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Towards Online Shortest Paths Computation
Leong Hou U, Hong Jun Zhao, Man Lung Yiu, Yuhong Li, and Zhiguo Gong

Abstract—The online shortest path problem aims at computing the shortest path based on live traffic circumstances. This is
very important in modern car navigation systems as it helps drivers to make sensible decisions. To our best knowledge, there is
no efficient system/solution that can offer affordable costs at both client and server sides for online shortest path computation.
Unfortunately, the conventional client-server architecture scales poorly with the number of clients. A promising approach is to let
the server collect live traffic information and then broadcast them over radio or wireless network. This approach has excellent
scalability with the number of clients. Thus, we develop a new framework called live traffic index (LTI) which enables drivers to
quickly and effectively collect the live traffic information on the broadcasting channel. An impressive result is that the driver can
compute/update their shortest path result by receiving only a small fraction of the index. Our experimental study shows that LTI
is robust to various parameters and it offers relatively short tune-in cost (at client side), fast query response time (at client side),
small broadcast size (at server side), and light maintenance time (at server side) for online shortest path problem.

Index Terms—Spatial databases; Vehicle driving; Broadcasting
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1 INTRODUCTION

S Hortest path computation is an important function
in modern car navigation systems and has been ex-

tensively studied in [1][2][3][4][5][6][7][8]. This function
helps a driver to figure out the best route from his cur-
rent position to destination. Typically, the shortest path
is computed by offline data pre-stored in the navigation
systems and the weight (travel time) of the road edges
is estimated by the road distance or historical data. Un-
fortunately, road traffic circumstances change over time.
Without live traffic circumstances, the route returned by
the navigation system is no longer guaranteed an accurate
result. We demonstrate this by an example in Fig. 1.
Suppose that we are driving from Lord & Taylor (la-
bel A) to Mt Vernon Hotel Museum (label B) in
Manhattan,NY. Those old navigation systems would
suggest a route based on the pre-stored distance information
as shown in Fig. 1(a). Note that this route passes through
four road maintenance operations (indicated by mainte-
nance icons) and one traffic congested road (indicated by
a red line). In fact, if we take traffic circumstances into
account, then we prefer the route in Fig. 1(b) rather than
the route in Fig. 1(a).

Nowadays, several online services provide live traf-
fic data (by analyzing collected data from road sensors,
traffic cameras, and crowdsourcing techniques), such as
GoogleMap [9], Navteq [10], INRIX Traffic Information
Provider [11], and TomTom NV [12], etc. These systems
can calculate the snapshot shortest path queries based on
current live traffic data; however, they do not report routes
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(a) Shortest route using static weights (b) Shortest route using live traffic

Fig. 1. Two alternative shortest paths in Manhattan, NY

to drivers continuously due to high operating costs. Answer-
ing the shortest paths on the live traffic data can be viewed
as a continuous monitoring problem in spatial databases,
which is termed online shortest paths computation (OSP)
in this work. To the best of our knowledge, this problem
has not received much attention and the costs of answering
such continuous queries vary hugely in different system
architectures.

Typical client-server architecture can be used to answer
shortest path queries on live traffic data. In this case, the
navigation system typically sends the shortest path query
to the service provider and waits the result back from the
provider (called result transmission model). However, given
the rapid growth of mobile devices and services, this model
is facing scalability limitations in terms of network band-
width and server loading. According to the Cisco Visual
Networking Index forecast [13], global mobile traffic in
2010 was 237 petabytes per month and it grew by 2.6-fold
in 2010, nearly tripling for the third year in a row. Based
on a telecommunication expert [14], the world’s cellular
networks need to provide 100 times the capacity in 2015
when compared to the networks in 2011. Furthermore, live
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traffic are updated frequently as these data may be collected
by using crowdsourcing techniques (e.g., anonymous traffic
data from Google map users on certain mobile devices). As
such, huge communication cost will be spent on sending
result paths on the this model. Obviously, the client-server
architecture will soon become impractical in dealing with
massive live traffic in near future. Ku et al. [15] raise the
same concern in their work which processes spatial queries
in wireless broadcast environments based on Euclidean
distance metric.

Malviya et al. [16] developed a client-server system for
continuous monitoring of registered shortest path queries.
For each registered query (s, t), the server first precomputes
K different candidate paths from s to t. Then, the server
periodically updates the travel times on these K paths based
on the latest traffic, and reports the current best path to
the corresponding user. Since this system adopts the client-
server architecture, it cannot scale well with a large number
of users, as discussed above. In addition, the reported paths
are approximate results and the system does not provide any
accuracy guarantee.

An alternative solution is to broadcast live traffic data
over wireless network (e.g., 3G, LTE, Mobile WiMAX,
etc.). The navigation system receives the live traffic data
from the broadcast channel and executes the computation
locally (called raw transmission model). The traffic data are
broadcasted by a sequence of packets for each broadcast
cycle. To answer shortest path queries based on live traffic
circumstances, the navigation system must fetch those
updated packets for each broadcast cycle. However, as we
will analyze an example in Section 2.2, the probability of a
packet being affected by 1% edge updates is 98.77%. This
means that clients must fetch almost all broadcast packets
in a broadcast cycle.

The main challenge on answering live shortest paths is
scalability, in terms of the number of clients and the amount
of live traffic updates. A new and promising solution
to the shortest path computation is to broadcast an air
index over the wireless network (called index transmission
model) [17][18]. The main advantages of this model are
that the network overhead is independent of the number of
clients and every client only downloads a portion of the
entire road map according to the index information. For
instance, the proposed index in [17] constitutes a set of
pairwise minimum and maximum traveling costs between
every two sub-partitions of the road map. However, these
methods only solve the scalability issue for the number
of clients but not for the amount of live traffic updates.
As reported in [17], the re-computation time of the index
takes 2 hours for the San Francisco (CA) road map. It
is prohibitively expensive to update the index for OSP, in
order to keep up with live traffic circumstances.

Motivated by the lack of off-the-shelf solution for OSP,
in this paper we present a new solution based on the
index transmission model by introducing live traffic index
(LTI) as the core technique. LTI is expected to provide
relatively short tune-in cost (at client side), fast query
response time (at client side), small broadcast size (at server

side), and light maintenance time (at server side) for OSP.
We summarize LTI features as follows.
• The index structure of LTI is optimized by two novel

techniques, graph partitioning and stochastic-based
construction, after conducting a thorough analysis the
hierarchical index techniques [19][20][21]. To the best
of our knowledge, this is the first work to give a thor-
ough cost analysis on the hierarchical index techniques
and apply stochastic process to optimize the index
hierarchical structure. (Section 4)

• LTI selectively fetches data in wireless broadcast envi-
ronments, which significantly reduce the tune-in cost.
(Section 5)

• LTI efficiently maintains the index for live traffic
circumstances by incorporating Dynamic Shortest Path
Tree (DSPT) [22] into hierarchial index techniques. In
addition, a bounded version of DSPT is proposed to
further reduce the broadcast overhead. (Section 6)

• By incorporating the above features, LTI reduces the
tune-in cost up to an order of magnitude as compared
to the state-of-the-art competitors; while it still pro-
vides competitive query response time, broadcast size,
and maintenance time. To the best of our knowledge,
we are the first work that attempts to minimize all
these performance factors for OSP.

The rest of the paper is organized as follows. We first
introduce main performance factors for evaluating OSP
and overview the state-of-the-art shortest path computation
methods in Section 2. The system overview and objectives
of our live traffic index (LTI) are introduced in Section 3.
The LTI construction, LTI transmission, and LTI mainte-
nance are subsequently discussed in Section 4, Section 5
and Section 6, respectively. We summarize our complete
framework in Section 7 and evaluate LTI thoroughly in
Section 8. Finally, our work is concluded in Section 9.

