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ABSTRACT
As a popular distributed data warehouse system, Apache
Hive has been widely used for big data analytics in many or-
ganizations. Meanwhile, exploiting the massive parallelism
of GPU to accelerate online analytical processing (OLAP)
has been extensively explored in the database community.
In this paper, we present GHive, which enhances CPU-based
Hive via CPU-GPU heterogeneous computing. GHive is de-
signed for the business intelligence applications and pro-
vides the same API as Hive for compatibility. To run SQL
queries jointly on both CPU and GPU, GHive comes with
three key techniques: (i) a novel data model gTable, which is
column-based and enables e�cient data movement between
CPU memory and GPU memory; (ii) a GPU-based operator
library Panda, which provides a complete set of SQL opera-
tors with extensively optimized GPU implementations; (iii)
a hardware-aware MapReduce job placement scheme, which
puts jobs judiciously on either GPU or CPU via a cost-based
approach. In the experiments, we observe that GHive out-
performs Hive in both query processing speed and operating
expense on the Star Schema Benchmark (SSB).
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1 INTRODUCTION
Open sourced by Facebook in 2008,Hivewas designed to sup-
port distributed big data analytics on a massive scale [49, 50].
With a SQL-like interface on top of Hadoop MapReduce [3],
Hive allows users to issue queries with familiar SQL seman-
tics instead of implementing low-level MapReduce jobs.Hive
has an active community, where developers provide enhance-
ments in various aspects. For example, Yin et al. improve
Hive’s query processing performance by introducing opti-
mized row columnar (ORC) �le format, physical optimiza-
tions, and vectorized query execution [31]. Hortonworks Inc.
renovates Hive along four axes, i.e., SQL and ACID support,
optimization techniques, runtime latency, and federation ca-
pabilities [18]. Besides Hadoop MapReduce, Hive now also
supports execution engines including Apache Tez [46] and
Spark [4] by running on top of YARN (i.e., Hadoop’s resource
negotiator) [51]. Due to its stability and rich features, Hive
was extensively utilized in production for large-scale data
analytics by many organizations (e.g, Facebook, Huawei).

Many works in the database community explore using the
massive parallelism of GPU to accelerate Online Analytical
Processing (OLAP) [9, 12, 21, 22, 25, 28, 35, 38, 40, 43, 45, 47,
52, 57]. For example, GPUQP [25] considers query processing
on a single machine and uses GPU as a co-processor for CPU.
GPL pipelines the operators in a query and uses OpenCL to
parallelize the execution of multiple GPU kernels. Based on
LLVM (a compiler toolbox), HAPE [23], Red Fox [53] and
HetExchange [21] build JIT-compilation frameworks to gen-
erate code for query execution on GPU. G-PICS [37] runs
many spatial queries concurrently on GPU. These works
achieve signi�cant speedups compared to CPU-only execu-
tion, especially for computation intensive queries [47].

Given the popularity ofHive and the success of GPU-based
OLAP acceleration, we started the GHive project with two
main motivations. On the one hand, we observed that the
computation intensive operators dominate the execution
time for most of the queries in Hive. GPU can e�ectively
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accelerate these operators [21, 22, 35, 47], and hence query
execution time. On the other hand, our clusters have both
CPU and GPU, and the GPU utilization has large �uctuations,
leaving a large amount of transient GPU resources (as in
Microsoft [32]). By enabling Hive to exploit GPUs, GHive
can utilize these transient GPU resources and boost GPU
utilization.

We set two main design goals for GHive. (1) Maintain the
same interface and distributed execution management (i.e.,
via Yarn) as Hive, in order to simplify deployment and run
many existing Hive applications without change. (2) Judi-
ciously use CPU and GPU to reduce both query execution
time and cost. Existing GPU databases cannot meet our de-
sign goals as they either do not support distributed query ex-
ecution (e.g, GPUQP [25], GPUDB [55]) or conduct resource
management with their own framework (e.g., Ominisci [12],
BlazingSQL [5]). In addition, most of them assume that data
are already in GPU memory while large-scale data usually
reside on disk and can only be loaded to GPU in segments.

