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Abstract—Software-Defined Networking (SDN) is an emerging network paradigm that simplifies network management by decoupling
the control plane and data plane, such that switches become simple data forwarding devices and network management is controlled
by logically centralized servers. In SDN-enabled networks, network flow is managed by a set of associated rules that are maintained by
switches in their local Ternary Content Addressable Memories (TCAMs) which support high-speed parallel lookup on wildcard patterns.
Since TCAM is an expensive hardware and extremely power-hungry, each switch has only limited TCAM space and it is inefficient and
even infeasible to maintain all rules at local switches. On the other hand, if we eliminate TCAM occupation by forwarding all packets to
the centralized controller for processing, it results in a long delay and heavy processing burden on the controller. In this paper, we strive
for the fine balance between rule caching and remote packet processing by formulating a minimum weighted flow provisioning (MWFP)
problem with an objective of minimizing the total cost of TCAM occupation and remote packet processing. We show the problem
is NP-hard, and propose an efficient offline algorithm if the network traffic is given, otherwise, we propose two online algorithms
with guaranteed competitive ratios. Finally, we conduct extensive experiments by simulations using real network traffic traces. The
simulation results demonstrate that our proposed algorithms can significantly reduce the total cost of remote controller processing and
TCAM occupation, and the solutions obtained are nearly optimal.
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flow table entries along the flow path. SDN-enabled
switches maintain flow rules in their local TCAMs [10]-
[12], which support high-speed parallel lookup on wild-
card patterns. A typically flow setup process [2], [13]
between a pair of users, say users A and B, in SDN
contains three steps. 1) User A sends out packets after
connection initialization. Once a packet arrives a switch
without matched flow table entries, this packet is for-
warded to the controller. 2) Upon receiving the packet,
the controller decides whether to allow or deny this flow
according to network management policies. 3) If the flow
is allowed, the controller installs corresponding rules to
all switches along the path, such that consecutive packets
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Fig. 1. The sniffed TCP traffic flow [14].

can be processed by the installed rules locally at switch-
es. Note that switches usually set an expiration time
for rules, which defines the maximum rule maintenance
time when no packet of associated flow arrives.

In practice, network flow shows various traffic pat-
terns. For example, we show real-time traffic of four
network flows [14] in Fig. 1, where some are burst
transmission while the others have consecutive packet
transmissions for a long time. For consecutive trans-
mission, only the first packet experiences the delay of
remote processing at the controller, and the rest will be
processed by local rules at switches. However, for burst
transmission, the corresponding rules cached in switches
will be removed between two batches of packets if their
interval is greater than the rule expiration time. As a



result, remote packet processing would be incurred by
the first packet of each batch, leading to a long delay
and high processing burden on the controller. A simple
method to reduce the overhead of remote processing
is to cache rules at switches within the lifetime of
network flow, ignoring the rule expiration time. Unfor-
tunately, network devices are equipped with limited-
space TCAMs because they are expensive hardware and
extremely power-hungry. For instance, it is reported that
TCAMs are 400 times more expensive [12] and 100 times
more power-consuming [15] per Mbit than RAM-based
storage. Since TCAM space is shared by multiple flow in
networks, it is inefficient and even infeasible to maintain
all rules at local switches. This dilemma motivates us
to investigate efficient rule caching schemes for SDN to
strive for a fine balance between network performance
and TCAM usage.

The main contributions of our paper are summarized
as follows.

o To the best of our knowledge, we are the first to
study the rule caching problem with the objective
of minimizing the sum of remote processing cost
and TCAM occupation cost.

o We show the NP-hardness of the problem, and
propose an offline algorithm by adopting a greedy
strategy if the network traffic is given in advance.
We also devise two online algorithms with guaran-
teed competitive ratios.

o Finally, we conduct extensive simulations using real
network traffic traces to evaluate the performance of
our proposals. The simulation results demonstrate
that our proposed algorithms can significantly re-
duce the total cost of remote controller processing
and TCAM occupation, and the solutions obtained
are nearly optimal.

The reminder of the paper is structured as follows.
Section 2 reviews some related work in table entries
scheduling in SDN. Section III introduces the system
model and problem formulation. An offline algorithm is
proposed in Section IV. Two online algorithms are pro-
posed and analysed in Section 5. Section 6 demonstrates
the performance evaluation results. Finally, section 7
concludes this paper.