2 PRELIMINARY

2.1 Performance Factors
The main performance factors involved in OSP are: (i) tune-
in cost (at client side), (ii) broadcast size (at server side),
and (iii) maintenance time (at server side), and (iv) query
response time (at client side).

In this work, we prioritize the tune-in cost as the main op-
timized factor since it affects the duration of client receivers
into active mode and power consumption is essentially
determined by the tuning cost (i.e., number of packets
received) [17][23]. Shortening the duration of active mode
is important since it enables the clients to receive more
services simultaneously by selective tuning [24]. These
services may include providing live weather information,
delivering latest promotions in the surrounding area, and
monitoring availability of parking slots at destination. If we
minimize the tune-in cost of one service, then we reserve
more tune-in time for other services.

The index maintenance time and broadcast size relate
to the freshness of the live traffic information. The main-
tenance time is the time required to update the index
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according to live traffic information. The broadcast size
is relevant to the latency of receiving the latest index
information. As the freshness is one of our main design
criteria, we must provide reasonable costs for these two
factors.

The last factor is the response time at client side. Given
a proper index structure, the response time of shortest path
computation can be very fast (i.e., few milliseconds on large
road maps) which is negligible compared to access latency
for current wireless network speed. The computation also
consumes power but their effect is outweighed by commu-
nication. It remains, however, an evaluated factor for OSP.

2.2 Adaptation of Existing Approaches
In this section, we briefly discuss the applicability of the
state-of-the-art shortest path solutions on different trans-
mission models. As discussed in the introduction, the
result transmission model scales poorly with respect to the
number of clients. The communication cost is proportional
to the number of clients (regardless of whether the server
transmits live traffic or result paths to the clients). Thus,
we omit this model from the remaining discussion.

2.2.1 Raw transmission model
Under raw transmission model, the traffic data (i.e., edge
weights) are broadcasted by a set of packets for each broad-
cast cycle. Each header stores the latest timestamp of the
packets, so that clients can decide which packets have been
updated, and only fetch those updated packets in the current
broadcast cycle. Having downloaded the raw traffic data
from the broadcast channel, the following methods either
directly calculate the shortest path or efficiently maintain
certain data structure for the shortest path computation.
Uninformed search (e.g., Dijkstra’s algorithm) traverses
graph nodes in ascending order of their distances from the
source s, and eventually discovers the shortest path to the
destination t. Bi-directional search (BD) [3] reduces the
search space by executing Dijkstra’s algorithm simultane-
ously forwards from s and backwards from t. As to be
discussed shortly, bi-directional search can also be applied
on some advanced index structures. However, the response
time is relatively high and the clients may receive large
amount of irrelevant updates due to the transmission model.
Goal directed approaches search towards the target by fil-
tering out the edges that cannot possibly belong to the
shortest path. The filtering procedure requires some pre-
computed information. ALT [25] and arc flags (AF) [26]
are two representative algorithms in this category.

ALT makes use of A∗ search, landmarks, and triangle
inequality [27]. A few landmark nodes are selected and the
distances between each landmark and every node are pre-
computed. These pre-computed distances can be exploited
to derive distance bounds for A∗ search on the graph.
[28] proposes a lazy update paradigm for ALT (DALT) so
that it can tolerate certain extents of edge weights changes
on a dynamic graph. The distance bounds derived from
the pre-computed information remain correct if no edge

weight becomes lower than the initial weight used at the
ALT construction. This lazy update paradigm significantly
reduces the index maintenance cost.

Another well known goal directed approach is Arc flags
(AF) that partitions the graph into m sub-graphs. For each
edge e, it stores a bitmap B where B[i] is set to true if
and only if a shortest path to a node in the sub-graph i
starts with e. During the Dijkstra execution, it only relaxes
those edges for which the bitmap flag of the target node’s
sub-graph is true. AF provides reasonable speed-ups, but
consume too much space for large road networks. The
dynamic updates of AF (DAF) has been recently studied in
[29]. However, the solution is not practical since the cost
of updating the bitmap flags is exponential to the number
of edge updates.
Dynamic shortest paths tree (DSPT) maintains a tree struc-
ture locally for efficient shortest path retrieval. [22] dis-
cusses how to maintain a correct shortest paths tree rooted
at s after receive a set of edge weight updates to the graph
G = (V,E). Finding a shortest path from s to any node
is computed at O(|V |) time on the shortest paths tree.
However, maintaining a tree structure for an edge update is
similar to execute an Dijkstra in the worst case. In addition,
DSPT requires to keep a tree structure in every network
node. This overhead makes DSPT infeasible for OSP on
the index transmission model.

2.2.2 Index transmission model
The index transmission model enables servers to broadcast
an index instead of raw traffic data. We review the state-
of-the-art indices for shortest path computation and discuss
their applicability on this model.
Road map hierarchical approaches try to exploit the hi-
erarchical structure to the road map network in a pre-
processing step, which can be used to accelerate all sub-
sequent queries. These speed-up approaches include reach
[4], highway hierarchies (HH) [2][6], contraction hierar-
chies (CH) [30], and transit-node routing (TNR) [1].

Reach, HH, and CH are based on shortcut techniques
[2][6], i.e., some paths in the original graph are represented
by some shortcut edges. The shortcuts are identified out by
exploiting the hierarchical structure (e.g., node ordering) on
the road map network. To answer a query, a bi-directional
search is executed on the overlay graph that constitutes of
the shortcuts and some edges in the original graph. As the
shortcuts are the only extra structure stored in the index,
the construction is relatively fast as compared to other index
approaches.

TNR is based on a simple observation that a driving
path only passes one of a few important transit nodes. For
each shortest path query (s, t), two transit node sets,

−→
A (s)

and
←−
A (t), can be identified by the forward and backward

searches from the source and the destination, respectively.
The length of the shortest path (s, t) that passes at least
one transit node is given by min {dist(s, u) +dist(u, v)

+dist(v, t) | u ∈
−→
A (s), v ∈

←−
A (t)}, where all involved

distances can be directly looked up in the pre-computed
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data structure. Note that if the shortest path that passes no
transit node, then other shortest path algorithm is applied
instead.

The hierarchical approaches can provide very fast query
time as reported in [31]. However, the maintenance time
could be very high as most of them have no efficient ap-
proach to update the pre-computed data structure. HH and
CH can support dynamic weight updates [7] but the solution
is limited to weight increasing cases. In [32], a theoretical
approach has been proposed to update the overlay graphs,
but the proposed methods have not been tested in practice.
Again, none of these approaches is scalable using the index
transmission model since the shortest path can only be
computed on a complete index.
Hierarchical index structures provide another way to ab-
stracting and structuring a topographical index in a hierar-
chical fashion. Hierarchical MulTi-graph model (HiTi) [21]
is a representative approach in this category. The meaning
of hierarchy in HiTi is the hierarchy of the index (i.e.,
tree structure) instead of the hierarchy of the road map
(i.e., level of roads). By exploiting the hierarchical index
structure, HiTi can support fast shortest path computation
on a portion of entire index which can significantly reduce
the tune-in cost on the index transmission model. However,
prohibitive maintenance time and large broadcast size make
it inapplicable to OSP on any transmission model.

Hierarchical Encoded Path View (HEPV) [20] and Hub
indexing [19] share the same intuition of HiTi which divides
large graph into smaller subgraphs and organize them in a
hierarchical fashion by pushing up border nodes. However,
both are infeasible for OSP since these approaches suffer
from the excessive storage overhead for a large amount of
pre-computed path information.