In GHive, we take the vectorized physical execution plan
generated by Hive’s query optimizer, which contains MapRe-
duce jobs, and execute each job on either CPU (as in vanilla
Hive) or GPU. Other functionalities, such as query optimiza-
tion, distributed execution management, and data storage,
are all handled by vanilla Hive for compatibility. There are
three challenges in making GHive e�cient. (1) MapReduce
jobs are Java programs in vanilla Hive while current GPU
libraries (e.g., CUDA and OpenCL) are in C++, which results
in costly cross-language transferring for job execution on
GPU. Moreover, the overhead of moving data to/from GPU
memory can be substantial. (2) A complete set of e�cient
GPU-based SQL operators is required for job execution on
GPU. (3) Each job needs to be placed judiciously on either
GPU or CPU for good performance. To tackle these chal-
lenges, we design three key technical components in GHive.
• A compact data model: gTable. For e�cient data move-

ment from the address space of Java programs on the
CPU (i.e., CPU executed jobs) to C++ programs on the
GPU (i.e., GPU executed jobs), we design a column-based
data model gTable. It achieves high e�ciency by (i) con-
verting the VectorizedRowBatch data model in Hive to
gTable in CPU memory on-the-�y, and (ii) transferring
only table columns that are necessary for job execution
into GPU memory. (Section 4.1)

• GPU-based SQL operator library: Panda. Panda is general
by supporting a complete set of common data types (e.g.,
int, �oat, double and string) and SQL operators (e.g., hash
join, sort merge join, and group by). Panda is also e�cient
by implementing the operators using an indexing-based
processing model, which reduces the data movement be-
tween CPU and GPU. (Section 4.2).

• Cost-aware job placement. For GHive to gain good per-
formance, jobs should be placed on GPU only when the
overhead of data movement can be outweighed by fast
computation. To this end, we propose cost models to es-
timate job execution time on both CPU and GPU, and
utilize GPU execution only when it is preferable. Our cost
models are e�ective as they take both hardware character-
istics and job properties into consideration. (Section 4.3)
We compared GHive with Hive under di�erent hardware

con�gurations and data scales on the famous SSB bench-
mark [42]. The results show that GHive outperforms vanilla
Hive in both query processing speed and operating cost, in
spite of the heavy overheads of language conversion and
data movement imposed by industrial requirements. In par-
ticular, GHive achieves over 2X speedup over Hive for the
computation-intensive queries. This is remarkable as the
query execution time also includes disk I/O and network
communication, which cannot be accelerated by GPU. When
it comes to the execution time of individual operators,GHive
often has orders of magnitude speedup over Hive. Moreover,
we de�ne the cost of running a query as the overall power
consumption in its execution process and calculate the ratio
of GHive cost over Hive cost. The results show that GHive
consistently achieves lower processing cost for all queries in
SSB. We also analyze the execution statistics of some repre-
sentative queries to understand the performance of GHive
and validate the e�ectiveness of our designs. The source code
of GHive is available on GitHub [7].
The rest of this paper is organized as follows. Section 2

introduces how Hive processes a query as background and
motivates GHive using an example query. Section 3 presents
the overall architecture of GHive while Section 4 elaborates
the three key technical components of it. Section 5 reports
the experimental results. Section 6 reviews the related work,
and Section 7 draws the concluding remarks.

2 BACKGROUND AND MOTIVATION

Query processing in Hive. As shown in Figure 1, Hive
executes a SQL query by �rst translating it into a direct
acyclic graph (DAG) of jobs and then submitting the jobs to
Yarn for scheduling on the nodes in a cluster. Speci�cally,
a SQL query is translated into a job DAG via four steps: (1)
the parser parses the query to an Abstract Syntax Tree (AST);
(2) the Calcite-based query optimizer [16] translates the AST
into an optimized logical execution plan; (3) the converter
and the physical optimizer convert the logical plan into an
vectorized physical execution plan; and (4) the underlying
execution framework generates the job DAG based on the
vectorized physical plan. There are two types of jobs in the
DAG, i.e., Map jobs and Reducer jobs. Early versions of Hive
use Hadoop MapReduce [24] as the execution framework,
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(a) SQL query (b) DAG of executable MapReduce jobs
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SELECT sum(lo_revenue) AS lo_revenue, d_year, p_brand1
FROM lineorder, dates, part 
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Figure 1: A SQL query, its directed acyclic graph of Map/Reduce jobs, and the tasks scheduled by YARN

