GHive: Accelerating Analytical Query Processing in Apache Hive

via CPU-GPU Heterogeneous Computing

Haotian Liu', Bo Tang!, Jiashu Zhang', Yangshen Deng!, Xiao Yan'!, Xinying Zheng?,
Qiaomu Shen!, Dan Zengl, Zunyao Mao', Chaozu Zhang!, Zhengxin You!, Zhihao Wang',

Runzhe Jiang!, Fang Wang?, Man Lung Yiu?, Huan Li®>, Mingji Han®, Qian Li®, Zhenghai Luo’
! Research Inst. of Trustworthy Autonomous Systems, Southern University of Science and Technology,
Department of Computer Science and Engineering, Southern University of Science and Technology,

2 The Hong Kong Polytechnic University, > Aalborg University,

4 Boston University, > Huawei Technologies Co., Ltd.

Corresponding email: dbgroup@sustech.edu.cn

ABSTRACT

As a popular distributed data warehouse system, Apache
Hive has been widely used for big data analytics in many or-
ganizations. Meanwhile, exploiting the massive parallelism
of GPU to accelerate online analytical processing (OLAP)
has been extensively explored in the database community.
In this paper, we present GHive, which enhances CPU-based
Hive via CPU-GPU heterogeneous computing. GHive is de-
signed for the business intelligence applications and pro-
vides the same API as Hive for compatibility. To run SQL
queries jointly on both CPU and GPU, GHive comes with
three key techniques: (i) a novel data model gTable, which is
column-based and enables efficient data movement between
CPU memory and GPU memory; (ii) a GPU-based operator
library Panda, which provides a complete set of SQL opera-
tors with extensively optimized GPU implementations; (iii)
a hardware-aware MapReduce job placement scheme, which
puts jobs judiciously on either GPU or CPU via a cost-based
approach. In the experiments, we observe that GHive out-
performs Hive in both query processing speed and operating
expense on the Star Schema Benchmark (SSB).

ACM Reference Format:

H. Liu, B. Tang, et al.. 2022. GHive: Accelerating Analytical Query
Processing in Apache Hive via CPU-GPU Heterogeneous Comput-
ing . In SoCC °22: ACM Symposium on Cloud Computing (SoCC ’22),
November 7-11, 2022, San Francisco, CA, USA. ACM, New York, NY,
USA, 15 pages. https://doi.org/10.1145/3542929.3563503

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SoCC °22, November 7-11, 2022, San Francisco, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9414-7/22/11.
https://doi.org/10.1145/3542929.3563503

1 INTRODUCTION

Open sourced by Facebook in 2008, Hive was designed to sup-
port distributed big data analytics on a massive scale [49, 50].
With a SQL-like interface on top of Hadoop MapReduce [3],
Hive allows users to issue queries with familiar SQL seman-
tics instead of implementing low-level MapReduce jobs. Hive
has an active community, where developers provide enhance-
ments in various aspects. For example, Yin et al. improve
Hive’s query processing performance by introducing opti-
mized row columnar (ORC) file format, physical optimiza-
tions, and vectorized query execution [31]. Hortonworks Inc.
renovates Hive along four axes, i.e., SQL and ACID support,
optimization techniques, runtime latency, and federation ca-
pabilities [18]. Besides Hadoop MapReduce, Hive now also
supports execution engines including Apache Tez [46] and
Spark [4] by running on top of YARN (i.e., Hadoop’s resource
negotiator) [51]. Due to its stability and rich features, Hive
was extensively utilized in production for large-scale data
analytics by many organizations (e.g, Facebook, Huawei).
Many works in the database community explore using the
massive parallelism of GPU to accelerate Online Analytical
Processing (OLAP) [9, 12, 21, 22, 25, 28, 35, 38, 40, 43, 45, 47,
52, 57]. For example, GPUQP [25] considers query processing
on a single machine and uses GPU as a co-processor for CPU.
GPL pipelines the operators in a query and uses OpenCL to
parallelize the execution of multiple GPU kernels. Based on
LLVM (a compiler toolbox), HAPE [23], Red Fox [53] and
HetExchange [21] build JIT-compilation frameworks to gen-
erate code for query execution on GPU. G-PICS [37] runs
many spatial queries concurrently on GPU. These works
achieve significant speedups compared to CPU-only execu-
tion, especially for computation intensive queries [47].
Given the popularity of Hive and the success of GPU-based
OLAP acceleration, we started the GHive project with two
main motivations. On the one hand, we observed that the
computation intensive operators dominate the execution
time for most of the queries in Hive. GPU can effectively

https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3542929.3563503

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

accelerate these operators [21, 22, 35, 47], and hence query
execution time. On the other hand, our clusters have both
CPU and GPU, and the GPU utilization has large fluctuations,
leaving a large amount of transient GPU resources (as in
Microsoft [32]). By enabling Hive to exploit GPUs, GHive
can utilize these transient GPU resources and boost GPU
utilization.