2 RELATED WORK

As one pioneering work of recouping control plane from
the data plane, NOX [8] has been proposed to control
data forwarding based on OpenFlow.

Following this line of research, lots of efforts have been
made on rule caching strategies in SDN, which can be
classified into two categories: reactive way [2], [8] and
proactive way [3], [4], [16].

The reactive rule caching has been widely adopted by
existing work [2], [8] because of its efficient usage of
TCAM space. The first packet of each “microflow” is
forwarded to the controller that reactively installs flow
entries in switches. For instance, Ethane [2] controller

reactively installs flow table entries based on the first
packet of each TCP/UDP flow. Recently, Bari et al. [13]
use the on-demand approach to response flow setup
requests.

On the other hand, other studies [17], [18] argue that
reactive approach is time-consuming because of remote
rule fetching, leading to heavy overhead in packet pro-
cessing [5], [13], [16]. To reduce the response time for
packets at switches without matched rules, proactive
approach has been proposed to install rules in switches
before corresponding packets arrive. For example, Ben-
son, et al. [5] developed a system MicroTE that adapts to
traffic fluctuations, with which rules can be dynamically
updated in switches to imposes minimal overhead on
network based on traffic prediction. Kang, et al. [3]
have proposed to pre-compute backup rules for possible
failures and cache them in switches in advance to reduce
network recovery time.

In addition, other related literatures [7], [12], [19], [20]
focus on the rules scheduling considering forwarding
table size utilization. For instance, Katta et al. [12] pro-
posed a abstraction of an infinite switch based on an
architecture that leverages both hardware and software,
in which rules caching space can be infinite. In that case,
rules can be cached in forwarding table as many as
possible. This abstraction saves TCAMs space, but the
packet processing speed in switch is a bottleneck. To
efficiently use TCAMs space, Kanizo et al. [7], Nguyen
et al. [19] and Cohen et al. [20] propose their rules
placement scheduling jointly consider the traffic routing
in network. However, rules updating is ignored in their
optimization. To the contrast, we study both the two
aspects in our optimization.

The work most related with our paper is DIFANE
[16], a compromised architecture that leverages a set
of authority switches serving as a middle layer be-
tween the controller in control plane and switches in
data plane. The endpoints rules are pre-computed and
cached in authority switches. Once the first packet of
a new microflow arrives the switch, the desired rules
are reactively installed, from authority switches rather
than the controller. In this way, the flow setup time
can be significantly reduced. Unfortunately, caching pre-
computed rules all in authority switches consumes large
TCAM space. In our work, we still load the flow rules
into switches in a reactive way. However, rule caching
period is controlled by our proposed algorithm by taking
both remote processing and TCAM occupation cost into
consideration.

3 SYSTEM MODEL AND PROBLEM FORMULA-
TION

We consider a discrete time model, where the time
horizon is divided into 7' time slots of equal length
I. A network flow travels along a set of SDN-enabled
switches, each of which is assigned a set of rules to
implement routing or network management functions.



TABLE 1
Notions and Variables
Notations | Description
T maximum time-slot range of consideration
l length of each time slot (seconds)
a; a binary indicator that denotes the positive flow rate
in time slot ¢, =1,2,..T
0 sum of time slots where a; > 0
D amount of valid periods during [1, T']
Vi the i*" valid period during [1, T]
E; the 7" empty period during [1, T]
o occupation cost of caching table entry
B8 remote processing cost
v 1=5
z; a binary variable indicating whether cache action
happens in time slot 4, i=1,2,..T'
Yi a binary variable indicating whether fetch action
happens in time slot 3, i=1,2,.T
Cco total cost of cache action during [1, T
Cr total cost of fetch action during [1, T']

For simplicity, in this paper, we study rule caching at a
switch with a set of associated rules whose maintenance
cost is a per second, and our results can be directly
extended to all switches along the flow path. Note
that the set of rules associated with the network flow
will be cached or removed as a whole at the switch.
When no matched flow table entries are available at the
switch for arriving packets, these packets will be sent
to the controller for processing. We model the remote
processing cost at controller as 3. The ratio between these
two kinds of cost is denoted by v, i.e., v = §. We consider
arbitrary traffic pattern of the network flow. The set of
time slots with (a; > 0) and without (a; = 0) packet
transmission are referred to as valid period and empty
period, respectively. All symbols and variables used in
this paper are summarized in Table 1.

We define a binary variable z; to denote whether a
flow entry is cached at the i-th time slot:

|

The occupation cost can be calculated as follows.