which runs a Reducer job after each Map job and persist
intermediate results on the disk. After version 0.13, Hive
employs Apache Tez [46] as the execution framework, which
reduces the overhead of data persistence. Thus, we use Tez
as the CPU execution framework for GHive.
As shown in Figure 1(c), each MapReduce job contains

a sequence of operators that correspond to a sub-query of
the user-speci�ed SQL query. For example, Reducer 2 in-
volves MergeJoin, MapJoin, GroupBy, and ReduceSink. Tez
further divides each job into three phases: (1) input (e.g.,
OrderedGroupedKVInput), which prepares input data for
the job by loading from disk or upstream jobs in the DAG; (2)
processing, which runs the operators of the job in a pipelined
fashion; and (3) output (e.g., OrderedPartitionedKVOutput),
which generates output data for the job. Tez conducts sorting
when gathering/scattering data in the input/output phase
such that the input data for MergeJoin and GroupBy are
sorted. To execute a job, Tez starts multiple parallel tasks,
each running the same sequence of operators speci�ed by
the job but on di�erent partitions of the input data. As shown
in Figure 1(d), Yarn schedules each task on a container for ex-
ecution, and each container is a logical collection of physical
resources (e.g., memory and CPU) on one node.
Opportunities and challenges for GPU acceleration.
Figure 2 shows the execution process of the example query
in Figure 1(a) on Hive with CPU. The query runs on the
data of the SSB benchmark with scale factor 50 using our
Cluster A, and the detailed experiment settings can be found
in Section 5. The results show that the MapReduce jobs can
be categorized into two classes, i.e., compute-bound and
I/O-bound. For example, Reducer 2 is compute-bound as
executing the operators takes up 80.3% of its running time.
In contrast, Map 4 is I/O-bound as computation only con-
tributes to 28.7% of its running time. Figures 2(a) and (b)

Figure 2: Execution process of a query on vanilla Hive,
gray indicates I/O time while blue indicates computa-
tion time, each zoom-in box shows the tasks for a job

illustrate the execution process of the tasks of Map 4 and Re-
ducer 2, respectively, which show that the tasks of the same
job exhibit similar compute-I/O pattern. More importantly,
Figure 2 also shows that the compute-bound jobs dominate
the execution time of the query. This case is common for
our queries as they usually contain computation intensive
operators such asMergeJoin and GroupBy. Thus, if we can
accelerate the compute-bound jobs using GPU, the running
time of entire queries can be signi�cantly reduced.
However, it is challenging to extend Hive to CPU-GPU

heterogeneous computing for three reasons. (1) GPU execu-
tion introduces the overheads of language conversion (i.e.,
between JAVA and C++) and data movement (between CPU
memory and GPU memory). (2) A GPU operator library that
supports a complete set of data types and SQL operators is
required such that existing Hive applications can run with-
out change. (3) Only the compute-bound jobs should run
on GPU as the I/O-bound jobs may run even slower. By
tackling these challenges, we built the GHive system with
our industry partner Huawei since January 2020 in order
to accelerate analytical query processing for the business
intelligence applications in its production environment.
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Figure 3: Job execution on GPU in GHive

3 THE ARCHITECTURE OF GHIVE
GHive is designed to (i) maintain backward comparability
with Hive such that existing Hive queries can run without
change, and (ii) work with the Yarn-based resource man-
agement in our cluster. Speci�cally, GHive reuses the com-
ponents of vanilla Hive to generate the vectorized physical
plan (i.e., as discussed in Section 2) and converts the plan to
a heterogeneity-aware job DAG, which executes some jobs
on CPU and the other jobs on GPU. To this end, we �rst
parse the vectorized physical plan with our plan parser (will
be discussed shortly). Then, our hardware-aware scheduler
(Section 4.3) will decide the job placement by analyzing its
operators and involved data. The jobs assigned to CPU are
executed by vanilla Hive. To run jobs e�ciently on GPU, we
propose a tailored data model gTable ( Section 4.1) for cross-
language and cross-device data movement, and a GPU-based
SQL operator library Panda (Section 4.2).
Figure 3 shows how GHive executes (one task of) a job

on GPU. Firstly, we move the input data and job execution
plan generated by Hive from JVM to system memory, where
our C++ code takes control. Secondly, we transform the
input data from the data model in vanilla Hive (i.e., Vector-
izedRowBatch) to our gTable. The plan parser also parses
the execution plan generated by Hive to C++-based plan for
GPU execution. Thirdly, we execute the plan by incurring
the corresponding GPU-based operators in Panda. Finally,
the output data of the job are transferred back to JVM. This
execution pattern ensures that a GPU executed job maintains
the same input/output data as its CPU executed counterpart,
and thus the jobs can take inputs from each other without
considering the underlying hardware.
Job execution plan parser in GHive. Figure 4(a) shows an
example of the plan text generated by Hive in the vectorized
physical plan. The plan parer processes the plan text to (i)
extract information about the operators and input data for a
job such that the hardware-aware scheduler can make job