TEDI [33] applies a tree-based partitioning on the road
graph such that each partition in the tree has a bounded
number of sub-partitions. This method is applicable to
unweighted graphs only; it is not applicable to typical road
networks where the edges are weighted. Furthermore, there
is no discussion on how to maintain the TEDI structure in
presence of edge weight updates.
Oracle Sankaranarayanan et al. [34][35] focus on precom-
puting certain shortest path distances called oracles in order
to answer approximate shortest path queries efficiently.
These techniques bound the approximate path distance error
to be ε times the shortest path distance. The distance
oracle [34] can answer approximate shortest path distance
query in O(log |V |) time, and it occupies O(|V |/ε2) space.
The path oracle [35] takes the same complexity, and it
can compute an approximate shortest path in O(k log |V |)
time, where k is the number of vertices on the path. The
maintenance of these oracles regarding live traffic updates
has not been studied in [34][35]. Also, these techniques do
not provide exact results and incur high storage space at
small ε.
Full pre-computation pre-computes the shortest paths be-
tween any two nodes in the road network, such as SILC [36]
and distance index [37]. Even though these approaches

offer fast query response time, the maintenance cost and
size overhead become prohibitive on large road networks.
Besides, as reported by [38], the performance of the full
pre-computation approaches (i.e., SILC [36]) is not much
superior to those road map hierarchical approaches (i.e.,
CH [30]).
Combination approaches integrate promising features from
different index structure to support efficient shortest path
computation. SHARC [39] and CALT [31] are two well
studied combination approaches which integrate road map
hierarchical approaches with AF and ALT, respectively.
However, these complex index structures are either lack of
efficient maintenance strategies or have huge size overhead
which makes them inapplicable to OSP on any transmission
model.

2.2.3 Summary
Except for hierarchical index structures, all methods on
either raw or index transmission models suffer from a
drawback that a few updates could affect a large portion
of packets. We demonstrate this by a simple probabilistic
analysis. Suppose that there are B packets in a broadcast
cycle and U edges are updated. The probability of a specific
packet being affected by the updates is 1−(1−1/B)U . For
instance, suppose that the San Francisco (CA) bay area road
network can be transmitted in 1,000 packets (443,604 edges
in total), and there are 1% live traffic updates (i.e., ≈4,400
edges) in each processing cycle. Thus, the probability of
a packet being affected is 98.77%. This means that almost
every broadcast packet is updated by this small portion of
edge updates.

Fig. 2 illustrates the relative performance1 to differ-
ent cost factors (including tune-in cost, response time,
broadcast size, and maintenance time) on two transmission
models. Except that BD, DALT, and DSPT use the raw
transmission model, other methods use the index transmis-
sion model. Except for HiTi [21] and LTI (our proposed
method), the tune-in cost of all approaches is very close
to the broadcast size as explained above. Based on the
comparison in Fig. 2, LTI is the only method that supports
relatively low tune-in cost (at client side), fast query re-
sponse time (at client side), small broadcast size (at server
side), and light index maintenance time (at server side) for
OSP.

3 LTI OVERVIEW AND OBJECTIVES

3.1 LTI Overview
A road network monitoring system typically consists of a
service provider, a large number of mobile clients (e.g., ve-
hicles), and a traffic provider (e.g., GoogleMap, NAVTEQ,
INRIX, etc.). Fig.3 shows an architectural overview of
this system in the context of our live traffic index (LTI)
framework. The traffic provider collects the live traffic
circumstances from the traffic monitors via techniques like
road sensors and traffic video analysis. The service provider

1. based on the experimental results reported by [31] and [38]
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Fig. 2. Relative performance illustration

periodically receives live traffic updates from the traffic
provider and broadcasts the live traffic index on radio or
wireless network (e.g., 3G, LTE, Mobile WiMAX, etc.).
When a mobile client wishes to compute and monitor a
shortest path, it listens to the live traffic index and reads
the relevant portion of the index for deriving the shortest
path.

In this work, we focus on handling traffic updates but
not graph structure updates. For real road networks, it is
infrequent to have graph structure updates (i.e., construction
of a new road) when compared to edge weight updates
(i.e., live traffic circumstances). Thus, we assume that the
graph structures are distributed to every client in advance
(e.g., by monthly updates or at system boot-up) via typical
transmission protocol (i.e., HTTP and FTP).
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In Fig.4, we illustrate the components and system flow in
our LTI framework. The components shaded by gray color
are the core of LTI. In order to provide live traffic infor-
mation, the server maintains (component a) and broadcasts
(component b) the index according to the up-to-date traffic
circumstances. In order to compute the online shortest path,
a client listens to the live traffic index, reads the relevant
portions of the index (component c), and computes the
shortest path (component d).

3.2 LTI Objectives

To optimize the performance of the LTI components, our
solution should support the following features.
(1) Efficient maintenance strategy. Without efficient
maintenance strategy, long maintenance time is needed at

Client Service Provider

(c) Tune-in&listen 
relevant packets

Query q(s,d)

(b) Broadcast 
index

(a) Maintain index

Receive traffic 
updates

Traffic Provider

(d) Compute 
result for q(s,d)

Communication

Computation

Fig. 4. Components in LTI

server side so that the traffic information is no longer live.
This can reduce the maintenance time spent at component
a.
(2) Light index overhead. The index size must be con-
trolled in a reasonable ratio to the entire road map data. This
reduces not only the length of a broadcast cycle, but also
makes clients listen fewer packets in the broadcast channel.
This can save the communication cost at components b and
c.
(3) Efficient computation on a portion of entire index.
This property enables clients to compute shortest path on a
portion of the entire index. The computation at component
d gets improved since it is executed on a smaller graph.
This property also reduces the amount of data received and
energy consumed at component c.

Inspired by these properties, LTI has relatively short
tune-in cost (at client side), fast query response time (at
client side), small broadcast size (at server side), and
light index maintenance time (at server side) for OSP. As
discussed in Section 2.2, the hierarchical index structures
enable clients to compute the shortest path on a portion of
entire index. However, without pairing up with the first and
second features, the communication and computation costs
are still infeasible for OSP. To achieve these two features,
in Section 4 and Section 6, we will discuss how to optimize
the hierarchical structure and efficiently maintain the index
according to live traffic circumstances.

4 LTI CONSTRUCTION

In Section 4.1, we carefully analyze the hierarchical index
structures and study how to optimize the index. In Sec-
tion 4.2, we present a stochastic based index construction
that minimizes not only the size overhead but also reduces
the search space of shortest path queries. To the best of
our knowledge, this is the first work to analyze the hierar-
chical index structures and exploit the stochastic process to
optimize the index.

4.1 Analysis of Hierarchical Index Structures
Hierarchical index structures (e.g., HiTi [21], HEPV [20],
and Hub Indexing [19], TEDI [33]) enable fast shortest path
computation on a portion of entire index which significantly
reduces the tune-in cost on the index transmission model.
Given a graph G = (VG, EG) (i.e., road network), this type
of index structures partitions G into a set of small sub-
graphs SGi and organizes SGi in a hierarchical fashion
(i.e., tree). In Fig. 5, we illustrate a graph being partitioned
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into 10 subgraphs (SG1, SG2, ..., SG10) and the corre-
sponding hierarchical index structure.
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Fig. 5. Hierarchical index structure

Every leaf entry in a hierarchical structure represents a
subgraph SGi that consists of the corresponding nodes and
edges from the original graph. For instance, SG1 consists of
two nodes VSG1

= {a, b} and one edge ESG1
= {(a, b)}.