T
Cec=al- Zmi.
i=1

We also define a binary variable y; to indicate whether
remote packet processing is conducted.

and the corresponding cost can be calculated by:

1, if rules are cached at the i-th time slot,
0, otherwise.

M

L,
0,

if rules are remotely fetched in the i-th time
otherwise.

T
Cr=81-Y v &)
i=1

With the global information of the given traffic flow,
the minimum weighted flow provisioning (MWFP)

slq,te

problem can be formulated as follows:

MWEFP : min Crptq; = Co + Cr

ZiYi

st m—xi—1 < Yi (3a)
> >, (3b)

j=1
(w5 +yi) > a, (30)

Ty Yi S {170}7 Vi = 1,2,..,T.

The trigger of remote processing is represented by con-
straint (3a), where y; = 1 only when we decide to cache
rules from the i-th time slot, which are not available at
local switches in the (i — 1)-th time slot, i.e., z; = 1 and
x;—1 = 0. Constraint (3b) indicates that the switch needs
to fetch rules at least one time before caching. Constraint
(3¢) claims that arriving packets must be processed by
local cached rules or remote controller. Note that the
input of this problem are a;, o, 8 or v, and the output
are the scheduling solution z;, y;, i=1,2,.T.

Theorem 1. The MWFP problem is NP-hard.

Proof: We show MWEP problem is NP-hard by
performing a polynomial reduction from the weighted
set cover problem, a classic combinatorial optimization
problem that is proved NP-hard [21], [22]: Suppose we
have an instance of the weighted set cover problem
A'=U',S"). Given a set U' = {1,2,..,T}, a collection
S'={51, S}, ..., S, }(m=%(T? + T)) of subsets of U’, with
weights w(S}), the goal is to find a collection C’ of these
subsets whose union is U’, such that ) ., ., w(C;) is
minimized. '

We construct an instance of the MWFP from this
instance, ie., A= U, S) with U = {1,2,..,.T}, § ={
{1} 42},.., {T}, {1,2},{2,3},.., {T-1,T}, {1,2,3},{2,34},..,
{T-2,1-1,T}%, .., {12.,7-1}, {23,.,7}, {12,.,1}}, in
which each element in each subset of S denotes the time-
slot during [1,7]. Every subset in S is a cost(.S;), which
can be calculated as

The target is to find a collection of time slots C C S
such that (Jg, o Ci = U, and ensuring the total cost of
C is minimum. It can be seen that such transformation
can be done in polynomial time. As the weighted set
cover problem is NP-hard, the MWEFP is NP-hard too as
the reduction can be done in polynomial time, and vice
rsa. ]

cost(.S;) 4)

4 OFFLINE ALGORITHM

Due to the NP-hardness, solving MWEFP problem is com-
putationally infeasible for large-scale problem instances.
In this section, we propose a heuristic algorithm to solve
the offline version of the problem. As shown in Algorith-
m Offline Greedy, we first generate a collection of time
slot sets that represents possible rule cache periods as



shown in line 1. Each set is assigned a weight according
to (4) in line 2. Then, we select time slot sets for rule
caching in an iterative manner from line 4 to 8. In each
iteration, we choose the set X that minimizes the value
of weight w(X) divided by number of elements not yet
covered.

Algorithm 1 Offline Greedy Algorithm to solve MWFP
Input: flow indicator set F = {a(t), t€[1,T]}, and
T={12,.,T}
Output: The collection C of subsets of T
1: generate sample collection S with (Jg.g S = T,
where its generating method has been described in
the proof of Theorem 1.
2: generate the weight function w: § — R, by invoking
4)
C+ 0 and R+ T
: while R # 0 do
X < argminxes %
C+~CuX
R+ R\ X
: end while

® N> g

Theorem 2. Alg.1 is (InT+1)-approximation to the optimal
solution of MWEP, where T is the maximum time slot.

Proof: For each element (time slot) ¢; € T, let S; be
the first picked set that covers it while applying Alg.1,
and 0(t;) denote the amortized cost of each element in
Sj

w(S;)
o(t;) = 1,
(t) |S; N R|

Obviously, the cost of Alg.l can be written as
Y, er O).