Reducer 2 [SIMPLE_EDGE]
SHUFFLE [RS_17]

PartitionCols:_col0, _col1
Group By Operator [GBY_16]
(rows=14517574 width=373)

Output:["_col0","_col1","_col2"], 
aggregations:["sum(_col2)"],keys:_col7, 
_col5

Map Join Operator [MAPJOIN_30]
(rows=14517574 width=373)  

Conds:MERGEJOIN_29._col1=RS_40._col0
(Inner),

HybridGraceHashJoin:true,
Output:["_col2","_col5","_col7"]

<-Map 5 [BROADCAST_EDGE] 
vectorized

<-Merge Join Operator 
[MERGEJOIN_29]

(rows=13197795 width=373) 
Conds:RS_34._col0=RS_37._col0(Inner),

Output:["_col1","_col2","_col5"]
<-Map 1 [SIMPLE_EDGE] vectorized
<-Map 4 [SIMPLE_EDGE] vectorized

(a) Plan text generated by Hive (b) C++-based execution plan tree

⋈

⋈

𝒢

RS

Map 1 Map 4

Map 5

Map1.col0=Map4.col0

MERGEJOIN_29.col1=Map5.col0

sum(MAPJOIN_30.col2)

Output
Parition by col0, col1

Output col1, 
col2, col5

Output col2, 
col5, col7

Output col0, 
col1, col2

Figure 4: An illustration of job execution plan parsing

placement decision, and (ii) determine how a job should be
executed on GPU, which requires to translate the plan text
into the C++-based execution plan tree in Figure 4(b).

To achieve the �rst goal, we extract all operators and their
estimated number of input rows (e.g., MAPJOIN_30 with
rows=14517547) from the plan text. To achieve the second
goal, the parser takes �ve steps. (1) Extract all operators
in the job (e.g., MAPJOIN_30) from the plan text. (2) De-
termine the topological order of the operators according
to the indent. (3) Analyze the data dependency of each op-
erator. Speci�cally, each input data of an operator comes
either from another operator (e.g., GBY_16 is the output of
MAPJOIN_30) or another job (e.g., MERGEJOIN_29 are
from Map 1 and Map 4). (4) Identify the conditions of each
operator by tracking keywords such asConds, keys, and ag-
gregations. (5) Assign the output columns to each operator
by parsing the lines beginning with Output. For example,
the output columns of MAPJOIN_30 are _col2,_col5,_col7.

4 KEY TECHNICAL COMPONENTS
In this section, we present the three key technical compo-
nents of GHive. Speci�cally, we introduce the gTable data
model and how to conduct data movement with it in Sec-
tion 4.1, present GHive’s SQL operator library Panda in Sec-
tion 4.2, and discuss our cost-based scheduler that judiciously
places each job on either CPU or GPU in Section 4.3.

4.1 Data Model: gTable
We �rst introduce the VectorizedRowBatch data model in
Hive and discuss why it is not suitable for GPU execution
and data movement, and then present our gTable data model.
Hive data model: VectorizedRowBatch. The Vectorized-
RowBatch model stores a batch of table rows (1024 by de-
fault) in a column-based layout to exploit the SIMD support
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Row ID Name Age Row ID Name Age