A non-leaf entry stores the inter-connectivity information
between the child entries. For instance, SG1-2 stores a con-
nectivity edge ΓSG1-2 = {(b, c)} between SG1 and SG2.
To boost up the shortest path computation, the hierarchical
index structures also keep some pre-computed information
in the index entries. For instance, shortcuts ∆SGi

are the
most common type of pre-computed information in these
indices, where a shortcut is the shortest path between
two border nodes in a subgraph. In Fig. 5, SG5 has two
border nodes2 k and m so that SG5 keeps a shortcut
∆SG5

= {(k,m)} and its corresponding weight.
To answer a shortest path query q(s, t) using the hi-

erarchical structures, a common approach is to fetch the
relevant entries from the index using a bottom-up execution
fashion. For the sake of analysis, we use HiTi as our
reference model in the remaining discussion. Our analysis
can be adapted to other approaches since their execution
paradigm shares the same principle.

In Fig. 5, the relevant entries of a shortest path query
q(b, d) are shaded in gray color. Besides the source and des-
tination leaf entries (SG1 and SG3), we need to fetch the
entries from two leaf entries towards the root entry (SG1-2,
SG1-3, SG1-5, and SG1-10) and their sibling entries (SG2,
SG4-5, and SG6-10). The shortest path is computed on the
search graph Gq (typically much smaller than G) which
constitutes of the edges from the source and destination
entries and the connectivity edges and shortcuts from other
relevant entries. Note that the edges in Gq already secure
the correctness of the shortest path query process [21]. As
an example, suppose the shortest path of q(b, d) passes
through an edge in SG6, this path must be revealed in
the shortcut of SG6-10 (i.e., ∆SG6-10 = {(f, p)}).
Cost analysis. The total space requirement of a hierarchi-
cal index I can be represented as follows.

|I| =
∑

SGi∈I

(|VSGi |+ |ESGi |+ |ΓSGi |+ |∆SGi |) + tree (1)

where VSGi and ESGi represent the nodes and edges in
SGi, respectively, ΓSGi

represents the connectivity infor-
mation between the child entries, ∆SGi

represents the pre-
computed information kept in SGi, and tree represents the

2. node n is a border node in SG4-5 but not in SG5.

hierarchical information of I . Since VSGi , ESGi and ΓSGi

are directly derived from the original graph and tree is
negligible compared to G, the space requirement can be
revised as the follows.

|I| ≈ |G|+
∑

SGi∈I

|∆SGi | (2)

To minimize the index broadcast size, it is more or less
equivalent to minimize the size of ∆SGi

. The simplest way
is to partition the graph into multiple subgraphs such that
the total size of ∆SGi

is minimized. However, this may not
optimize the query performance being discussed shortly.

In our problem, both tune-in cost and query response
time are highly relevant to the size of the search graph Gq

(i.e., search space). Given an index I and a query q, the
search space of q can be represented by the relevant edge
sets.

S(I, q) = |ESGs ∪ ESGt ∪ {ΓSGi ∪∆SGi : ∀SGi ∈ Gq−st}|
(3)

where SGs and SGt represent the leaf entry of source
and destination, respectively and Gq−st = Gq \ {SGs ∪
SGt}. To reduce S(I, q) for all possible queries, our goal
is to find a hierarchical structure such that it minimizes
(O1) the size of leaf entries ESGs and ESGt , (O2) the
overhead of pre-computed information ∆SGi

, and (O3) the
number of relevant entries Gq . However, these objectives
are correlated to each other. For instance, to make ESGs

and ESGt smaller, a simple way is to partition G into more
subgraphs; however, it may increase the number of relevant
entries Gq and the number of border nodes ∆SGi

.

4.2 Index Construction
The above discussion shows that it is hard to find a
hierarchical index structure I that achieves all optimization
objectives. One possible solution is to relax the optimization
objectives which makes them be the tunable factors of the
problem. While the overhead of pre-computed information
(O2) and the number of relevant entries (O3) cannot
be decided straightforwardly, we decide to relax the first
objective (i.e., minimizing the size of leaf entries) such that
it becomes a tunable factor in constructing the index.

To minimize the overhead of pre-computed information
(O2), we study a graph partitioning optimization that
minimizes the index overhead ∆SGi

through the entire
index construction subject to a leaf entry constraint (O1).
Subsequently, we propose a stochastic process to optimize
the index structure such that the size of the query search
graph Gq is minimized (O3).
Graph partitioning optimization. For the sake of discus-
sion, we denote that the number of subgraphs being created
is γ that is a tunable parameter for controlling the number of
subgraphs 3 in this work. According to Eq. 2, minimizing
the size of ∆SGi is likely to minimize the overhead of
I . Obviously, our objective is to find a hierarchical index
structure I such that

OBJ (I) = min
SGi∈I

∑
|∆SGi |

min{|VSGi |}
(4)

3. γ can be viewed as a parameter to control the size of subgraphs.
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where min{|VSGi
|} can be viewed as a normalized factor

such that the objective function prefers balanced partitions.
We observe that minimizing Eq. 4 is similar to finding

the best Cheeger cut [40] in a graph. A Cheeger cut is to
remove some edges from a graph such that the graph is
isolated into n subgraphs subject to an objective function:

OBJ Cheeger(G) = min
SG1,...,SGn∈G

Cut({SG1, ..., SGn})
min{|SG1|, ..., |SGn|}

(5)
where Cut({SG1, ..., SGn}) is the number of edges be-
tween any two subgraphs.

We use an example to illustrate how Cheeger cut
result can be viewed as a good result of I . Fig.6(a)
shows a Cheeger cut on a graph where the cut value
Cut({SG1, SG2}) and the number of shortcut edges,
|∆SG1

| + |∆SG2
| = |{∅}| + |{(e, f), (e, g), (f, g)}|, are

identical (i.e., 3). A large cut value is likely to produce
more shortcut edges; in Fig.6(b), the cut value is 10 and
there are 12 shortcuts.

1

cut

SG1 SG2

d

e

f

g

a b

c

h

i

j

(a) 3 shortcut edges

cut

SG1

SG2

d

e

f

g

a b

c

h

i

j

(b) 24 shortcut edges

Fig. 6. The number of shortcut edges created by
different cuts

Lemma 1: Given a cut having the cut value c and the
maximum cut degree of border nodes dcut (where the cut
degree only counts on those edges being cut), the number
of shortcuts produced by the cut is bounded by c(c−1)

2 +
(c−dcut+1)(c−dcut)

2 .
Proof: Given a cut having the cut value c and the

maximum cut degree dcut, the maximum number of border
nodes in two subgraphs being created is c and c−dcut+1,
respectively. Thereby, the maximum number of shortcuts
being created is c(c−1)

2 + (c−dcut+1)(c−dcut)
2 .

Lemma 1 provides a relationship between the Cheeger
cut and our objective function. Practically, the effect of dcut
is negligible since dcut is relatively small as compared to c.
For instance, the average in/out degree of the San Francisco
(CA) bay area vertices is only 2.54 (which means dcut is
smaller than 2.54 since a portion of these edges are interior
edges.). Therefore, we claim that a partitioning result that
minimizes Eq. 5 is likely to minimize Eq. 4 as well.

Finding the best Cheeger cut can be reduced to a
quadratic discrete optimization problem [41]. Based on
[41], a cut on a graph can be determined by the second
smallest eigenvalue λ and its corresponding eigenvector V .
The problem becomes to decompose V into two subsets
such that the objective function is minimized. To further
improve the quality of each cut, we use Eq. 4 as the objec-
tive function so that we can heuristically reduce the number
of border nodes. To construct an index, we recursively cut
the subgraphs until we have enough partitions (i.e., the leaf

entry constraint, γ). The pseudo code is omitted due to
space limits.