Then, let T = {t1,t2,....,t7} denote the ordered set
of elements in [1,7] that each is covered. Note that,
when ¢; is to be covered, apparently we have R D
{tj,tj41,...,tr}. We can see that R contains at least
(T'— 7 + 1) elements. Therefore, the amortized cost in
S; is at most the average cost of the optimum solution
(denoted by 0OPT), ie.,

_w(S;) <~ OPT
S NR T T—j+1

0(t;)

By summing the 6(¢;) in all time slots, we get:

1 1 1
) < — [ — .
E G(t])_OPT(T+T_1+ +2+1)
t; €T

That is Greedy < OPT - H(T) < OPT - (1 + InT'), where
H(T) is called the harmonic number of 7' O

5 ONLINE ALGORITHMS

In this section, we consider the MWEFP problem assum-
ing that the packet traffic information is not given in
advance. We first present several important observations
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Fig. 2. lllustration of typical actions in optimum solution.

in the optimal solution, followed by two proposed on-
line algorithms with low computational complexity to
approximate the optimal solution.

5.1 Typical actions in optimal solutions

By carefully examining the optimal solutions of sever-
al problem instances, we find that there exists several
typical actions as follows.

e FNC (Fetch and Cache): for valid periods with at
least 2 time slots, flow rules are first fetched from
the remote controller, and then they are cached at
local switches.

o SUF (Successive Fetch): for a valid period with at
least 2 time slots, all packets are forwarded to the
remote controller for processing.

o CIE (Cache in Empty period): rules are cached in
switches during the empty period between two
valid periods.

e NF (Only Forward): Packets are processed by the
controller in the empty periods of one time slot.

Above typical actions are illustrated in Fig. 2. The

optimal solutions can be categorized into following three
cases.

o OPT-A: there are only SUF actions in the optimal
solution.

o OPT-B: there are only CIE actions in the optimal
solution.

o OPT-C: both SUF and CIE actions exist in the opti-
mal solution.

5.2 Online Exactly Match the Flow Algorithm

Our first online algorithm, which is referred to as EMF
(Exactly Match the Flow Algorithm), is shown in Alg. 2.
In each time slot, each switch makes a decision, caching
or fetching, according to observed network traffic. When
there are packets arriving in the current time slot, ie.,
a; = 1, if no matched rules are cached, ie., z;—1 = 0,
switch fetches rules from the controller. Otherwise, we
keep caching them in switches.

Lemma 1. Suppose there are D valid periods (denoted by V;,
i = 1,2,....D) including § valid time slots within [1,T), the
total cost of EMF is

Cemr = BID + alé. 5)



Algorithm 2 online Exactly Match the Flow (EMF) Al-
gorithm

1: for each time slot ¢ € [1,7] do
2: if Cltzl and xt_1=0 then

3: fetch flow rules from the controller

4: Yt <— 1, Ty < 1

5. else if a;=1 and x;_1=1 then

6: keep caching entries in switches

7. else if ;=0 and z;_1=1 then

8: remove the corresponding flow table entries
9: Ty < 0

10:  end if

11: end for

Proof: In Alg. 2, flow rules are maintained in switch-
es only when there are network traffic passing through,
such that TCAM occupation cost can be easily calcu-
lated by «ld. Since rule fetching action happens in the
beginning of each valid period, we have fetching cost of
BiD. By summing them up, the total cost of EMF can be
calculated by (5). |

Lemma 2. When the optimal solution belongs to OPT-
A, SUF is adopted by any valid period V;, we have v >

Vil=1 . _
StVi=1,2,..,D.

Proof: Since SUF is adopted in the optimal solution,
its cost must be less than FNC, i.e.,
Vil Bl < Bl + |Vi|od
Vil
Vil -1

Vil -1
Vil

=B < Vi=1,2,...,D.

|

Theorem 3. When the optimal solution belongs to OPT-A,
the EMF algorithm is (v + 2)-competitive.

Proof: Since the optimal solution belongs to OPT-A,
i.e., all packets are sent to the controller for processing,
it is easy to see that the total cost of optimal solution is
Bl6. Thus, the competitive ratio A4 is:

~ CEME ad + BD D

A= Bls B 5

|

Lemma 3. When the optimal solution belongs to OPT-B,
rules are always maintained by switches once downloaded, i.e.,
CIE is adopted by the period E; between any two valid periods
Vi and Vi1, and we have ~ < ‘T{_',w =1,2,...D—1.

Proof: 1If switches continue to cache rules once they're
downloaded, the TCAM occupation cost during E; must
be less than the fetching cost at the beginning of Vi,
ie.,

al(|Ei| + [Vig1]) < Bl+ |Viga] - od

1
= 0>alE| =v< ﬁ,w: 1,2,....,D—1.