1 Alen 27 5 Kevin 40

2 null 21 6 Luke 22

3 Bob null 7 Mike 25

4 Jack 31 …

ColumnVector

Age isNull

27 false

21 false

null true

31 false

…

ColumnVector

Name isNull

0xC24 false

null true

0x02E false

0x684 false

…
0xC240x02E

gColumn: Name

type string

length n

data 0x728

aux 0x164

0x09A

gColumn: Age

type int

length n

data 0x09A

aux 0x53C

A l e n B o b J a c k …
0x728

0x164

0x684 0x53C

(a) Table T

(b) VectorizedRowBatch model (c) gTable model

0x84A

B o b A l e n

J a c k K e v i n

0 3 -1 -1 4 6 7 10 …

27 21 0 31 … 0 0 1 0 ……

Figure 5: A table in the VectorizedRowBatch data
model of Hive and the gTable data model of GHive

of modern CPUs [31], and each column is stored as a Colum-
nVector. Consider table T in Figure 5(a), its VectorizedRow-
Batchmodel representation is illustrated in Figure 5(b). For a
string column (e.g., Name), VectorizedRowBatch stores each
string as an array of bytes, and the strings may not be con-
secutive in memory. The ColumnVector of a string column
stores the references to the strings, for example, the refer-
ence of Alen (i.e., 0xC24) is stored in the ColumnVector of
Name. For a column of primitive data types, its ColumnVec-
tor directly stores the attribute values, see the ColumnVector
of Age in Figure 5(b). Besides, ColumnVector also supports
complex data types (e.g., DecimalColumnVector). To handle
null values in the attributes, each ColumnVector in Vector-
izedRowBatch has a binary isNull array, which indicates
whether the attribute value is null for each row.

VectorizedRowBatch is ine�cient for job execution on
GPU and data movement for two reasons. Firstly, each batch
of table rows is small, and thus VectorizedRowBatch cannot
fully utilize the massive parallelism of GPU. Secondly, for
data types with variable length (e.g., string), VectorizedRow-
Batch incurs extra overheads for data movement and process-
ing. On the one hand, transferring non-consecutive strings
from CPU memory to GPU memory is ine�cient as the PCIe
bandwidth cannot be fully exploited. To exemplify, the names
of 3rd and 4th rows (i.e., ‘Bob’ and ‘Jack’) of table 𝑇 are lo-
cated at two disjunct addresses 0x02E and 0x684. To move
them to GPU, we need to invoke PCIe transfer twice and
move a tiny amount of data each time. On the other hand,
the GPU kernels have to locate the attribute value of each
row during processing, which incurs extra overhead for the

Accessed by Java and C++ Accessed by C++ only

ByteBuffer (data)/JNI (plan)

CPU GPU

Vectorized
RowBatch gTable gColumns

12.8 GB/s
PCIe

PCIe
1

2

3
4

5 JNI Main memory Video memory

880 GB/s12.8 GB/s

Accessed by Java only

Figure 6: CPU-GPU data movement in GHive

variable-length data types. One may encode the variable-
length data into integers [17, 26, 29, 41, 47] but the cost of
such encoding is high [27].
GHive datamodel: gTable. To tackle the limitations of Vec-
torizedRowBatch, we propose the gTable data model, which
also adopts a columnar-based layout as shown in Figure 5(c).
Speci�cally, gTable stores each column as a gColumn, and
each gColumn has four meta-attributes: column data type
(type), the number of rows (length), the reference of the ar-
ray of data values (data), and the reference of an auxiliary
information array (aux). For a column with variable-length
data types, gColumn concatenates all attribute values such
that they are consecutive in memory and uses the auxiliary
array to locate the attribute value for each row by indirect
addressing. Consider the gColumn:Name in Figure 5(c), the
reference of the array of data values is 0x728, which locates
the starting address of the strings for column Name in ta-
ble T. The aux array of gColumn:Name stores the starting
and ending positions of each string in the data array, and
both positions are set to -1 when the corresponding string is
null, like the 2nd row for column Name. For a column with
primitive data types (e.g., gColumn:Age), gColumn stores
the attribute values in the data array, and uses a bitmap as
the aux array to indicate the null rows, which is similar to
the isNull array in VectorizedRowBatch. gTable ensures that
data of a column are always consecutive in memory, and
thus facilitates e�cient data movement and processing.
Data movement in GHive. Figure 6 shows how the gTable
datamodel is used for datamovement between CPU andGPU.
Speci�cally, the �rst step of data movement (see step 1 in
Figure 6) is transferring both data and Java-based execution
plan into an address space on CPU that can be accessed by
C++ programs. In particular, step 1 involves two tasks: (i)
transforming the data from VectorizedRowBatch to gTable
model and (ii) parsing the operator execution plan (in Java)
to GPU-based execution plan (in C++). Then the data are
moved to the video memory of GPU from CPU memory
via PCIe bus in step 2. The GPU executes the instructions
of the GPU-based operators on data in the gTable model
at step 3. The output data of the job are moved from GPU
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to the address space of C++ program at step 4. Finally, the
output data are transferred to the address space of JVM and
transformed into the VectorizedRowBatch model at step 5.
Steps 2, 3, and 4 are standard for applications that use GPU
as a co-processor of CPU [54], and step 5 is straightforward.
Thus, we introduce how GHive transforms data from the
VectorizedRowBatch model to the gTable model as follows.