Stochastic based index construction. The graph parti-
tioning framework only returns a binary tree index Ibi that
is constructed based on Cheeger cut sequences. However,
Ibi only fulfills the first two objectives (i.e., minimizing
the overhead |∆SGi | subject to γ). Intuitively, the size of
search graphs Gq (i.e., O3) is highly relevant to the index
hierarchical structure. As a motivating example, the number
of relevant entries of q(b, d) is reduced from 9 to 8 if we
remove one index node (e.g., SG1−2) from the index tree
in Fig. 5(b). The new index and the relevant entries are
illustrated in Fig. 7.

SG2 SG3SG1 SG4 SG5

SG1-3 SG4-5

SG1-5

SG8 SG9

SG7 SG8-9 SG10SG6

SG6-7 SG8-10

SG6-10

SG1-10

Search Graph of q(b,d)

b d

Fig. 7. Effect of hierarchical structure

Given the size of leaf entries γ, minimizing the size
of search graph can be viewed as a problem of finding
the best hierarchical index structure for potential queries.
Finding the optimal hierarchical structure is challenging
since (1) the performance of an index cannot be easily
estimated (which should be estimated by a query workload
Q or a universal query set U) and (2) the index statistics
(e.g., shortcuts) are changed on different index hierarchical
structures (which is necessarily recalculated based on the
structure). This problem is similar to those combinatorial
optimization problems (e.g., hierarchical clustering [42])
that groups data into a set of hierarchical partitions such
that the objective function is optimized. Typically, these
combinatorial problems are solved by approximate solu-
tions under reasonable response time. Thus, we propose a
top-down approach that greedily decides the structure based
on a stochastic estimation.

To estimate the average size of the search graphs, we
apply a stochastic process, Monte Carlo, that relies on
random sampling to obtain numerical results. In this work,
the Monte Carlo process is to execute a set of randomly
generated shortest path queries on a temporal index I ′

and estimates the average size of their relevant search
graphs, avg(S(I ′)). For clarity, the stochastic process can
be replaced by a query workload, Q, based estimation
which should offer more accurate estimation when Q is
available.

At every partitioning, we attempt to find the best structure
for the potential queries by the stochastic process. More
specifically, we assess the average size of the relevant
search graphs, avg(S(I ′)), for different partitioning settings
(i.e., varying k). Among all assessed partitioning, we attach
the partitioning having the smallest relevant search graphs
to the index. The construction terminates when we have
enough leave entries (i.e., γ). Algorithm 1 shows the pseudo
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codes of the partitioning algorithm based on the stochastic
process.

Algorithm 1 Stochastic Partitioning Algorithm
PQ: a priority queue; I: index structure;
Algorithm partition(G:the graph, γ:the number of partitions)

1: (λ,V) := eigen(G) and n := root of I
2: insert (n,G,V, λ) into PQ in decreasing order to λ
3: while |PQ| < γ do
4: (n,G,V, λ) := PQ.pop()
5: for k:=2 to γ − |PQ|+ 1 do
6: decompose G into SG1...SGk s.t. Eq. 4 is minimized
7: form a temporal index I′ that attaches SG1...SGk

8: if avg(S(I′)) is better than bestS then
9: update bestS and bestSG := {SG1, ..., SGk}

10: attach bestSG as n’s children
11: for i:=1 to |bestSG| do
12: insert (ni, SGi,Vi, λi) into PQ
13: return I

The effect of γ. In this work, LTI requires only one
parameter γ to construct the index which is used to control
the number of subgraphs being constructed. Our proposed
techniques attempt to optimize the index (O2 and O3)
subject to γ. Intuitively, similar to other hierarchical indices,
the number of leaf entries, γ, not only affects the size of
leaf entries but also the search performance.

1

SG1 SG2

SG1-2

s t

(a) small γ

SG1 SG2 SG3 SG4

SG1-2 SG3-4

SG1-4

s t

(b) large γ

Fig. 8. The effect of γ on index construction

Fig. 8 illustrates a toy example that shows the effect of
γ in different settings. Obviously, when γ is set to a large
value, the index has small size of leaf entries (i.e., ESGs

and ESGt ) which boost the query processing due to the
locality of relevant entries. However, it may increase the
number of relevant entries to answer queries due to the
hierarchy of the index. In summary, a small γ may lead
the index having large leaf entries while a large γ may lead
the index having large number of index nodes, where these
settings may degrade the query performance. Fortunately,
γ is not a very sensitive parameter (cf. the studies in
other hierarchical indexing techniques [19][20][21] and our
experiments), which can be decided by experimental studies
in practice.

5 LTI TRANSMISSION
In this section, we present how to transmit LTI on the air
index. We first introduce a popular broadcasting scheme
called the (1,m) interleaving scheme in Section 5.1. Based
on this broadcasting scheme, we study how to broadcast LTI
in Section 5.2 and how a client receives edge updates on
air in Section 5.3.

5.1 Broadcasting Scheme
The broadcasting model uses radio or wireless network
(e.g., 3G, LTE, Mobile WiMAX) as the transmission

medium. When the server broadcasts a dataset (i.e., a “pro-
gramme”), all clients can listen to the dataset concurrently.
Thus, this transmission model scales well independent of
the number of clients. A broadcasting scheme is a protocol
to be followed by the server and the clients.

TABLE 1
The format of the (1,m) interleaving scheme

header data header data header data
i:0, n:6 o1, o2 i:2, n:6 o3, o4 i:4, n:6 o5, o6

The (1,m) interleaving scheme [23] is one of the best
broadcasting schemes. Table 1 shows an example broad-
casting cycle with m = 3 packets and the entire dataset
contains 6 data items. First, the server partitions the dataset
into m equi-sized data segments. Each packet contains
a header and a data segment, where a header describes
the broadcasting schedule of all packets. In this example,
the variables i and n in each header represent the last
broadcasted item and the total number of items. The server
periodically broadcasts a sequence of packets (called as a
broadcast cycle).

We use a concrete example to demonstrate how a client
receives her data from the broadcast channel. Suppose that
a client wishes to query for the data object o5. First, the
client tunes in the broadcast channel and waits until the next
header is broadcasted. For instance, the client is listening
to the header of the first packet, and finds out that the third
packet contains o5. In order to preserve energy, the client
sleeps until the broadcasting time of that packet. Then, it
wake-ups and reads the requested data item from the packet.

The query performance can be measured by the tuning
time and the waiting time at the client side. The tuning time
is the time for reading the packets. The waiting time is the
time from the start time to the termination time of the query.
In this broadcasting scheme, the parameter m decides the
trade-off between tune-in size and the overhead. A large m
favors small tune-in size whereas a small m incurs small
waiting time. [23] suggests to set m to the square root of
the ratio of the data size to the index size.

5.2 LTI on Air
To broadcast a hierarchical index using the (1,m) in-
terleaving scheme, we first partition the index into two
components: the index structure and the weight of edges.
The former stores the index structure (e.g., graph vertices,
graph edges, and shortcut edges) and the latter stores the
weight of edges. In order to keep the freshness of LTI, our
system is required to broadcast the latest weight of edges
periodically 4.

Table 2 shows the format of a header/data packet in
our model. id is the offset of the packet in the present
broadcast cycle and checksum is used for error-checking
of the header and data. Note that the packet does not
store any offset information to the next broadcast cycle or

4. The hierarchical index structure is only affected by the connectivity /
topology information (see Sections 4 and Sections 6). Thus, any changes
in the weights would not affect the hierarchical index structure.
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TABLE 2
Packet format on the air index

Offset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 id checksum ...
... ...

broadcast segment. The offset can be matched up by the
corresponding id since the structure of LTI is pre-stored
at each client. In our model, the header packet stores a
timestamp set T for checking new updates and data loss
recovery.

