Building Robust Wireless LAN for Industrial
Control with DSSS-CDMA Cell Phone Network
Paradigm

Qixin Wang
Department of Computing
The Hong Kong Polytechnic University



((9) . . L
The demand for real-time wireless communication

IS Increasing.

Mechanical Freedom / Mobility

Ease of Deployment / Flexibility




((9) . . ..
The demand for real-time wireless communication

IS Increasing.

Cables for connecting various monitors to anesthesia EMR

Fls | - 20D




((9) . . L
The demand for real-time wireless communication

IS Increasing.
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1. Must catch deadline

2. Does not have to
be fast
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‘P What Is real-time? A typical real-time task is a
continuous loop of periodic jobs.

Job: (Period, Exe. Time, Deadline)

A Job
Real-time = each job catches deadline
Real-time -+ running fast
Deadline
A
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A A A
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>
B ~— N Time
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Reliability and Robustness is the top concern for
real-time wireless communication.

Adverse wireless medium
Large scale path-loss
Multipath

Persistent electric-
magnetlc interference

Same-band / adjacent-
band RF devices
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Nowadays wireless LANs are NOT real-time.

|IEEE 802.11
packet loss
rate in an
Industrial
environment
[Willig02]
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Nowadays wireless LANs are NOT real-time.

|IEEE 802.11
packet loss
rate in an
office
environment
[Ploplys04]
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A Nowadays wireless LANs are NOT real-time.

Why?



‘P Design philosophy mismatch: pursuing large data
throughput & short delay



‘P Design philosophy mismatch: pursuing large data
throughput & short delay

Signal
Energy

» Time



‘P Design philosophy mismatch: pursuing large data
throughput & short delay

Send packet fast

Do not spend much time accumulate strength
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‘P Observation: Real-time communications are
usually persistent connections with low data rate

Typical inter-node traffic:
100~200 bit/pkt, 10~1 pkt/sec per connection.

Information Theory:
Lower data rate =» higher robustness.

Direct Sequence Spread Spectrum (DSSS) Technology:
Lower data rate €=» Higher robustness
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Observation

Bit Error Processing
Rate Gain
_ gP,
Prer < CXp | —

J + ZiE:l,z';éu P + Zle Ah + P

« DSSS Technology:

Larger Processing Gain g < Lower data rate < Lower Bit Error Rate
(Higher robustness)
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‘P Observation: DSSS can exploit low data rate to
achieve higher robustness

_ Processing
Bit Error Gain

Rate / K \
PBER — exp( gK ) = exXp
Y

Constant

DSSS BER Upper Bound
Lower data rate I,



‘P Observation: DSSS can exploit low data rate to
achieve higher robustness

Bit Error
Rate

Peer < exp( g ): EXP
LY,

DSSS BER Upper Bound

Lower data rate I, €= Larger Processing Gain ¢

are
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‘P Observation: DSSS can exploit low data rate to
achieve higher robustness

are

Peer < €XP

(— gK)=exp
'Y

DSSS BER Upper Bound

Lower data rate I, €= Larger Processing Gain § €=>
Lower Bit Error Rate Pger (higher robustness)

Constant
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(@) :
‘P Key ldea: How to configure for max robustness for
adverse wireless medium?

Answer: Use DSSS, deploy as slow data rate I, (i.e., as large
processing gain () as the application allows.

are

PBER = exp( gK ) = EXP

. b
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‘P Observation: Centralized, last-hop wireless
scheme is preferred

Centralized: Economical & Simple

LB

- Last-Hop: reuse legacy wired
o backbone
i PHY:DSSS
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- high robustness
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‘P Observation: CDMA is better than TDMA (e.g.,
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‘P Observation: CDMA is better than TDMA (e.g.,
IEEE 802.11 PCF).

Smaller overhead under : ; :
adverse channel conditions | [ [ !

Easier to schedule

i CDMA | Time

Better overrun isolation
: L,
Time
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‘P Solution Heuristics = Choose DSSS-CDMA cell
phone network paradigm!