In Hive, the input data of MapReduce jobs come row by
row, or as VectorizedRowBatch objects. The MapRecord-
Source or ReduceRecordSource operator of each job collects
input data and passes them to downstream operators of the
job for execution. In GHive, we revise MapRecordSource
and ReduceRecordSource to collect data into a ByteBu�er,
which reside in a shared memory that can be accessed by
both Java and C++. ByteBu�ers are used to store the data
values and auxiliary information of each column, and each
row is added to the ByteBu�ers on-the-�y when it comes.
We initialize the size of each ByteBu�er as 16MB and create
a new ByteBu�er with twice the capacity of the original
ByteBu�er when a ByteBu�er is full. All data in the origi-
nal ByteBu�er are copied to the new ByteBu�er. Figure 7(a)
reports the data collection time when using di�erent initial
sizes for the ByteBu�er. The results show that larger initial
size leads to shorter collection time but the performance gain
is not signi�cant. Thus, we set the initial bu�er size as 16MB
to avoid using too much memory for categorical columns.
After collecting all input data, the ByteBu�ers are used to
construct the gTablemodel. Note that we copy the references
of the data value and auxiliary information arrays instead of
the actual data from the ByteBu�ers to gTable, which reduces
time and memory comsuption. We also control the input data
size of the jobs by con�guring the bytesPerReducer parame-
ter in Hive such that the ByteBu�er (resp. gTable) does not
cause OOM on CPU (resp. GPU).
Alternative solutions. One alternative to our ByteBu�er is
passing data to GPU as parameters using JNI. We compare
JNI and ByteBu�er on one machine in our Cluster A (see
Section 5 for detailed experiment settings). The results in
Figure 7(b) show that ByteBu�er performs signi�cantly bet-
ter than JNI. This is because ByteBu�er only conducts data
copy once while JNI conducts data copy twice. Moreover,
the gain of ByteBu�er over JNI is moderate when data size
is small but becomes signi�cant when data size increases.
Thus, we use JNI to move the execution plan because the
execution plan is small in size and using JNI is easy via stan-
dard function call. Another alternative is Apache Arrow [1],
which allows to migrate data among di�erent systems by
de�ning a uni�ed format. We do not use Apache Arrow as
integrating it into Hive takes substantial engineering e�ort
and its general design introduces extra overhead. As shown
in Figure 7(b), Apache Arrow is even slower than JNI.
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Figure 7: Design choices for data movement

4.2 GPU-based Operator Library: Panda
Many works studied accelerating SQL queries with GPU-
based operator implementations [9, 25, 47, 48], and we will
discuss them in Section 6.We decide to develop our ownGPU-
based operator library Panda for GHive as existing operator
implementations do not consider the execution pattern of
GHive and are limited in their support for data types and
operators. As moving data between CPU and GPU is a major
overhead, Panda adopts an indexing-based processing model
to reduce data movement for e�ciency. Panda also achieves
generality by supporting a wide range of data types and SQL
operators with sensible implementations.
Indexing-based processing model. Existing GPU-based
SQL operator implementations assume that the relational ta-
bles reside in GPU memory as a whole. This is ine�cient for
GHive as GHive needs to move data from CPU memory to
GPU memory for execution, and usually only some (instead
of all) columns of a table are utilized to run an operator. Thus,
the overhead of moving the irrelevant columns to GPU are
unnecessary. Using the idea of late materialization [15, 45],
we design an indexing-based processingmodel to avoid trans-
ferring unnecessary data. In particular, our indexing-based
processing model works as follows. (1) It assigns an unique id
(denoted as idx) for each row in a table and associates the ids
with each gColumn. (2) To run each operator on GPU, it only
moves the relevant columns to GPU memory (e.g., �lter or
join on some columns). (3) When computing the results of an
operator, the ids of the rows are kept such that results can be
reconstructed from the original tables. Note that our gTable
naturally supports the indexing-based processing model as
it stores each column separately as a gColumn.
Figure 8 shows an example of the indexing-based pro-