We set two main design goals for GHive. (1) Maintain the
same interface and distributed execution management (i.e.,
via Yarn) as Hive, in order to simplify deployment and run
many existing Hive applications without change. (2) Judi-
ciously use CPU and GPU to reduce both query execution
time and cost. Existing GPU databases cannot meet our de-
sign goals as they either do not support distributed query ex-
ecution (e.g, GPUQP [25], GPUDB [55]) or conduct resource
management with their own framework (e.g., Ominisci [12],
BlazingSQL [5]). In addition, most of them assume that data
are already in GPU memory while large-scale data usually
reside on disk and can only be loaded to GPU in segments.

In GHive, we take the vectorized physical execution plan
generated by Hive’s query optimizer, which contains MapRe-
duce jobs, and execute each job on either CPU (as in vanilla
Hive) or GPU. Other functionalities, such as query optimiza-
tion, distributed execution management, and data storage,
are all handled by vanilla Hive for compatibility. There are
three challenges in making GHive efficient. (1) MapReduce
jobs are Java programs in vanilla Hive while current GPU
libraries (e.g., CUDA and OpenCL) are in C++, which results
in costly cross-language transferring for job execution on
GPU. Moreover, the overhead of moving data to/from GPU
memory can be substantial. (2) A complete set of efficient
GPU-based SQL operators is required for job execution on
GPU. (3) Each job needs to be placed judiciously on either
GPU or CPU for good performance. To tackle these chal-
lenges, we design three key technical components in GHive.

e A compact data model: gTable. For efficient data move-
ment from the address space of Java programs on the
CPU (i.e., CPU executed jobs) to C++ programs on the
GPU (i.e., GPU executed jobs), we design a column-based
data model gTable. It achieves high efficiency by (i) con-
verting the VectorizedRowBatch data model in Hive to
gTable in CPU memory on-the-fly, and (ii) transferring
only table columns that are necessary for job execution
into GPU memory. (Section 4.1)

e GPU-based SQL operator library: Panda. Panda is general

by supporting a complete set of common data types (e.g.,
int, float, double and string) and SQL operators (e.g., hash
join, sort merge join, and group by). Panda is also efficient
by implementing the operators using an indexing-based
processing model, which reduces the data movement be-
tween CPU and GPU. (Section 4.2).

H. Liu, B. Tang, et al.

e Cost-aware job placement. For GHive to gain good per-
formance, jobs should be placed on GPU only when the
overhead of data movement can be outweighed by fast
computation. To this end, we propose cost models to es-
timate job execution time on both CPU and GPU, and
utilize GPU execution only when it is preferable. Our cost
models are effective as they take both hardware character-
istics and job properties into consideration. (Section 4.3)

We compared GHive with Hive under different hardware
configurations and data scales on the famous SSB bench-
mark [42]. The results show that GHive outperforms vanilla
Hive in both query processing speed and operating cost, in
spite of the heavy overheads of language conversion and
data movement imposed by industrial requirements. In par-
ticular, GHive achieves over 2X speedup over Hive for the
computation-intensive queries. This is remarkable as the
query execution time also includes disk I/O and network
communication, which cannot be accelerated by GPU. When
it comes to the execution time of individual operators, GHive
often has orders of magnitude speedup over Hive. Moreover,
we define the cost of running a query as the overall power
consumption in its execution process and calculate the ratio
of GHive cost over Hive cost. The results show that GHive
consistently achieves lower processing cost for all queries in
SSB. We also analyze the execution statistics of some repre-
sentative queries to understand the performance of GHive
and validate the effectiveness of our designs. The source code
of GHive is available on GitHub [7].

The rest of this paper is organized as follows. Section 2
introduces how Hive processes a query as background and
motivates GHive using an example query. Section 3 presents
the overall architecture of GHive while Section 4 elaborates
the three key technical components of it. Section 5 reports
the experimental results. Section 6 reviews the related work,
and Section 7 draws the concluding remarks.