5.3 Client Tune-in Procedures of Air LTI
We proceed to demonstrate how a client (i.e., driver)
receives edge weights from the air index using the hierar-
chical structure. Fig. 9 shows the content of a broadcast
cycle for a LTI structure in Fig.7. In this example, the
air index uses a (1, 2) interleaving scheme and each data
packet stores the edge weight of different subgraphs. For
instance, the edge weight of subgraph SG1 are stored in
the 2nd packet of a broadcast cycle. Assume that a driver
is moving from node b to node d and his navigation system
first tunes-in to the air index at the 3rd packet of segment
1. According to the search graph (as shown in Fig. 7) and
the packet id, the navigation system falls into sleep for
1 segment transmission time. It wakes up and receives
segment 3 where the search graph elements (SG1-3 and
SG4-5) are located in. Note that the other search graph
elements (SG1, SG2, and SG3) in segment 1 can only be
collected in the next broadcast cycle.
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Fig. 9. Receiving LTI data from the air index

Suppose that there are two edge updates, including one
graph edge (k, l) in SG5 and one shortcut (j, n) in SG4-5,
in the next broadcast cycle. The navigation system identifies
the subgraphs being updated by checking the timestamp set
T in the header packet. Since the search graph Gq contains
SG1-3 and SG4-5, the system tunes-in to the air index
when the corresponding packets are broadcasted (i.e., the
3rd packet of segment 3).

6 LTI MAINTENANCE

In order to keep the freshness of the broadcasted index,
the cost of index maintenance is necessarily minimized. In
this section, we study an incremental update approach that
can efficiently maintain the live traffic index according to

the updates. As a remark, the entire update process is done
at the service provider and there is no extra data structure
being broadcasted to the clients.

There is a bottom-up update framework to maintain the
hierarchical index structure in [21]. Their idea is to re-
compute the affected subgraphs starting from lowest level
(i.e., leaf subgraphs) to root. Unfortunately, as shown in
Section 2.2, a small portion of edge updates trigger updates
in the majority of packets (i.e., subgraphs). Thus, the
above update technique incurs high computational cost on
updating the affected subgraphs.

It is thus necessary to develop a more efficient update
framework. For any weight update on the road edges, we
observe that only shortcut edges ∆SGi are necessarily re-
computed as the weight of other edges (i.e., ESGi

∪ΓSGi
)

are directly derived from the updates. To boost the shortcut
edge maintenance, we incorporates dynamic shortest path
tree technique (DSPT) [22] into the hierarchical index
structures and reduce the overhead of DSPT by a bounded
version (BSPT).
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Fig. 10. Shortest path tree maintenance

Given a graph G = (V,E), a shortest path tree (SPT)
rooted at a vertex r ∈ V , denoted as SPT (r), is a tree with
root r, and ∀v ∈ V −{r}, SPT (r) contains a shortest path
from r to v. In Fig.10(a), the shortest path tree of vertex k
is highlighted by bold lines. Given a shortest path tree, a
dynamic Dijkstra approach [22] is proposed for handling
both weight increasing (Fig.10(b)) and decreasing cases
(Fig.10(c)). The intuition of the algorithms is to find the
affected local vertices and revise the shortest path tree using
a Dijkstra like algorithm starting from the updated vertices.
For instance, the weight of e(m, l) is decreased from 2 to
0. Starting from the vertex m, a new path m → l → k,
that is a better path from m to k, is found by the Dijkstra
searching. Thereby, the update process revises the shortest
path tree accordingly as shown in Fig.10(c).
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Fig. 11. Shortest path trees and updates

To keep the freshness of LTI, every subgraph is re-
quired to maintain its corresponding shortcut edges ∆SGi

according to live traffic circumstances. The weight of
these shortcuts can be maintained by the corresponding
shortest path tree from each border node BSGi

. Obviously,
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the total space overhead of the shortest path trees is∑
SGi∈I |BSGi | · |VSGi |. To reduce the space overhead

and boost the maintenance process, we observe that not
every edge in a SPT (v) is necessarily kept for the mainte-
nance process. We illustrate this by a concrete example in
Fig.11(a). Suppose that only vertices k and l are the border
nodes and ∆SGi

= {(l, k)}. We can say edge (j,m) is
irrelevant to shortcut (l, k) since the distance from l to j
or m is already longer than the distance from l to k. More
specifically, changing the weight of edge (j,m) does not
influence the shortest path from l to k in SPT (l).

Definition 1 (Bounded shortest path tree): Given a sub-
graph SGi = (VSGi , ESGi), a bounded shortest path
tree (BSPT) rooted at a vertex s ∈ VSGi , denoted as
BSPT (s), is a tree with root s, and BSPT (s) contains
a shortest path from s to v ∈ V − {s} subject to
d(s, v) ≤ maxv′∈∆SGi

d(s, v′).
Inspired by the discussion, we propose a variant shortest

path tree, named as bounded shortest path tree BSPT (v),
in Def. 1. A shortest path starting from v is necessarily kept
in a bounded shortest path tree BSPT (v) if and only if
the distance of the shortest path is shorter than the distance
from v to every border node. In Fig.11(b), BSPT (l) keeps
only one shortest path l→ k. The shortest path l→ m and
l → j are dropped since the shortest distance of l → m
and l→ j is not shorter than the distance from l to border
node k. Typically, BSPT (v) is much smaller than SPT (v)
and it also boosts up computation efficiency due to smaller
search space.

Lemma 2 (Relevance of weight updates): A bounded
shortest path tree BSPT (v) is affected by the weight
update of an edge e if and only if e is adjacent to at least
one vertex of BSPT (v).

Proof: Assume to the contrary that a bounded shortest
path tree, BSPT (v), is affected by the weight updated of
an edge e(ve, v′e). In other words, based on Def. 1, the path
distance of some vertex v′ in BSPT (v) becomes smaller
if the weight of e is changed, i.e.,

d(v → ...→ v′) > d(v → ...ve → v′e...→ v′)

= d(v → ...→ ve) + d(ve → v′e → ...→ v′)

> d(v → ...→ ve)

According to the assumption, e is not adjacent to
BSPT (v). Thereby,

d(v → ...→ v′) > d(v → ...vi → vj ...→ ve)

= d(v → ...vi → vj) + d(vj → ...→ ve)

where vi ∈ BSPT (v) and vj /∈ BSPT (v). However,
it is in contradiction to Def. 1 since d(v → ... →
v′) ≤ maxv′∈∆SGi

d(s, v′) but d(v → ...vi → vj) >
maxv′∈∆SGi

d(s, v′).
Based on Def. 1, we study Lemma 2 that provides

the relevance of an edge update to a bounded shortest
path tree. In the running example (Fig. 11(c)), the edge
update (j,m) is relevant to BSPT (k) but not BSPT (l)
since it is not adjacent to any vertex of BSPT (l). In
other words, BSPT (l) is not necessary to maintain for
this edge update. This lemma enables the system to omit
update maintenance to those irrelevant bounded shortest

path trees which can significantly reduce the maintenance
cost. Besides, the maintenance does not increase any com-
munication overhead since LTI only delivers the weight of
border node pairs (i.e., ∆SGi

) but not the shortest path trees
on the index transmission model.
Pruning ability of BSPT. The pruning ability of BSPT
is highly relevant to the border node selection in each
subgraph. In the worst case, BSPT performs as the same as
a naı̈ve SPT if the borders are very far from each others.
However, such cases rarely happen in LTI since the graph
partitioning technique (Section 4.2) prefers a partitioning
having small number of borders, which minimizes the
change of the worst-case scenario. In our study, BSPT
prunes 30% to 50% edges from the complete SPT for our
evaluated datasets (Section 8).