FNCjn Vi FnC iP Vin
1 1
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) e | ],
@ Time slot
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v e e ]
Time slot

Fig. 3. Rules are cached in E; because of CIE action.

Theorem 4. When the optimal solution belongs to OPT-B,

the EMF algorithm is (%)—com;ﬂetitive.

Proof: As shown in Fig. 3, since rules are maintained
in switches once downloaded under OPT-B, its total cost
can be easily calculated by 5l +al(d+ E?:_ll |E;]), where
the first term is the cost of the only fetching that happens
in the beginning of the first valid period, and the second
term is TCAM occupation cost. Combined with Lemma
1, the competitive ratio is:

N = CemE
Bl+al(5+ Y125 |Ei)
< 8D + ad _ D +~6
“B4+ald+D-1) 1+4+4(6+D-1)

0

Lemma 4. When the optimal solution belongs to OPT-C,
there exists at least one valid period V;,i € [1,D] and one

. . ‘/'7 —
empty period E;, j € [1,D — 1], such that ! I‘l/i‘l <Y< g

Proof: This lemma can be easily proved following
similar analysis in Lemmas 2 and 3. O

Theorem 5. When the optimal solution belongs to OPT-C,

the EMF algorithm is (%)—campetitive.

Proof: Without loss of generality, we suppose CIE is
adopted in empty periods {Ei, Es, ..., E,}, and SUF is
adopted in valid periods {V1, V%, ..., V,;}. There are z NF
actions in the optimal solution. The total cost of optimal
solution belongs to OPT-C can be calculated by:

Y
Copr-c = 51[D—CU+Z(|Vi|—1)}+
i=1
T Y
ad(6+ B =Y Vi) — alz,
j=1 i=1
= BID+ ald + h(z,y,2),
where
x Y
h(z,y,z) = aly |Ej| = ple+ (81 (Vi 1) -
j=1 i=1

Y
al Y |Vif| - alz.
=1
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Referring to Lemma 4, v < E] T O~ 8 < 0 and

M2 <y = AL (V-1 —aXl, V| <o
Therefore, h(x,y,z) < 0 and the ratio A\ >1.

Obviously, we have x > 1, y > 1 and z > 0. We then
consider two extreme cases. In the first case, there exists
multiple CIE actions but only one SUF action. Since there
must be one empty period between these two types of
patterns, CIE actions cover at most D —2 empty periods,
ie, z < D — 2. In the second case, there are only one
CIE action and multiple SUF actions. The only one CIE
occupies at least two valid periods. As a result, SUF
actions use at most D — 2 valid periods, i.e,, y < D — 2.
Furthermore, the constitution of y SUF actions occupy
y valid periods, and the other D — y ones are left to
CIE and NF actions, which cover z empty periods and
z tiny valid periods, respectively. If there is only one CIE
pattern, in which all the D — y valid periods are crossed
with z empty periods, we have 0, + 1+ 2=D —y, ie,
z+y+ 2z < D — 1. Finally, we obtain a feasible region
of h(z,y,z), which is denoted by A = {(z,y,2)]1 <z <
D-21<y<D-2,2>0,z4+y+2<D-—1}, where z,
y and z are all integers. The lower bound of h(z,y, 2) is
derived as follows.

z y
h(z,y,2) =al » |Ej| = Bla+ (B—a)l Y |Vi-
j=1 i=1

Bly — alz,
> (a—=B)lz+ (B —a)l -2y — Bly — alz,
=(a—pP)lz+ (B —2a)ly — alz,
> (a—P)+ (8 —2a)l —al(D - 3),
=al(2-D).

Therefore, the competitive ratio can be expressed by:

D+~6
D+~(6—-D+2)

A\ BD + ad B
€S 3Dfas+a2-D)

5.3 Online Extra n time-slot Caching Algorithm

Our proposed EMF algorithm attempts to minimize
the TCAM occupation cost by caching flow rules only
when there are network traffic passing through switches.
However, it would incur frequent remote processing
at the controller under burst packet transmissions. In
this subsection, we study to further reduce total cost
by proposing the ECA (Extra Cache Algorithm (ECA)
algorithm that specifies an expiration time for cached
rules. As shown in Alg. 3, we specify a parameter 7 as
input. In each time slot, if we decide to conduct fetching
action, the expiration time of fetched rules, which is
denoted by idle_timeout, is set to nl. We show how to
set the value of 7 to achieve the closest performance with
optimal solution by empirical analysis in next section.

