
A Test Oracle for Reinforcement Learning Software based 
on Lyapunov Stability Control Theory

Department of Computing

The Hong Kong Polytechnic University

April 30, 2025

Shiyu Zhang Haoyang Song Qixin Wang* Henghua Shen Yu Pei



Reinforcement Learning (RL) becomes increasingly important due 
to its ability to train controllers for complex systems/robots.

Environment

Interpreter

State 
transition
function

Reward
function

Action

Reward

State

RL Program

Agent 
(Controller)



Reinforcement Learning (RL) becomes increasingly important due 
to its ability to train controllers for complex systems/robots.

Environment

Interpreter

State 
transition
function

Reward
function

Action

Reward

State

RL Program

Agent 
(Controller)

Input Output

Program



Reinforcement Learning (RL) becomes increasingly important due 
to its ability to train controllers for complex systems/robots.

Simulator 
(Environment + Interpreter)

State 
transition
function

Reward
function

Action

Reward

State

RL Program

Agent 
(Controller)

Input Output

Program



As RL generates controllers for critical control/robotic applications, 
ensuring RL program correctness is important.

Simulator 
(Environment + Interpreter)

State 
transition
function

Reward
function

Action

Reward

State

RL Program

Agent 
(Controller)

Input Output

Program



Oracle Problem for RL: how to judge if an RL program is buggy (in 
other words, its generated controller is wrong)?

Less overshoot? Or less time cost? Or less jitter? 

The correct controller to a system/robot is not unique.

A

B



Solution Heuristics

Create many non-trivial controller design problems with well-known 
analytical/numerical solution and solution features.

If the RL generated controllers most often agree with the well-known 
analytical/numerical solution features, then we label the RL program correct, 
and otherwise buggy.



Lyapunov stable controller design theory

State of the 
Plant

Control

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈, where 𝑋 ∈ ℝ𝑛, 𝑈 ∈ ℝ𝑚 



Lyapunov stable controller design theory

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈, where 𝑋 ∈ ℝ𝑛, 𝑈 ∈ ℝ𝑚 

Demand: 𝑈 = −𝐾𝑋



Lyapunov stable controller design theory

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

Demand: 𝑈 = −𝐾𝑋

Lyapunov potential energy 𝑉(𝑋 𝑡 ) 

𝑥1

𝑥2
𝑋(𝑡) =

𝑥1(𝑡)
𝑥2(𝑡)



Lyapunov stable controller design theory

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

Demand: 𝑈 = −𝐾𝑋

Lyapunov potential energy 𝑉(𝑋 𝑡 ) 

𝑥1

𝑥2
𝑋(𝑡) =

𝑥1(𝑡)
𝑥2(𝑡)

Well-known numerical solution 
exists.



Lyapunov stable controller design theory

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

Demand: 𝑈 = −𝐾𝑋

Lyapunov potential energy 𝑉(𝑋 𝑡 ) 

𝑥1

𝑥2
𝑋(𝑡) =

𝑥1(𝑡)
𝑥2(𝑡)

Well-known numerical solution 
exists.

Solution feature: the so-designed 
controller 𝑈 always decreases the 
plant’s Lyapunov potential energy 
𝑉(𝑋 𝑡 ) over time.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Create many non-trivial Lyapunov stable controller design problems.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Create many non-trivial Lyapunov stable controller design problems.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

Prepare: 𝑈 = −𝐾𝑋

Prepare the ground truth Lyapunov stable controller 𝑈 and Lyapunov 
potential energy 𝑉(𝑋 𝑡 ) as per the conventional numerical solution.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Create many non-trivial Lyapunov stable controller design problems.

During RL Training: Use the ground truth Lyapunov potential energy 𝑉(𝑋 𝑡 ) 
decreasing feature to guide the reward generation.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

Prepare: 𝑈 = −𝐾𝑋

Prepare the ground truth Lyapunov stable controller 𝑈 and Lyapunov 
potential energy 𝑉(𝑋 𝑡 ) as per the conventional numerical solution.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Create many non-trivial Lyapunov stable controller design problems.

During RL Training: Use the ground truth Lyapunov potential energy 𝑉(𝑋 𝑡 ) 
decreasing feature to guide the reward generation.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋

Prepare the ground truth Lyapunov stable controller 𝑈 and Lyapunov 
potential energy 𝑉(𝑋 𝑡 ) as per the conventional numerical solution.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋

An RL generated controller is complying iff over 𝜗 percentage of its tested 
control steps are Lyapunov potential energy decreasing.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋

An RL generated controller is complying iff over 𝜗 percentage of its tested 
control steps are Lyapunov potential energy decreasing.

The RL is considered bugless iff over 𝜃 percentage of its generated 
controllers are complying.



Solution Heuristics: a correct RL program can figure out the hidden Lyapunov 
potential energy concept and the energy-decrease feature.