cessing model for the simple query in the lower-right cor-
ner. We only move gColumn:datekey of table A and gCol-
umn:orderdate of table B into GPU memory, as only these
two columns will be used by the join operator in GPU. Then,
we run the join operator on the two columns and obtain
the indexing-based results. The indexing-based results are
moved back to CPU memory and used to fetch the relevant
rows in the relational tables for the �nal results.



GHive: Accelerating Analytical �ery Processing via CPU-GPUs SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

199901001999

200010002000

SELECT month, year, tax,
revenue, date 
FROM lineorder, dates 
WHERE orderdate = datekey

19960101100.0

200.0

300.0

0

1

19990100

20001000

Join

0

2

2

1

dates

output

19970700

GPU
1

4.0

9.0

10.0

19991 300.0 10.0

datekeyyearmonth

tax orderdaterevenue

revenuetaxyearmonth

datekeyidx

orderdate

gColumn:datekey

gColumn:orderdate

19960101

19990100

19970700

1997070019977 2 19970700

19990100

19990100

lineorder

CPU

10

date

0

1

idx

2

0

1

idx

2

0

1

idx

2

0

2

2

1

19977 200.0 9.0 19970700

Figure 8: Indexing-based processing model example

To execute a job, the indexing-based processing model
moves data to GPU one operator at a time (instead of for
all operators in a batch before execution) to exploit the �l-
tering ability of the indices. For example, a job may �lter
gColumn:datekey of table A, and then join gColumn:year of
table A’s �ltering results with a column from another table.
In this case, the indexing-based results of the �lter operator
is used to fetch only the relevant rows in gColumn:year for
the join operator. We observed that the indexing-based data
loading can signi�cantly reduce data movement for some op-
erators. If a gColumn is already in GPU memory, we do not
construct the exact result according to the indexing-based
results immediately after executing an operator. Instead, we
process the downstream operators by indirectly addressing
the gColumn using the indexing-based results. In particu-
lar, we use the fancy iterator thrust::permutation_iterator for
e�cient indirect addressing.
To sum up, our indexing-based processing model moves

only the necessary columns to GPU and executes the GPU
operators by indirect addressing. It reduces data transfer via
PCIe and consumption of GPU memory. Besides, it helps to
make the GPU operators general as we will show using the
example of hash join. Similar ideas of late materialization
(by recording row indexes) are also used by column-based
databases like Vertica and MonetDB but for di�erent pur-
poses, e.g., reducing intermediate result construction, exe-
cuting on compressed data, improving cache performance
and supporting vectorized optimizations on CPU.
Type and operator support. Comprehensive data type and
operator support is essential for GHive as we have many ex-
isting Hive queries that cover most data types and operators
in OLAP. To this end, we build Panda from scratch using
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NVIDIA cub [6] and thrust [14] libraries, which are widely
used in industry due to their �exibility and generality. Cur-
rently, Panda supports all common data types (e.g., int, �oat,
double, string), and we are working to integrate complex
data types such as DATE and TIMESTAMP. We use hash join
as an example to show the generality of Panda. With sensi-
ble implementations, our hash join can handle multiple join
keys and di�erent types of join (i.e., inner, outer or semi).

Figure 9 shows how GPU-based hash join is implemented
in Panda. Both tables 𝑅 and 𝑆 have three columns, and we
use the name and subj columns as join keys to illustrate how
Panda supports multi-key join. Note that column idx is the
row index, which is added by our indexing-based processing
model. Hash join is conducted in two phases, i.e., (i) hash
table building, and (ii) hash table probing. The tuples in table
𝑅 are used to populate the hash table in the building phase,
while each tuple in table 𝑆 (i.e., probe table) �nds its relevant
rows from table 𝑅 in the hash table during the probing phase.