2 BACKGROUND AND MOTIVATION

Query processing in Hive. As shown in Figure 1, Hive
executes a SQL query by first translating it into a direct
acyclic graph (DAG) of jobs and then submitting the jobs to
Yarn for scheduling on the nodes in a cluster. Specifically,
a SQL query is translated into a job DAG via four steps: (1)
the parser parses the query to an Abstract Syntax Tree (AST);
(2) the Calcite-based query optimizer [16] translates the AST
into an optimized logical execution plan; (3) the converter
and the physical optimizer convert the logical plan into an
vectorized physical execution plan; and (4) the underlying
execution framework generates the job DAG based on the
vectorized physical plan. There are two types of jobs in the
DAG, i.e., Map jobs and Reducer jobs. Early versions of Hive
use Hadoop MapReduce [24] as the execution framework,

GHive: Accelerating Analytical Query Processing via CPU-GPUs

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

Apache Hive

SELECT sum(lo_revenue) AS lo_revenue, d_year, p_brandl
FROM lineorder, dates, part
WHERE lo_orderdate = d_datekey

AND lo_partkey = p_partkey AND p_category = 'MFGR#12’
GROUP BY d_year, p_brandl;

(a) sQL query

Map 1 Reducer 2

OEEEEIE

Reducer 3

M for Map job, R for Reducer job

W——E

(b) DAG of executable MapReduce jobs

—» scatter/gather
broadcast

Apache YARN

e T e
Application pplication Master Request/Reply esource Manager

Node Manager 3

Node Manager 2

Node Manager 1

Container dME {ceuf| |Container) SHE 1y
(Map 1 on Data Split 1) BB 1= _sF| |(Map 1 on Data Split2) SEE 1.

o s G- (DHEED(EIED)

Container ; dPE {ceuf| |Container . | = |
(Map 1 on Data Split 3) g8 1, | |(Map 1 on Data Split 4) P 1,

CEeeEE®W

Map 5

OEOEE®

(c) Operators of each job in DAG

IN: Tez Input FIL: Filter
OUT: Tez Output SEL: Select
TS: Table scan

MERJ: Merge join
MAPJ: Map join
RS: Reduce sink
GBY: Group by FS: File sink

Container dPE {cpuf| [Container SHE {cru
(Map 4 on Data Split 1) BB 1=, _sF| |(Map 5 on Data Split 1) S 1.
Container . SPE {cput| [Container » dME el
(Map 5 on Data Split 2) B 1=, _F| |(Map 5 on Data Split 3) B 1.

(d) Tasks scheduled on YARN containers

Figure 1: A SQL query, its directed acyclic graph of Map/Reduce jobs, and the tasks scheduled by YARN

which runs a Reducer job after each Map job and persist
intermediate results on the disk. After version 0.13, Hive
employs Apache Tez [46] as the execution framework, which
reduces the overhead of data persistence. Thus, we use Tez
as the CPU execution framework for GHive.

As shown in Figure 1(c), each MapReduce job contains
a sequence of operators that correspond to a sub-query of
the user-specified SQL query. For example, Reducer 2 in-
volves MergeJoin, MapJoin, GroupBy, and ReduceSink. Tez
further divides each job into three phases: (1) input (e.g.,
OrderedGroupedKVInput), which prepares input data for
the job by loading from disk or upstream jobs in the DAG; (2)
processing, which runs the operators of the job in a pipelined
fashion; and (3) output (e.g., OrderedPartitionedKVOutput),
which generates output data for the job. Tez conducts sorting
when gathering/scattering data in the input/output phase
such that the input data for MergeJoin and GroupBy are
sorted. To execute a job, Tez starts multiple parallel tasks,
each running the same sequence of operators specified by
the job but on different partitions of the input data. As shown
in Figure 1(d), Yarn schedules each task on a container for ex-
ecution, and each container is a logical collection of physical
resources (e.g., memory and CPU) on one node.