7 PUTTING ALL TOGETHER
We are now ready to present our complete LTI framework,
which integrates all techniques been discussed. A client can
invoke Algorithm 2 in order to find the shortest path from
a source s to a destination t. First, the client generates
a search graph Gq based on s (i.e., current location) and
d. When the client tunes-in the broadcast channel (cf.
Section 5.2), it keeps listening until it discovers a header
segment (cf. Figure 9). After reading the header segment, it
decides the necessary segments (to be read) for computing
the shortest path. These issues are addressed in Section 5.3.
The client then waits for those segments, reads them, and
update the weight of Gq . Subsequently, Gq is used to
compute the shortest path in the client machine locally (cf.
Figure 7 and Section 4.1). Note that Algorithm 2 is kept
running in order to provide online shortest path until the
client reaches to the destination.

We then discuss about the tasks to be performed by the
service provider, as shown in Algorithm 3. The first step is
devoted to construct the live traffic index; they are offline
tasks to be executed once only. The service provider builds
the live traffic index by partitioning the graph G into a set
of subgraphs {SGi} such that they are ready for broadcast-
ing. We develop an effective graph partitioning algorithm
for minimizing the total size of subgraphs and study a
combinatorial optimization for reducing the search space of
shortest path queries in Section 4.2. In each broadcasting
cycle, the server first collects live traffic updates from the
traffic provider, updates the subgraphs {SGi} (discussed in
Section 6), and eventually broadcasts them.

Algorithm 2 Client Algorithm
Algorithm Client(I:LTI, s:source, t:destination)

1: generate Gq from I based on s and d
2: listen to the channel for a header segment
3: read the header segment . Section 5.3
4: decide the necessary segments to be read . Section 5.3
5: wait for those segments, read them to update the weight of Gq

6: compute the shortest path (from s to t) on Gq . Section 4.1

8 EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the performance
of some representative algorithms using the broadcasting
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Algorithm 3 Service Algorithm
Algorithm Service(G:graph)

1: construct I and {SGi} based on G . Section 4.2
2: for each broadcast cycle do
3: collect traffic updates from the traffic provider
4: update the subgraphs {SGi} . Section 6
5: broadcast the subgraphs {SGi} . Section 5.2

architecture; we ignore the client-server architecture due to
massive live traffic in near future (see Section 1). From
our discussion in Section 2, bi-directional search (BD) [3],
ALT on dynamic graph (DALT) [28], and dynamic shortest
paths tree (DSPT) [22], are applicable to raw transmission
model. On the other hand, contraction hierarchies (CH)
[30], Hierarchical MulTi-graph model (HiTi) [21], and our
proposed live traffic index (LTI) are applicable to index
transmission model. We omit some methods (such as TNR
[1], Quadtree [36], SHARC [39], and CALT [31]) due
to their prohibitive maintenance time and broadcast size.
In the following, we first describe the road map data
used in experiments and describe the simulation of clients’
movements and live traffic circumstances on a road map.
Then, we study the performance of the above methods with
respect to various factors.

Map data. We test with four different road maps, including
New York City (NYC) (264k nodes, 733k edges), San
Francisco bay area road map (SF) (174k nodes, 443k
edges), San Joaquin road map (SJ) (18k nodes, 48k edges),
and Oldenburg road map (OB) (6k nodes, 14k edges). All
of them are available at [43] and [44].

Simulation of clients and traffic updates. We run the
network-based generator [44] to generate the weight of
edges. It initializes 100,000 cars (i.e., clients) and then
generates 1,000 new cars in each iteration. It runs for 200
iterations in total, with the other generator parameters as
their default values. The weight of an edge is set to the
average driving time on it.

We adopt the approach in [28] to simulate live traffic
updates. The initial weights of edges are assigned by
the above network-based generator. In each iteration, we
randomly select a set of edges subject to the update ratio
δ and specific weight update settings. In our work, each
weight update can be either a light traffic change, a heavy
traffic change, or a road maintenance. The proportion of
these update types are β, 1−β

2 , and 1−β
2 , respectively, where

β is a ratio parameter. For each light traffic change, the
edge weight is set to ±20% of the current weight. For
each heavy traffic change, the weight is set to a large value
by multiplying a weight factor ω (which is set to 5 by
default). For each road maintenance, the weight is set to
∞. We reset the edge weight to its initial value if the edge
weight is updated by heavy traffic or road maintenance after
10 iterations.

Implementation and evaluation platforms. All tested
methods except CH [30] were implemented in Java. Ex-
periments on the service provider were conducted on an
Intel Xeon E5620 2.40GHz CPU machine with 18 GBytes

memory, running Ubuntu 10.10; and experiments on the
client were performed on an Intel Core2Duo 2.66GHz
CPU machine with 4 GBytes memory, running Windows
7. Table 3 shows the ranges of the investigated parameters,
and their default values (in bold). In each experiment,
we vary a single parameter, while setting the others to
their default values. For each method, we measure its
performance in terms of tune-in size, query response time,
broadcast size, and index maintenance time for all tested
methods, and report its average performance over 2,000
shortest path queries. The response time is the query
computation time at client and the maintenance time is
the index maintenance time at service provider. In order
to measure the exact transmission behavior, we use the
number of packets received (broadcasted) by client (service
provider) to represent the tune-in (broadcast) performance.
Each packet size is of 128 bytes and the packet format can
be found in Table 2. Each edge weight occupies 4 bytes. For
Algorithm 1, we randomly generate 1,000 queries at each
Monte Carlo estimation and we only partition the graph into
2 to 16 subgraphs at every partitioning for boosting up the
construction time. As a remark, each subgraph/partition (in
the HiTi and LTI methods) may span over multiple packets.

TABLE 3
Range of parameter values

Parameter Values
Road maps NYC, SF, SJ, OB

Type of shortest paths σ short, average, long, mix
Update ratio δ 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%

Ratio of light traffic updates β 50%, 60%, 70%, 80%, 90%
Weight changes of light traffic ±20%

Weight factor of heavy traffic, ω 2, 5, 10, 15, 20
Number of HiTi partitions, γ 500, 1000, 2000, 3000, 4000

8.1 Effectiveness of Optimizations

First, we evaluate the effectiveness of the optimizations
proposed in Section 4. The fully optimized LTI is com-
pared against to LTI-biPart (that is constructed by only
the graph partitioning technique, described in Section 4.2)
and HiTi [21] (which is the most representative model of
hierarchical index structures). For fairness, we internally
tune the HiTi graph model by varying the number of
children subgraphs, and the 8-way regular partitioning is
the best HiTi graph model among all testings.

Fig. 12 plots the performance of all three methods as a
function of the number of partitions γ on the SF dataset.
For the sake of saving space, we plot the costs at service
provider (i.e., broadcast size and maintenance time) into
one figure and plot the costs at client (i.e., tune-in size and
response time) into another figure. The number of packets
(left y-axis) is represented by bars, whereas the time (right
y-axis) is represented by lines.

LTI is superior to LTI-biPart and HiTi for all four
performance factors in Fig.12. As compared to HiTi, its
maintenance time and response time are up to 14.7 and
21.1 times faster, respectively. The broadcast size and tune-
in size are at least 2.4 and 6.4 times smaller than HiTi. It
shows that our fully optimized LTI is very efficient and
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Fig. 12. Varying number of partitions, γ

performs vastly different from HiTi. In this work, we set γ
to 1,000 since it performs the best in both HiTi and LTI. As
shown in the figures, all performance factors are not very
sensitive to γ which supports our claim in Section 4.2.

