidders.

STEP 2: For bidders of TYPE-II who have not been
allocated in STEP 1, we sequentially handle them from
the one with the highest bid (bsi ) to the lowest one. For
each bidder i to be allocated in STEP 2, we traverse its
neighbors (including edges and nodes) in descending
order and find the first primary winner j that can
accommodate additional secondary bidders. Then we
assign i secondary access on the channel.

Note that the following two conditions must be satis-
fied for bidder i to be attached on the primary winner
j:

• (C1) other neighbors of i except j do not use the
same channel with j (except those attached on j);

• (C2) aux[0] < r for j.
The former condition ensures that the accommodation
will not cause conflict to other bidders. The latter one
ensures that there are at most r secondary bidders on
each channel.

5.2 r-TRUMP Pricing Rules

The basic idea of r-TRUMP-Pricing is similar to TRUMP-
Pricing algorithm, i.e., first taking i and its related
edges out of the sorted list B

′
, and then performing

r-TRUMP-Allocation again to find the charged price.
When assigning a channel to i’s neighbors, the minimal
bid for seizing one of its neighbor’s channel is the
charged price. The only difference is that r-TRUMP-
Pricing would charge a lower price for bidders of TYPE-
II since the competition reduces when more secondary
bidders could be allocated.

Let τ̂i be the price charged to i in r-TRUMP-Pricing.
After running TRUMP-Pricing on i, τ̂i is initialized as
τ̂i = τi. If i wins a primary right (i.e., i has been
allocated in STEP 1 of r-TRUMP-Allocation), then r-
TRUMP-Pricing completes for bidder i. Otherwise, we
set τ̂i to the minimal bid such that i can win a secondary
right in STEP 2 of r-TRUMP-Allocation.
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Fig. 3: Performance comparison between TRUMP and an VCG-Based auction [9] which does not exploit the spatial
reuse of spectrum.
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Fig. 4: Performance improvement of TRUMP by exploiting user diversity.

For the latter case, we need to check whether bidder i
can be accommodated by one of its primary neighbors,
e.g., j, after running r-TRUMP-Allocation on bidders
except i (i.e., N\{i}). It is conducted by traversing all
its neighbors in a descending order on their bids. If
there exists any neighbor k of i (not attached on j) that
disqualifies condition (C1), we set

τ̂i = min(τ̂i, b
s
k) (11)

to beat k such that i will seize the channel and (C1) be
guaranteed if bidding at τ̂i. Otherwise, we update τ̂i as
follows such that condition (C2) will hold as well.

τ̂i =

{
0, aux[0] < r
minrk=1(τ̂i, b

s
aux[k]), otherwise. (12)

The setting τ̂i = 0 indicates that i will be always allocated
since j has accomodated less than r secondary bidders,
i.e., aux[0] < r. Otherwise, i has to bid the lowest bids,
i.e., minrk=1(b

s
aux[k]), among r secondary bidders attached

to j. After checking all neigbors of i, the final updated
τ̂i is the price charged to i.

Similarly, we show the properties of our extended
auction with a proof given in the supplementary file.

Theorem 3: The r-TRUMP is truthful and individually
rational.

6 PERFORMANCE EVALUATION
In this section, we evaluate the performance of TRUMP
via simulations. First, we examine the impact of spacial

reuse and user diversity to the performance. Then, we
extensively evaluate the performance of TRUMP and r-
TRUMP. Finally, we investigate the fairness issue of our
proposal.

6.1 Simulation Methodology
We assume a single auctioneer that conducts an auction
in a relatively small geographic area. Bidders are ran-
domly deployed in a square 1.0 × 1.0 area. By default,
300 bidders are deployed and the number of bidders of
each type is random. To generate the interference graph,
we set the interference range as 0.1, i.e., if the distance
between any two bidders is less than 0.1, they will
interfere with each other when using the same channel
simultaneously.