Opportunities and challenges for GPU acceleration.
Figure 2 shows the execution process of the example query
in Figure 1(a) on Hive with CPU. The query runs on the
data of the SSB benchmark with scale factor 50 using our
Cluster A, and the detailed experiment settings can be found
in Section 5. The results show that the MapReduce jobs can
be categorized into two classes, i.e., compute-bound and
1/0-bound. For example, Reducer 2 is compute-bound as
executing the operators takes up 80.3% of its running time.
In contrast, Map 4 is I/O-bound as computation only con-
tributes to 28.7% of its running time. Figures 2(a) and (b)

) Mip 4 Reducer 2

2| M — et
e : (b) Tasks of Reducer 2 |

o [\:/I’a'p: 5 \

O il e

17°) K —q-

£ JR— ™

o -_-

- (a) Tasks of Map 4 T —

0Os 20s 40s 60s ”

Figure 2: Execution process of a query on vanilla Hive,
gray indicates 1I/0 time while blue indicates computa-
tion time, each zoom-in box shows the tasks for a job

illustrate the execution process of the tasks of Map 4 and Re-
ducer 2, respectively, which show that the tasks of the same
job exhibit similar compute-I/O pattern. More importantly,
Figure 2 also shows that the compute-bound jobs dominate
the execution time of the query. This case is common for
our queries as they usually contain computation intensive
operators such as MergeJoin and GroupBy. Thus, if we can
accelerate the compute-bound jobs using GPU, the running
time of entire queries can be significantly reduced.
However, it is challenging to extend Hive to CPU-GPU
heterogeneous computing for three reasons. (1) GPU execu-
tion introduces the overheads of language conversion (i.e.,
between JAVA and C++) and data movement (between CPU
memory and GPU memory). (2) A GPU operator library that
supports a complete set of data types and SQL operators is
required such that existing Hive applications can run with-
out change. (3) Only the compute-bound jobs should run
on GPU as the I/O-bound jobs may run even slower. By
tackling these challenges, we built the GHive system with
our industry partner Huawei since January 2020 in order
to accelerate analytical query processing for the business
intelligence applications in its production environment.

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

Code in C++

Data Transfer
Panda
GPU
(@]

perators

Code in Java

.

Data Transfer

Figure 3: Job execution on GPU in GHive

3 THE ARCHITECTURE OF GHIVE

GHive is designed to (i) maintain backward comparability
with Hive such that existing Hive queries can run without
change, and (ii) work with the Yarn-based resource man-
agement in our cluster. Specifically, GHive reuses the com-
ponents of vanilla Hive to generate the vectorized physical
plan (i.e., as discussed in Section 2) and converts the plan to
a heterogeneity-aware job DAG, which executes some jobs
on CPU and the other jobs on GPU. To this end, we first
parse the vectorized physical plan with our plan parser (will
be discussed shortly). Then, our hardware-aware scheduler
(Section 4.3) will decide the job placement by analyzing its
operators and involved data. The jobs assigned to CPU are
executed by vanilla Hive. To run jobs efficiently on GPU, we
propose a tailored data model gTable (Section 4.1) for cross-
language and cross-device data movement, and a GPU-based
SQL operator library Panda (Section 4.2).

Figure 3 shows how GHive executes (one task of) a job
on GPU. Firstly, we move the input data and job execution
plan generated by Hive from JVM to system memory, where
our C++ code takes control. Secondly, we transform the
input data from the data model in vanilla Hive (i.e., Vector-
izedRowBatch) to our gTable. The plan parser also parses
the execution plan generated by Hive to C++-based plan for
GPU execution. Thirdly, we execute the plan by incurring
the corresponding GPU-based operators in Panda. Finally,
the output data of the job are transferred back to JVM. This
execution pattern ensures that a GPU executed job maintains
the same input/output data as its CPU executed counterpart,
and thus the jobs can take inputs from each other without
considering the underlying hardware.

Job execution plan parser in GHive. Figure 4(a) shows an
example of the plan text generated by Hive in the vectorized
physical plan. The plan parer processes the plan text to (i)
extract information about the operators and input data for a
job such that the hardware-aware scheduler can make job

H. Liu, B. Tang, et al.

Reducer 2 [SIMPLE_EDGE]
SHUFFLE [RS_17]

PartitionCols:_col0, _coll

Group By Operator [GBY_16]

(rows=14517574 width=373) Output col0,
Output:["_col0","_col1","_col2"], coll, col2
aggregations:["sum(_col2)"],keys:_col7, @

col5

Output
Parition by col0, coll

MAPJOIN_30.col2
Map Join Operator [MAPJOIN_30] sum(-30.col2)

