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Reinforcement Learning (RL) becomes increasingly important due 
to its ability to train controllers for complex systems/robots.
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Reinforcement Learning (RL) becomes increasingly important due 
to its ability to train controllers for complex systems/robots.
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As RL generates controllers for critical control/robotic applications, 
ensuring RL program correctness is important.
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Oracle Problem for RL: how to judge if an RL program is buggy (in 
other words, its generated controller is wrong)?

Less overshoot? Or less time cost? Or less jitter? 

The correct controller to a system/robot is not unique.
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Solution Heuristics

Create many non-trivial controller design problems with well-known 
analytical/numerical solution and solution features.

If the RL generated controllers most often agree with the well-known 
analytical/numerical solution features, then we label the RL program correct, 
and otherwise buggy.
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Lyapunov potential energy 𝑉(𝑋 𝑡 ) 
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𝑋(𝑡) =

𝑥1(𝑡)
𝑥2(𝑡)

Well-known numerical solution 
exists.

Solution feature: the so-designed 
controller 𝑈 always decreases the 
plant’s Lyapunov potential energy 
𝑉(𝑋 𝑡 ) over time.
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Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋

An RL generated controller is complying iff over 𝜗 percentage of its tested 
control steps are Lyapunov potential energy decreasing.

The RL is considered bugless iff over 𝜃 percentage of its generated 
controllers are complying.

Lyapunov Potential Energy Abnormality Oracle: LPEA(𝜗, 𝜃).
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Related Work

Metamorphic testing: LPEA oracle is a metamorphic testing oracle for RL, which is neither supervised 
learning or unsupervised learning (Xie et al. [26][27]).

Pang et al. [28] and Tappler et al. [29]: assume an obvious faulty state exists to define the control crashed.

Padgham et al. [30] needs white-box access to the design and implementation of the agents.

Nikanjam et al. [19] (DRLinter): static analysis upon RL program.

Varshosaz et al. [31]: needs white-box formal model.

LPEA oracle can be integrated into frameworks of property based testing, such as QuickCheck [32].

We can also use the formal language proposed by Jothimurugan et al. [33] to specify RL algorithms.

Shen et al. [34] and Hu et al. [35]: focus on evaluating test set quality; needs white-box controller.

Wan et al. [37]: focuses on improving the quality of test sets.

Lacoste et al. [38]: focuses on environmental costs of machine learning 



Conclusion

LPEA oracles outperform the human oracle in most of the metrics. 

Particularly, LPEA(𝜗 = 100%, 𝜃 = 75%) outperforms the human oracle by 53.6% in 
accuracy, 50% in precision, 18.4% in recall, 34.8% in F1 score, 18.4% in true positive 
rate, 127.8% in true negative rate, 60.5% in false positive rate, 38.9% in false 
negative rate, and 31.7% in ROC curve AUC.
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Thank You!
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