T

:"f‘ DSSS with low data rate for
":L high robustness
MAC.CDMA
,\% PHY'DSSS Centralized WLAN paradigm

'1* """" « (@) e, _
oo A i ,i CDMA instead of TDMA
<
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Simulation and Comparisons

Wireless medium model complies with typical settings for
Industrial environments |Rappaport02]:

Table 1. Wireless Medium Model

Large-scale path  loss
model

Log-normal shadowing model with
B=4~6,0=06.8dB"

Small-scale fading model

Rayleigh

Multipath max excess de-
lay

90.909nsec

Additive White Gaussian
Noise '

Spectral density = —174dBm/Hz

* (3 1s the path loss exponent, o is the log-normal standard deviation.
T Typically refers to thermal noise.



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

IP2 at (=3, 2)
IP1 at

Basestation
at (0, 0)



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

IP2 at (=3, 2)
IP1 at

Basestation
at (0, 0)



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

Typical industrial environment wireless medium model

P2 at (=3, 2)
IP1 at

Basestation
at (0, 0)



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

Typical industrial environment wireless medium model

[P2 at (-3, 2) external RF
interference
IP1 at source at (7, 0)

8k

Basestation
at (0, 0)



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot

Comparison:
DSSS-CDMA: lowest data rate
IEEE 802.11b: keep retransmitting

[P2 at (-3, 2) external RF
interference
IP1 at source at (7, 0)

8k

Basestation
at (0, 0)



‘P A simulated demo showing DSSS-CDMA tolerates
RF jamming, while IEEE 802.11b cannot
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‘P A Monte-Carlo simulation showing DSSS-CDMA Is

more robust than IEEE 802.11a/b

Monte-Carlo simulation setup
20m x 20m room, base station at the center

Nn(n=1, ..., 100) remote stations, random layout

200 trails for each N
Typical industrial environment wireless medium model

Robustness Method:
DSSS-CDMA: lowest data rate
IEEE 802.11a/b: keep retransmitting



7P A Monte-Carlo simulation showing DSSS-CDMA Is
more robust than IEEE 802.11a/b

802.11.: DSSS-CDMA
« Use the most robust mode:  Deploy as slow data rate as (i.e.,
— 802.11b (DSSS): 1, 2, 5.5, as large processing gain g as) the
11Mbps application allows (proposition 1).
— 802.11a (OFDM): 6, 9, 12,18, 24, | | « Keep transmitting even under
36, 48, 54Mbps adverse channel conditions.

 Under adverse channel conditions,
802.11 keeps retransmitting (PCF).
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Simulation and Comparisons

Table 2. Physical Layer Settings for Compar-

iIsons
Max trans power”™ RF band!
DSSS-CDMA vs. IEEE | 1lwatt 2.425 ~
802.11b comparison 2.449GHz
DSSS-CDMA vs. IEEE | 800mw 5.735 ~
802.11a comparison 5.795GHz

x According to FCC regulation.
T According to IEEE 802.11 specification. Note RF bandwidth also de-
cides baseband bandwidth (i.e. chip rate for DSSS and bit rate for OFDM).



‘P A Monte-Carlo simulation showing DSSS-CDMA Is

more robust than IEEE 802.11a/b
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‘P A Monte-Carlo simulation showing DSSS-CDMA Is

more robust than IEEE 802.11a/b
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(b) Comparison with IEEE 802.11a
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Monte Carlo comparison with IEEE 802.15.4
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Monte Carlo comparison with IEEE 802.15.4
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Monte Carlo comparison with IEEE 802.15.4
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Feasibility of Convolutional Coding
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(9)
A Conclusion

“DSSS-CDMA Cell Phone Paradigm + Slowest Data Rate”
IS more robust than “IEEE 802.11 + Retransmission”.

For real-time wireless LAN, change philosophy from
pursuing throughput/delay to pursuing reliability/robustness.



Thank You!
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