(rows=14517574 width=373)
Conds:MERGEJOIN_29._col1=RS_40._col0
(Inner),

HybridGraceHashlJoin:true,
Output:["_col2","_col5","_col7"]
<-Map 5 [BROADCAST_EDGE]
vectorized
<-Merge Join Operator
[MERGEJOIN_29]
(rows=13197795 width=373)
Conds:RS_34._col0=RS_37._colO(Inner),
Output:["_col1","_col2","_col5"]
<-Map 1 [SIMPLE_EDGE] vectorized
<-Map 4 [SIMPLE_EDGE] vectorized

Output col2,
colS, col7

(a) Plan text generated by Hive
Figure 4: An illustration of job execution plan parsing

(b) C++-based execution plan tree

placement decision, and (ii) determine how a job should be
executed on GPU, which requires to translate the plan text
into the C++-based execution plan tree in Figure 4(b).

To achieve the first goal, we extract all operators and their
estimated number of input rows (e.g., MAPJOIN_30 with
rows=14517547) from the plan text. To achieve the second
goal, the parser takes five steps. (1) Extract all operators
in the job (e.g., MAPJOIN_30) from the plan text. (2) De-
termine the topological order of the operators according
to the indent. (3) Analyze the data dependency of each op-
erator. Specifically, each input data of an operator comes
either from another operator (e.g., GBY_16 is the output of
MAPJOIN_30) or another job (e.g., MERGEJOIN_29 are
from Map 1 and Map 4). (4) Identify the conditions of each
operator by tracking keywords such as Conds, keys, and ag-
gregations. (5) Assign the output columns to each operator
by parsing the lines beginning with Output. For example,
the output columns of MAPJOIN_30 are _col2,_col5,_col7.

4 KEY TECHNICAL COMPONENTS

In this section, we present the three key technical compo-
nents of GHive. Specifically, we introduce the gTable data
model and how to conduct data movement with it in Sec-
tion 4.1, present GHive’s SQL operator library Panda in Sec-
tion 4.2, and discuss our cost-based scheduler that judiciously
places each job on either CPU or GPU in Section 4.3.

4.1 Data Model: gTable

We first introduce the VectorizedRowBatch data model in
Hive and discuss why it is not suitable for GPU execution
and data movement, and then present our gTable data model.

Hive data model: VectorizedRowBatch. The Vectorized-
RowBatch model stores a batch of table rows (1024 by de-
fault) in a column-based layout to exploit the SIMD support

GHive: Accelerating Analytical Query Processing via CPU-GPUs

Row ID | Name Age Row ID | Name Age
1 Alen 27 5 Kevin 40
2 null 21 6 Luke 22
3 Bob null 7 Mike 25
4 Jack 31
(a) Table T
(N\ /- 2\
ColumnVector ColumnVector gColumn: Name gColumn: Age
Name | isNull Age isNull type string type int
0xC24 | false 27 false length n length n
null true 21 false data 0x728 data | Ox09A
O0x02E | false null true aux Ox164 aux 0x53C
0x684 | false 31 false 0x728
[a[el Te oo [1 [o[<[«[-]
0x02E 0xC24 0x164
Ll [POLEH ||fEEEEERRE
0x684 0x84A 0x09A 0x53C
[LL LM -||PROEE [l
. VAN J

(b) VectorizedRowBatch model (c) gTable model
Figure 5: A table in the VectorizedRowBatch data
model of Hive and the gTable data model of GHive

of modern CPUs [31], and each column is stored as a Colum-
nVector. Consider table T in Figure 5(a), its VectorizedRow-
Batch model representation is illustrated in Figure 5(b). For a
string column (e.g., Name), VectorizedRowBatch stores each
string as an array of bytes, and the strings may not be con-
secutive in memory. The ColumnVector of a string column
stores the references to the strings, for example, the refer-
ence of Alen (i.e., 0xC24) is stored in the ColumnVector of
Name. For a column of primitive data types, its ColumnVec-
tor directly stores the attribute values, see the ColumnVector
of Age in Figure 5(b). Besides, ColumnVector also supports
complex data types (e.g., DecimalColumnVector). To handle
null values in the attributes, each ColumnVector in Vector-
izedRowBatch has a binary isNull array, which indicates
whether the attribute value is null for each row.
VectorizedRowBatch is inefficient for job execution on
GPU and data movement for two reasons. Firstly, each batch
of table rows is small, and thus VectorizedRowBatch cannot
fully utilize the massive parallelism of GPU. Secondly, for
data types with variable length (e.g., string), VectorizedRow-
Batch incurs extra overheads for data movement and process-
ing. On the one hand, transferring non-consecutive strings
from CPU memory to GPU memory is inefficient as the PCle
bandwidth cannot be fully exploited. To exemplify, the names
of 3rd and 4th rows (i.e., ‘Bob’ and ‘Jack’) of table T are lo-
cated at two disjunct addresses 0x02E and 0x684. To move
them to GPU, we need to invoke PCle transfer twice and
move a tiny amount of data each time. On the other hand,
the GPU kernels have to locate the attribute value of each
row during processing, which incurs extra overhead for the

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

J .