We set up an auction of total channels varying from 2
to 20 channels. Each bidder independently submits a bid
tuple bi = ⟨bpi , bsi ⟩ to the auctioneer. For bidder of TYPE-I,
bpi is uniformly distributed over (0,1], and the bsi is set to
-9999. For bidders of TYPE-II, both bpi and bsi is uniformly
distributed over (0,1] and bpi ≥ bsi is ensured. To eliminate
the impact of randomness, the results are averaged over
10 random seeds. We use the following performance
metrics to evaluate the performance of TRUMP and r-
TRUMP:

• Social Welfare: The sum of all winners’ bids.
• Revenue: The sum of total charged payments from

winners.
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Fig. 5: Performance comparison between TRUMP, SIMPLE and VERITAS by auctioning 1-20 channels.
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Fig. 6: Performance comparison between TRUMP, SIMPLE and VERITAS with different bidders.

• Spectrum Utilization: The sum of allocated chan-
nels over winners, i.e., the number of winners.

• Bidder Satisfaction: The percentage of winners.

6.2 Spatial Reuse vs Non-Spatial Reuse

We compare TRUMP with a VCG-based auction [9]
which consists of an allocation algorithm and a VCG
pricing scheme. The allocation algorithm is based on
finding maximum weighted matching [18]. The results
of both auctions are shown in Fig. 3(a)-(d).

From Fig. 3(a) and Fig. 3(b), we observe that TRUMP
significantly outperforms the VCG-based auction in
spectrum utilization and social welfare. This is attributed
to the fact that TRUMP exploits the spatial reusability
with consideration of the interference constraints while
the VCG-based auction does not. In VCG-based auction
a channel can be allocated to at most two bidders and
thus the spectrum utilization and revenue of the VCG-
based auction grow linearly with the growing number
of channels.

In Fig. 3(c), we observe that although the maximal
revenues of both auctions are similar, TRUMP achieves
the maximum using 3 channels while the simple design
requires 20 channels. Furthermore, the revenue decreases
as long as the number of channels to be auctioned
exceeds a certain value. The decreasing of revenue is
due to the shrink of the number of losing bidders. That
is, we can improve the total revenue by controlling
competition among bidders, for example, to control the

number of auctioned channels or to attract more bidders
to participate in the auction.

For a fair comparison, we plot the revenue per channel
as a function of the bidder satisfactory rate by vary-
ing the number of channels auctioned (see Fig. 3(d)).
Again, TRUMP significantly outperforms the VCG-based
design.

6.3 User Diversity vs Non-User Diversity
Now we explore the benefits brought by supporting
QoS-aware bidding. We first run TRUMP on a random
mix of bidders with different types. Then, we perform
TRUMP again with these bidders by setting the sec-
ondary bid of each bidder equal to its primary bid.
If a TYPE-I bidder is allocated with secondary right,
the utilization is set to zero and the bidder is charged
zero. We plot the results in Fig. 4(a)-(c). We observe that
TRUMP significantly improves spectrum utilization and
social welfare while addressing user diversity by up to
25% and 35%, respectively.

6.4 Performance of TRUMP
Now we evaluate the performance of TRUMP by com-
paring to SIMPLE and VERITAS [6] that both consider
spatial reuse. The former is an extension of the tradition-
al scheme [9] by dividing the whole region into boxes
with length of the maximal interference radius such that
bidders in each box conflict with each other and the
VCG-based auction can be applied directly in each box.
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Fig. 7: Performance of r-TRUMP under various settings of parameter r.
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Fig. 8: Examine the effect of parameter r.

The latter is the most famous SSA which also takes
interference into account. In order to adapt VERITAS
to our scenario, we run VERITAS on the same bids
where only primary bids are effective. The performance
comparison is conducted under various numbers of auc-
tioned channels and bidders. These experiments allow us
to understand these mechanisms under different levels
of resource contention.

The results under various number of channels are
shown in Fig. 5, where TRUMP significantly improves
the performance compared to VERITAS and SIMPLE.
This is due to the fact that TRUMP allows more bid-
ders to be allocated compared to VERITAS. SIMPLE
ensures the truthfulness while suffering from significant
degradation in social welfare and spectrum utilization.
To provide a more fair comparison on the generated
revenue, we further plot the revenue per channel as a
function of the bidder satisfactory rate by varying the
number of channels auctioned. As shown in Fig. 5(d),
we observe that TRUMP outperforms both VERITAS and
SIMPLE once again.