Algorithm 3 online Extra Cache Algorithm (ECA)
Input: n

1: for each time slot ¢ € [1,7] do

2:  if fetch action happens in slot ¢ then

3: idle_timeout <« nl for all entries to be in-
stalled

4:  end if

5: t++

6: end for
Extended FNC Extended FNC FNC
r—\ ) 1

ME - i

x:[ Ve [ 2 | v Jal Vs Ja[ va |2 |2 Vo R

Cover partly.  Cover fully.  Cover fully. Cover partly. Time slot

Fig. 4. An example of the ECA algorithm.

5.3.1 General cases of ECA

We let Ny denote the number of empty periods whose
length is less than 7. By representing the total number
of empty time slots covered by n with L, we have the
following theorem.

Theorem 6. The competitive ratios of ECA over OPT-

A, OPT-B and OPT-C are (4 = 2=NotyO+L) o _

5
D—No+~(6+L) _ D—No+~(6+L) .
T G+p-1) 44 (¢ = DiG-Dpra) - respectively.

Proof: As shown in Fig. 4, if the length of an empty
period is longer than 7, cached rules will be removed
after the expiration time, and they will be refetched at
the beginning of next valid period. The total TCAM
occupation cost can be calculated by al(d+L). Otherwise,
rules are cached at the switch during the empty period,
leading to remote processing cost 8I(D — Ny). Therefore,
the total cost of ECA with 7 is

OECA(U) = ﬂl(D — No) + Oél(5 + L) (6)

Following the similar analysis in Theorems 3, 4, and
5, we can easily obtain the cornpetltlve ratios of (4 =

N0+7(5+L) (p = B=Notr(6+L) 41 ¢ — D=Noty(0+L)
’ — T147(6+D—1) C = "DFA(6—-D+2)
over OPTA OPT-B, and OPT-C, respectively. O

5.3.2 Special case of ECA

Suppose the length (denoted by variable X) of all the
empty periods E; (j = 1,2,...,D — 1) are exponentially
distribution with mean value p,, i.e.,, X ~ exp(i), the
value of Ny can be calculated by:

“D(1—en).  (7)

And the total length of the completely covered empty
periods by 1 can be written as

Li=(D-1)-E(X <nl)

No=(D—-1)-Pr(X <nl) = (D

nl x
=(D-1) [ (Kot ix ®)
nl —nl

D[ — (L +1)em].

= pe(D —
He



On the other hand, the total length in the empty periods
where partially cut by 7 shall be simply calculated as

Ly=(D~1-No)-(g) =qi(D —1)e7e. (9

Therefore, the cost of ECA with parameter 7, y. and [
shall be

CECA(n,ue,l) =al(d+ L1 + La) + BI(D — Ny)
= a1+ (D — Dpte(1 — e ) + Bi(1+ (1 — D)e e ).
(10)
Similarly, the competitive ratio of ECA under this
special case can also be derived following the approach
in the proof of Theorem 6. In performance evaluation, we
conduct extensive simulations under various network

settings to find out the best value of # leading to closet
performance with optimal solution.

6 EVALUATION

We conduct extensive simulations in this section to
evaluate the performance of our proposed algorithms
and the derived competitive ratios. We adopt network
traces from [14], which contain TCP traffics captured at
a wired sniffer. Each trace file is collected within around
50 seconds. Furthermore, the offline optimal solutions
(denoted by Offline OPT) are obtained using commercial
solver Gurobi optimizer [23]. In each set of simulation,
we always fix a=10, the settings of other parameters are
labeled below the figures.

6.1

As shown in Fig. 5(a), when « = 10 and ! = 0.25 s, total
cost of both algorithms decreases as y grows from 0.01 to
10. This is because under larger v, fetching is preferred
as it leads to low cost. Specifically, we observe that two
algorithms converge when + is greater than 1 because
they generate only fetch operations.

We then investigate the influence of time slot length
on the total cost by changing the value of [ from 0.1s
to 5s. As shown in Fig. 5(b), total cost increases as
the growth of | under optimal solutions. We observe
that some fluctuation in the performance of our greedy
algorithm. That is because in each iteration of while loop
in Alg.1, we prefer tiny valid periods, which may some
time slots already contained. The performance ratio of
our algorithm and the optimal solution is shown in Fig.
5(c), where the ratio is very close to 1, much better than
the analytical result, the upper bound.