8.2 Scalability experiments

TABLE 4
Performance of different methods

Client side: Tune-in cost (#packets), Response time (ms)
Server side: Broadcast size (#packets), Maintenance time (ms)

Method
City raw transmission model index transmission model

BD DALT DSPT CH HiTi LTI

NYC

T 18300.7 18300.7 18300.7 18617.9 26834.5 704.7
R 72.39 54.53 374.93 2.28 157.11 4.26
B 22930 22930 22930 24802 124870 30661
M - - - 15759.6 105451 5575.4

SF

T 11149.4 11149.4 11149.4 10212.1 12468.9 602.8
R 89.74 45.03 94.51 0.72 75.89 2.40
B 13863 13863 13863 13453 52377 18850
M - - - 5411.4 19264.4 2094.9

SJ

T 1191.2 1191.2 1191.2 624.0 1524.1 331.1
R 5.20 1.98 9.37 0.08 10.72 1.37
B 2525 2525 2525 1370 4602 2827
M - - - 276.3 735.3 96.6

OB

T 352.0 352.0 352.0 258.9 516.3 118.4
R 1.11 0.45 31.12 0.091 3.66 0.68
B 604 604 604 348 1336 666
M - - - 104.3 134.6 16.0

Next, we compare the discussed solutions on four differ-
ent road maps. The result is shown in Table 4. Note that
all methods on the raw transmission model have the same
tune-in size and broadcast size. The only difference is the
response time as it represents the local computation time
for each client. Apart from BD and DALT, other methods
require each client to maintain some index structures locally
after receiving the live traffic updates. Thus, their response
time is slower5 than BD and DALT on the raw transmission
model. Based on the response time, DALT is the best
approach among the methods in this category.

Regarding the index transmission model, HiTi is ob-
viously infeasible for online shortest path computation
due to its prohibitive costs. Although CH has slightly
better broadcast size and response time6, we recommend
LTI as the best approach due to its light tune-in cost
and fast maintenance time. The tune-in size significantly
affects the energy consumption and the duration of active

5. We omit the performance of CH, HiTi, and LTI on the raw transmis-
sion model since they are 2 orders of magnitude slower than DALT.

6. We use the codes provided by [30] to construct the CH index which
is implemented in C++ instead of Java.

mode at client receiver. The tune-in size of LTI is 2.19-
26.41 and 2.97-25.97 times smaller than CH and DALT,
respectively. Note that the margin becomes more significant
on larger maps which demonstrates good scalability of our
LTI framework. This is important since reducing the tune-
in cost provides opportunity for clients to receive more
services simultaneously by selective tuning. In addition, fast
maintenance time keeps the freshness of the broadcasted
index. The maintenance time of LTI is 2.58-6.5 times faster
than CH while the broadcast size of LTI is just 23.6% and
40% larger than CH in NYC and SF, respectively.

In Section 1, we show that the present traffic providers
report the traffic very frequently and megabit wireless
networks (3G, LTE, Mobile WiMAX, etc.) are available.
Therefore, the maintenance time of LTI (i.e., 2 and 5.5
seconds on SF and NYC, respectively) is affordable as
compared to the live traffic update frequency and the
broadcast overhead of LTI (i.e., around 35% larger than
the raw data) is reasonable as the data is transmitted on the
megabit wireless networks.
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Fig. 13. Scalability experiments (client)

We omit HiTi from the remaining experiments as it is
inferior to LTI. The remaining representative methods are:
DALT on the raw transmission model, CH and LTI on the
index transmission model. We evaluate the performance
of these three methods as a function of different system
settings in Fig.13. In Fig.13(a), the tune-in size of all
methods grow with the update ratio δ, as well, the response
time slightly increases since the search graph becomes
larger. When δ = 20%, the number of necessary packets
received by clients is 13847.2, 13390.12, and 727.28 for
DALT, CH, and LTI respectively. DALT and CH almost
receive the entire broadcast packets (i.e., 99.89% and
99.53%, respectively); this conforms with our edge-update
probability analysis in Section 2.2. An impressive finding is
that the client using LTI only receives 20.63% more packets
as compared to δ = 10%. This shows that LTI is robust as
the tune-in size only increases sub-linearly with the update
ratio δ.
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Fig.13(b) shows the tune-in size and response time of
the methods on different type of shortest path queries σ.
The type of queries is classified based on their length.
Again, LTI has the lowest tune-in cost which is at least 16.9
times smaller than DALT and CH among all three types of
queries. Note that only DALT is sensitive to various length
of queries to the response time since the distance bounds
derived from the pre-computed information become looser
when the length of queries is longer.

We then study how the methods perform for different
traffic circumstances. Fig.13(c) and Fig.13(d) shows the
tune-in size and response time of the methods on two traffic
update behaviors. For all three methods, the tune-in size
and response time are not very sensitive to the ratio of
traffic updates β and the weight factor of heavy traffic ω.
Again, our LTI outperforms DALT and CH by an order of
magnitude in terms of the tune-in size.
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Fig. 14. Scalability experiments (service provider)

TABLE 5
Broadcast cycle length at default settings

Methods WCDMA time (s) HSDPA time (s)
Broadcast Main. Tune-in Broadcast Main. Tune-in

DALT 7.05 - 5.67 0.97 - 0.78
CH 6.84 5.41 5.19 0.94 5.41 0.71
LTI 9.59 2.01 0.31 1.31 2.01 0.04

Lastly, we demonstrate how the methods perform at
service provider. Fig. 14 shows the broadcast size and
maintenance time of the methods by varying δ, σ, β, and
ω. For all testings, LTI is superior to CH in terms of
maintenance time but produces around 40% more packets
than CH. A more promising result is that the maintenance
time of LTI is no longer sensitive to the update ratio when
δ > 20%. This is because most of BSPTs are necessarily
updated when the update ratio is around 20%. The subse-
quent updates (>20%) are more likely some incremental
work in updating the BSPTs (i.e., traversing few more
edges by the Dijkstra like algorithm) so that it becomes less
sensitive to δ. To express the comparison in absolute terms,
we show the time it takes to broadcast over a 1.92Mbps

(WCDMA) and a 14Mbps (HSDPA) channel in Table 5,
which are typical transmission rates in 3G networks and
3.5G networks. LTI takes 11.6s and 3.32s to complete a
maintenance and broadcast cycle at WCDMA and HSDPA,
respectively; while CH takes 12.25s and 6.35s to complete
the same cycle, respectively. In addition, DALT and CH
require the clients to tune-in the broadcast channel for ∼5s
and ∼0.7s over WCDMA and HSDPA, respectively, which
significantly affects the number of simultaneous services in
the wireless broadcast environments. Although DALT does
not bother any maintenance cost at service provider, the
tune-in cost and response time of DALT makes it infeasible
on the live traffic circumstance.

9 CONCLUSION

In this paper we studied online shortest path computation;
the shortest path result is computed/updated based on the
live traffic circumstances. We carefully analyze the existing
work and discuss their inapplicability to the problem (due
to their prohibitive maintenance time and large transmission
overhead). To address the problem, we suggest a promising
architecture that broadcasts the index on the air. We first
identify an important feature of the hierarchical index
structure which enables us to compute shortest path on a
small portion of index. This important feature is thoroughly
used in our solution, LTI. Our experiments confirm that LTI
is a Pareto optimal solution in terms of four performance
factors for online shortest path computation.

In the future, we will extend our solution on time
dependent networks. This is a very interesting topic since
the decision of a shortest path depends not only on current
traffic data but also based on the predicted traffic circum-
stances.
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