) e
| cpu | | GPU |
@rcle
(D ByteBuffer (data)/INI (plan) ST CEl @880 GB/sﬁ
Va . ¥ -
Vectorized @rcle
Rowsatch || €720 5 5C gColumns
\
©JNI Main memory Video memory
1

—

Accessed by Java only

—J

Accessed by Java and C++ Accessed by C++ only

Figure 6: CPU-GPU data movement in GHive

variable-length data types. One may encode the variable-
length data into integers [17, 26, 29, 41, 47] but the cost of
such encoding is high [27].

GHive data model: gTable. To tackle the limitations of Vec-
torizedRowBatch, we propose the gTable data model, which
also adopts a columnar-based layout as shown in Figure 5(c).
Specifically, gTable stores each column as a gColumn, and
each gColumn has four meta-attributes: column data type
(type), the number of rows (length), the reference of the ar-
ray of data values (data), and the reference of an auxiliary
information array (aux). For a column with variable-length
data types, gColumn concatenates all attribute values such
that they are consecutive in memory and uses the auxiliary
array to locate the attribute value for each row by indirect
addressing. Consider the gColumn:Name in Figure 5(c), the
reference of the array of data values is 0x728, which locates
the starting address of the strings for column Name in ta-
ble T. The aux array of gColumn:Name stores the starting
and ending positions of each string in the data array, and
both positions are set to -1 when the corresponding string is
null, like the 2nd row for column Name. For a column with
primitive data types (e.g., gColumn:Age), gColumn stores
the attribute values in the data array, and uses a bitmap as
the aux array to indicate the null rows, which is similar to
the isNull array in VectorizedRowBatch. gTable ensures that
data of a column are always consecutive in memory, and
thus facilitates efficient data movement and processing.

Data movement in GHive. Figure 6 shows how the gTable
data model is used for data movement between CPU and GPU.
Specifically, the first step of data movement (see step 1 in
Figure 6) is transferring both data and Java-based execution
plan into an address space on CPU that can be accessed by
C++ programs. In particular, step 1 involves two tasks: (i)
transforming the data from VectorizedRowBatch to gTable
model and (ii) parsing the operator execution plan (in Java)
to GPU-based execution plan (in C++). Then the data are
moved to the video memory of GPU from CPU memory
via PCle bus in step 2. The GPU executes the instructions
of the GPU-based operators on data in the gTable model
at step 3. The output data of the job are moved from GPU

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

to the address space of C++ program at step 4. Finally, the
output data are transferred to the address space of JVM and
transformed into the VectorizedRowBatch model at step 5.
Steps 2, 3, and 4 are standard for applications that use GPU
as a co-processor of CPU [54], and step 5 is straightforward.
Thus, we introduce how GHive transforms data from the
VectorizedRowBatch model to the gTable model as follows.

In Hive, the input data of MapReduce jobs come row by
row, or as VectorizedRowBatch objects. The MapRecord-
Source or ReduceRecordSource operator of each job collects
input data and passes them to downstream operators of the
job for execution. In GHive, we revise MapRecordSource
and ReduceRecordSource to collect data into a ByteBuffer,
which reside in a shared memory that can be accessed by
both Java and C++. ByteBuffers are used to store the data
values and auxiliary information of each column, and each
row is added to the ByteBuffers on-the-fly when it comes.
We initialize the size of each ByteBuffer as 16MB and create
a new ByteBuffer with twice the capacity of the original
ByteBuffer when a ByteBuffer is full. All data in the origi-
nal ByteBuffer are copied to the new ByteBuffer. Figure 7(a)
reports the data collection time when using different initial
sizes for the ByteBuffer. The results show that larger initial
size leads to shorter collection time but the performance gain
is not significant. Thus, we set the initial buffer size as 16MB
to avoid using too much memory for categorical columns.
After collecting all input data, the ByteBuffers are used to
construct the gTable model. Note that we copy the references
of the data value and auxiliary information arrays instead of
the actual data from the ByteBuffers to gTable, which reduces
time and memory comsuption. We also control the input data
size of the jobs by configuring the bytesPerReducer parame-
ter in Hive such that the ByteBuffer (resp. gTable) does not
cause OOM on CPU (resp. GPU).