Evaluation of Offline Algorithm

6.2 Evaluation of Online EMF and ECA

Then, the online EMF and ECA algorithms are evalu-
ated with real network traffic traces under three cases,
respectively.
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Fig. 5. Performance of offline Algorithm 1.

6.2.1 Over OPT-A

The total cost under different values of / is shown in Fig.
6(a), where results of all algorithms show as increasing
functions of /. On the other hand, their performance ratio
with the optimal solutions decreases as the growth of |
as shown in Fig. 6(b). Furthermore, we observe that the
performance ratio are always equal to the derived upper
bound. That is because only SUF and NF patterns exist
in the optimal solutions under this case, i.e., packets are
always processed by the remote controller. Finally, we
show the performance ratio under different value of 7
in Fig. 6(d). We observe that ratio of ECA is same with
EMF when 7=0, and the ratios of EMF never change
because of fixed v and I. In Figs. 6(b), 6(c), and 6(d),
EMF outperforms ECA with closer performance to the
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optimal solution under most of settings. We attribute this
phenomenon to the fact that rules are cached at switches
for a longer time under ECA.

6.2.2 Over OPT-B

In this case, packets tend to be processed at local switch-
es because 7 becomes small. In Figs. 7(a) and 7(b),
we have similar observations with the results under
OPT-A case, except ECA outperforms EMF. This can be
attributed to that there are mainly CIE patterns and few
NF patterns under OPT-B case, and the extra caching
durations of ECA cover many empty periods. Accord-
ingly, the cost of ECA is smaller than EMF, particularly
when v and 7 become large. Finally, both algorithms
converge to the optimal solution under larger value of I.
In respect of performance ratio, Fig. 7(c) shows ratio is
decreasing function of « for both ECA and EMFE. Because
larger v leads to more short FCN patterns in optimal
solution, which makes ECA and EMF close to optimal
solution. Therefore, their ratios decrease and approach to
1 gradually. As we mentioned above, Fig. 7(d) shows the
benefit of a larger n in ECA, because more empty periods
are covered and much fetching cost can be saved under
OPT-B case.
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6.2.3 Over OPT-C

The performance of ECA and EMF is investigated in
Figs. 8 and 9. We observe that ECA and EMF show
distinct performance under different settings. For exam-
ple, in Fig. 9(a), the cost of ECA is larger than EMF
when [=0.2, but it becomes opposite when [ is greater
than 0.3. We have similar observations in other figures.
Interestingly, in Fig. 8(b), we observe that the curve
of ECA first increases, and then decreases when 7 is
greater than 3, finally converging to 1.28 after n = 4.
This is because when 7 is small, it only covers few
empty periods with short length, and the advantage
of extra caching is not obvious. As 1 becomes larger,
the number of covered empty periods grows, leading to
reduced total cost. When all empty periods are covered
by large 7, the performance of ECA becomes stable. In
Fig. 8(d), the ratios of ECA keep decreasing and then
converging because short empty periods become fewer
when [ increases to 0.4.

6.3 Evaluation of Special Case of ECA

Finally, we study the performance of ECA when lengths
of empty periods are exponential distribution. We con-
sider randomly generated network traffic with y.=1.0
and 7=100.
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As shown in Fig. 10, ratio of ECA algorithm increases
as 1 grows from 0 to 10, which shows the same per-
formance with Fig. 6(d). In Fig. 11, we have similar
observation with Fig. 8(b) because of the same reasons.
In Fig. 12, we set [=0.5, and performance ratios are
always below the theoretical bound as v and 7 changes
within [0.5,0.8] and [0,10], respectively. The simulation
results also suggest that ) shall be set to small values no
matter how 7 changes.
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Fig. 12. Performance of ECA over OPT-C under special
case, u.=1.0, 1=0.5.

7 CONCLUSION

In this paper, we studied traffic flow provisioning prob-
lem by formulating it as a minimum weighted flow pro-
visioning problem with objective of minimizing the total
cost of TCAM occupation and remote packet processing.
This problem is proved to be NP-hard, and an efficient
heuristic algorithm is proposed to solve this problem
when network traffic is given. We further propose two
online algorithms to approximate the optimal solution
when network traffic information is unknown in ad-
vance. Finally, extensive simulations were conducted to
validate the performance of theoretical analysis of the
proposed algorithms, using the real traffic traces.
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