Given: ሶ𝑋 = 𝐴𝑋 + 𝐵𝑈

During Testing Stage: Check if the RL generated controller complies with the 
ground truth Lyapunov potential energy decreasing feature.

Prepare: 𝑈 = −𝐾𝑋

An RL generated controller is complying iff over 𝜗 percentage of its tested 
control steps are Lyapunov potential energy decreasing.

The RL is considered bugless iff over 𝜃 percentage of its generated 
controllers are complying.

Lyapunov Potential Energy Abnormality Oracle: LPEA(𝜗, 𝜃).



Evaluation: workflow



Evaluation: workflow Stable Baselines (open source RL 
program repository)



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 

Inject bugs

Buggy RL programs ℛ′



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 

Inject bugs

Buggy RL programs ℛ′



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 

Inject bugs

Buggy RL programs ℛ′



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 

Inject bugs

Buggy RL programs ℛ′



Evaluation: workflow Stable Baselines (open source RL 
program repository)

Select algorithms (A2C, PPO, TD3)

Bug-less RL programs ℛ 

Inject bugs

Buggy RL programs ℛ′

LPEA Oracle Human Oracle

RL programs 
with “buggy” 

“bug-less” 
labels

RL programs 
with “buggy” 

“bug-less” 
labels



Evaluation: raw results



Evaluation: results



Evaluation: results



Evaluation: results



Related Work

Metamorphic testing: LPEA oracle is a metamorphic testing oracle for RL, which is neither supervised 
learning or unsupervised learning (Xie et al. [26][27]).

Pang et al. [28] and Tappler et al. [29]: assume an obvious faulty state exists to define the control crashed.

Padgham et al. [30] needs white-box access to the design and implementation of the agents.

Nikanjam et al. [19] (DRLinter): static analysis upon RL program.

Varshosaz et al. [31]: needs white-box formal model.

LPEA oracle can be integrated into frameworks of property based testing, such as QuickCheck [32].

We can also use the formal language proposed by Jothimurugan et al. [33] to specify RL algorithms.

Shen et al. [34] and Hu et al. [35]: focus on evaluating test set quality; needs white-box controller.

Wan et al. [37]: focuses on improving the quality of test sets.

Lacoste et al. [38]: focuses on environmental costs of machine learning 



Conclusion

LPEA oracles outperform the human oracle in most of the metrics. 

Particularly, LPEA(𝜗 = 100%, 𝜃 = 75%) outperforms the human oracle by 53.6% in 
accuracy, 50% in precision, 18.4% in recall, 34.8% in F1 score, 18.4% in true positive 
rate, 127.8% in true negative rate, 60.5% in false positive rate, 38.9% in false 
negative rate, and 31.7% in ROC curve AUC.



Conclusion

LPEA oracles outperform the human oracle in most of the metrics. 

Particularly, LPEA(𝜗 = 100%, 𝜃 = 75%) outperforms the human oracle by 53.6% in 
accuracy, 50% in precision, 18.4% in recall, 34.8% in F1 score, 18.4% in true positive 
rate, 127.8% in true negative rate, 60.5% in false positive rate, 38.9% in false 
negative rate, and 31.7% in ROC curve AUC.

Thank You!


	Slide 1: A Test Oracle for Reinforcement Learning Software based on Lyapunov Stability Control Theory
	Slide 2: Reinforcement Learning (RL) becomes increasingly important due to its ability to train controllers for complex systems/robots.
	Slide 3: Reinforcement Learning (RL) becomes increasingly important due to its ability to train controllers for complex systems/robots.
	Slide 4: Reinforcement Learning (RL) becomes increasingly important due to its ability to train controllers for complex systems/robots.
	Slide 5: As RL generates controllers for critical control/robotic applications, ensuring RL program correctness is important.
	Slide 6: Oracle Problem for RL: how to judge if an RL program is buggy (in other words, its generated controller is wrong)?
	Slide 7: Solution Heuristics
	Slide 8: Lyapunov stable controller design theory
	Slide 9: Lyapunov stable controller design theory
	Slide 10: Lyapunov stable controller design theory
	Slide 11: Lyapunov stable controller design theory
	Slide 12: Lyapunov stable controller design theory
	Slide 13: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 14: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 15: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 16: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 17: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 18: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 19: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 20: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 21: Solution Heuristics: a correct RL program can figure out the hidden Lyapunov potential energy concept and the energy-decrease feature.
	Slide 22: Evaluation: workflow
	Slide 23: Evaluation: workflow
	Slide 24: Evaluation: workflow
	Slide 25: Evaluation: workflow
	Slide 26: Evaluation: workflow
	Slide 27: Evaluation: workflow
	Slide 28: Evaluation: workflow
	Slide 29: Evaluation: workflow
	Slide 30: Evaluation: raw results
	Slide 31: Evaluation: results
	Slide 32: Evaluation: results
	Slide 33: Evaluation: results
	Slide 34: Related Work
	Slide 35: Conclusion
	Slide 36: Conclusion