From the results under various number of bidders
as shown in Fig. 6(a)-(b), we see that TRUMP again
significantly improves the social welfare and spectrum
utilization. In Fig. 6(c), TRUMP generates lower revenue
than VERITAS and SIMPLE when the number of bidders
is small. This is because more bidders are charged zero
in TRUMP when the contention level is low. However,
when the number of bidders is large, i.e., the contention

of channels is intensive, TRUMP generates higher rev-
enue. This is because more bidders are accommodated
and thus charged in TRUMP as confirmed in Fig .5(d).
Moreover, the performance improvement generally in-
creases as more bidders are involved.

6.5 Perforamnce of r-TRUMP
We evaluate r-TRUMP by tuning the parameter r using
three different values: TRUMP, 3-TRUMP and 5-TRUMP.
The results are shown in Fig. 7. We observe that the
spectrum utilization and social welfare increase with
the increment of r. The results confirm that more bid-
ders can be allocated with secondary access. Similar as
TRUMP, the revenue turns to decrease once the number
of channels to be auctioned exceeds one certain value.
Furthermore, we find that the performance gain is not
obvious when r is larger than 3.

We then examine the efficiency of r-TRUMP, which is
defined as the ratio of the sum of social welfare of win-
ning participants to the total social welfare. It reflects the
portion of bidder demands that are satisfied, weighted
by bid vectors. The results under various values of r
are plotted in Fig. 8(a). We observe that the efficiency
increases with the increment of r. The results confir-
m that more bidders can be allocated with secondary
access when r grows. Furthermore, we find that the
performance gap is not obvious when r increases. This is
because most bidders will be allocated when r exceeds
a certain threshold.
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Fig. 9: Jain’s fairness index with different numbers of
bidders enrolled.

We then vary the number of bidders in the simulation-
s. The results plotted in Fig. 8(b) show that the improved
efficiency by exploiting larger r will be maximized at
a moderate number of bidders, e.g., N =200-250. Too
few or too many bidders lead to similar efficiency under
various values of r.

Based on the above observations, we conclude that r
is relevant to the average degree D =

∑
i∈N |N(i)|/N

of conflict graph. The result in Fig. 8(c) confirms our
deduction. In summary, r is a tunable parameter which
is highly relevant to the underlying infrastructure. It can
be adjusted according to the conflict conditions.

6.6 Fairness

In this section, we quantify the fairness of our method
by using Jain’s fairness index [22]. The Jain’s fairness
index is computed as 1

N

∑N
i=1

Xi

Xf
, where Xi denotes

the allocation of bidder i and Xf =
∑N

i=1 X2
i∑N

i=1 Xi
is the fair

allocation mark. Thus each bidder compares his allocation
Xi with the amount Xf , and perceives the algorithm
as fair or unfair depending upon whether his allocation
Xi is more or less than Xf . The overall fairness is the
average of perceived fairness of total N bidders.

The results are plotted in Fig. 9. From the results, we
can observe that TRUMP performs better than SIMPLE
and VERITAS. This is because the Jain’s fairness index
computed as bidder satisfaction in our settings for each
method, where Xi is 1 if bidder i wins and is 0 if it loses.
Therefore the result is contributed by the fact that more
bidders can be allocated in TRUMP, either be primary or
be secondary.

7 CONCLUSION

In this paper, we propose TRUMP, a QoS-aware truthful
spectrum auction framework for single-step access allo-
cation in CRNs. TRUMP allows bidders to independent-
ly express bids for their valuations on spectrum in terms
of QoS demands. Furthermore, it exploits the spatial
reuse by addressing interference to improve spectrum
utilization. We extend TRUMP to r-TRUMP so as to

serve more secondary users according to network usage.
Through theoretical analysis, we prove that both TRUMP
and r-TRUMP are truthful and computational-efficient.
We also validate the performance of TRUMP and r-
TRUMP using extensive simulations.
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