Alternative solutions. One alternative to our ByteBuffer is
passing data to GPU as parameters using JNI. We compare
JNI and ByteBuffer on one machine in our Cluster A (see
Section 5 for detailed experiment settings). The results in
Figure 7(b) show that ByteBuffer performs significantly bet-
ter than JNIL This is because ByteBuffer only conducts data
copy once while JNI conducts data copy twice. Moreover,
the gain of ByteBuffer over JNI is moderate when data size
is small but becomes significant when data size increases.
Thus, we use JNI to move the execution plan because the
execution plan is small in size and using JNI is easy via stan-
dard function call. Another alternative is Apache Arrow [1],
which allows to migrate data among different systems by
defining a unified format. We do not use Apache Arrow as
integrating it into Hive takes substantial engineering effort
and its general design introduces extra overhead. As shown
in Figure 7(b), Apache Arrow is even slower than JNI.

H. Liu, B. Tang, et al.

Init 4MB 2 _ 200 - INI
Init 16MB
Init 64MB

[

— Apache Arrow
—— ByteBuffer

i

°

A

Collecting time (s)
o

512
Data size (MB)
(a) Initial buffer size

28 256 512 1024
Data size (MB) .
(b) Transfer machanism

Figure 7: Design choices for data movement

4.2 GPU-based Operator Library: Panda

Many works studied accelerating SQL queries with GPU-
based operator implementations [9, 25, 47, 48], and we will
discuss them in Section 6. We decide to develop our own GPU-
based operator library Panda for GHive as existing operator
implementations do not consider the execution pattern of
GHive and are limited in their support for data types and
operators. As moving data between CPU and GPU is a major
overhead, Panda adopts an indexing-based processing model
to reduce data movement for efficiency. Panda also achieves
generality by supporting a wide range of data types and SQL
operators with sensible implementations.

Indexing-based processing model. Existing GPU-based
SQL operator implementations assume that the relational ta-
bles reside in GPU memory as a whole. This is inefficient for
GHive as GHive needs to move data from CPU memory to
GPU memory for execution, and usually only some (instead
of all) columns of a table are utilized to run an operator. Thus,
the overhead of moving the irrelevant columns to GPU are
unnecessary. Using the idea of late materialization [15, 45],
we design an indexing-based processing model to avoid trans-
ferring unnecessary data. In particular, our indexing-based
processing model works as follows. (1) It assigns an unique id
(denoted as idx) for each row in a table and associates the ids
with each gColumn. (2) To run each operator on GPU, it only
moves the relevant columns to GPU memory (e.g., filter or
join on some columns). (3) When computing the results of an
operator, the ids of the rows are kept such that results can be
reconstructed from the original tables. Note that our gTable
naturally supports the indexing-based processing model as
it stores each column separately as a gColumn.

Figure 8 shows an example of the indexing-based pro-
cessing model for the simple query in the lower-right cor-
ner. We only move gColumn:datekey of table A and gCol-
umn:orderdate of table B into GPU memory, as only these
two columns will be used by the join operator in GPU. Then,
we run the join operator on the two columns and obtain
the indexing-based results. The indexing-based results are
moved back to CPU memory and used to fetch the relevant
rows in the relational tables for the final results.

GHive: Accelerating Analytical Query Processing via CPU-GPUs

CPU idx month year _datekey idx _datekey GPU
0 1 [1999|19990100 0 (19990100
ﬂ, 1 10 |2000 (20001000 I;J> 1 /20001000
2 7 11997 (19970700 2 19970700
gColumn:datekey
idx tax revenue orderdate idx orderdate @
0 |[100.0| 4.0 [19960101 0 (19960101
fineorder 200.0| 9.0 [19970700[C=> 1 |19970700
2 (300.0{ 10.0 19990100 2 119990100
gColumn:orderdate
0 2 0 2
2 1 <Iil 2 1

output
month year tax revenue date
1 /1999 (300.0{ 10.0 | 19990100

SELECT month, year, tax,
revenue, date

FROM lineorder, dates
WHERE orderdate = datekey

7 1997 (200.0 9.0 |19970700

Figure 8: Indexing-based processing model example

To execute a job, the indexing-based processing model
moves data to GPU one operator at a time (instead of for
all operators in a batch before execution) to exploit the fil-
tering ability of the indices. For example, a job may filter
gColumn:datekey of table A, and then join gColumn:year of
table A’s filtering results with a column from another table.
In this case, the indexing-based results of the filter operator
is used to fetch only the relevant rows in gColumn:year for
the join operator. We observed that the indexing-based data
loading can significantly reduce data movement for some op-
erators. If a gColumn is already in GPU memory, we do not
construct the exact result according to the indexing-based
results immediately after executing an operator. Instead, we
process the downstream operators by indirectly addressing
the gColumn using the indexing-based results. In particu-
lar, we use the fancy iterator thrust:permutation_iterator for
efficient indirect addressing,.

To sum up, our indexing-based processing model moves
only the necessary columns to GPU and executes the GPU
operators by indirect addressing. It reduces data transfer via
PCle and consumption of GPU memory. Besides, it helps to
make the GPU operators general as we will show using the
example of hash join. Similar ideas of late materialization
(by recording row indexes) are also used by column-based
databases like Vertica and MonetDB but for different pur-
poses, e.g., reducing intermediate result construction, exe-
cuting on compressed data, improving cache performance
and supporting vectorized optimizations on CPU.

Type and operator support. Comprehensive data type and
operator support is essential for GHive as we have many ex-
isting Hive queries that cover most data types and operators
in OLAP. To this end, we build Panda from scratch using

SoCC ’22, November 7-11, 2022, San Francisco, CA, USA

count offset R.idx S.idx name subj

0 0 0 1 Alice |Math
hash table H 2 > 0 4 3 | 1 ||Alice|Math
(built by R) L
left table R H.idx val next right table S Lai 1|2 [Bb]CS
inner join
R.idxname subj o)A
o [Alice[Math o2} S-'L’X"a.m““bl — ——] 1] 0 |[aice[cs
0 |Alice| CS 1 >0
1 |Bob[Cs 2 [[N 1 > o | 1 | |atce|matn
1 |Alice|Math 2 > 1
2 |carl| cS 32| F— =" 3 | 1 ||alice|Math
3 |Alice|Math 4[] /2 BbJCS || | ' P18 7 T2 |lBoslos
5|1 |- right outer join
0 0
10— 1 Alice |[Math
1 B 1 2 Bob | CS
right semi join
1. Build 2. Probe and Count 3. Probe and Generate

Figure 9: Example of hash join implementation

NVIDIA cub [6] and thrust [14] libraries, which are widely
used in industry due to their flexibility and generality. Cur-
rently, Panda supports all common data types (e.g., int, float,
double, string), and we are working to integrate complex
data types such as DATE and TIMESTAMP. We use hash join
as an example to show the generality of Panda. With sensi-
ble implementations, our hash join can handle multiple join
keys and different types of join (i.e., inner, outer or semi).

Figure 9 shows how GPU-based hash join is implemented
in Panda. Both tables R and S have three columns, and we
use the name and subj columns as join keys to illustrate how
Panda supports multi-key join. Note that column idx is the
row index, which is added by our indexing-based processing
model. Hash join is conducted in two phases, i.e., (i) hash
table building, and (ii) hash table probing. The tuples in table
R are used to populate the hash table in the building phase,
while each tuple in table S (i.e., probe table) finds its relevant
rows from table R in the hash table during the probing phase.

As shown in Figure 9, R’s hash table has two columns. In
each row, the 1st column stores the index of the row in R
that hashes to the bucket (-1 if the hash bucket is empty),
the 2nd column stores the index of the next entry in the
hash table that has the same hash value as the row in the 1st
column (used to handle hash collision). Consider the hash
table in Figure 9, its 2nd row is (0, 2), where the first value
‘0’ means that this hash bucket contains row R[0] in table
R, ie., (0, Alice, Math). The second value ‘2’ indicates the
next hash bucket id that has the same hash value as the join
key of R[0] (i.e., H[2]). We have R[3] in the first column of
H|2] as the join key of both R[0] and R[3] are (Alice, Math).
The GPU threads work in parallel to build the hash table,
and each thread processes a subset of the rows in table R.
We use CUDA atomicCAS instruction to update the hash
table in order to avoid the error