As shown in Figure 9, 𝑅’s hash table has two columns. In
each row, the 1st column stores the index of the row in 𝑅

that hashes to the bucket (-1 if the hash bucket is empty),
the 2nd column stores the index of the next entry in the
hash table that has the same hash value as the row in the 1st
column (used to handle hash collision). Consider the hash
table in Figure 9, its 2nd row is 〈0, 2〉, where the �rst value
‘0’ means that this hash bucket contains row 𝑅 [0] in table
𝑅, i.e., 〈0, 𝐴𝑙𝑖𝑐𝑒, 𝑀𝑎𝑡ℎ〉. The second value ‘2’ indicates the
next hash bucket id that has the same hash value as the join
key of 𝑅 [0] (i.e., 𝐻 [2]). We have 𝑅 [3] in the �rst column of
𝐻 [2] as the join key of both 𝑅 [0] and 𝑅 [3] are 〈𝐴𝑙𝑖𝑐𝑒, 𝑀𝑎𝑡ℎ〉.
The GPU threads work in parallel to build the hash table,
and each thread processes a subset of the rows in table 𝑅.
We use CUDA atomicCAS instruction to update the hash
table in order to avoid the errors caused by multiple threads
accessing the same hash bucket.
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Table 1: Customizable functions for Panda operators

Operator Extendable Interface
Hash join hashing, probing
Group by sorting, comparator, aggregator
Filter �lter condition
Select user-de�ned function

The probing phase contains two stages (i) probe and count,
and (ii) probe and generate, which are separated by a barrier.
In stage (i), we initialize two integer arrays to store theCount
andO�set for each row of table 𝑆 , as shown in Figure 9. Every
tuple in 𝑆 probes the hash table and counts the number of
matched rows in table 𝑅 in parallel, and the results are stored
in the Count array. Take inner hash join for an example, row
𝑆 [1] is 〈1, 𝐴𝑙𝑖𝑐𝑒, 𝑀𝑎𝑡ℎ〉, which �nds 2 matched rows in 𝑅 by
probing the 2nd and 3rd hash buckets (i.e., 𝑅 [0] and 𝑅 [3]).
Thus, it �lls 2 into Count[1]. Then the BlockScan primitive
in the NVIDIA cub library is invoked to compute the pre�x
sum for the Count array as the O�set array, which tells
where to store the join result for each row of table 𝑆 . In stage
(ii), we generate join results for the rows of 𝑆 in parallel by
storing the results in the output table according to theO�set.
For example, in inner join, row 𝑆 [2] 〈2, 𝐵𝑜𝑏,𝐶𝑆〉 generates a
result tuple 〈1, 2〉 with o�set 2 in the output table.

We store the row index instead of the actual tuples when
building the hash table as it allows to support multi-key
join and di�erent data types with one implementation. For
example, to support three-key join or a new data type, only
the hash function and equality checking function need to be
updated without a�ecting the core join implementation. Our
join implementation also supports di�erent join methods,
e.g., inner join, outer join and semi join. As shown in Figure 9,
only the probing stage needs to be changed for di�erent join
methods while the three-phase join logic remains the same.
Extendability of Panda. Panda is highly extendable with
simple interfaces for implementing new functions and oper-
ators. Speci�cally, Panda adopts the functor design pattern
and leaves interfaces to customize signi�cant functions for
the operators, for which some examples are shown in Ta-
ble 1. To implement an extended operator, engineers only
need to inherit the parent Operator class and customize its
execute() function. The references of the input and output
data for each operator are de�ned in the Operator class, and
engineers can directly read and write them in their own exe-
cute() function. Engineers can easily change the behavior of
an operator by modifying its key functions. The code below
shows an example of customizing the comparator functor
for the sort-based GroupBy operator, with which GroupBy
groups tuples whose keys are considered the same. The op-
erator() function determines whether two keys are the same.
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Figure 10: Operator execution time w.r.t scale factor

The functor design simpli�es the procedure of supporting
complex operations and new data types. It also allows to
reuse well-optimized GPU-based operator implementations
if the core operator logic is not changed.

1 s t r u c t abs_compara to r {
2 i n t ∗ keys ; / / the i n t column o f the group key
3 __hos t__ __dev i c e__ / / i , j a r e i nd ex e s
4 boo l o p e r a t o r ( ) ( c on s t i n t i , c on s t i n t j ) {
5 r e t u r n abs ( keys [ i ] ) == abs ( keys [ j ] ) ;
6 }
7 }

4.3 Hardware-aware Job Placement
For a query, GHive needs to decide each job should be exe-
cuted on CPU or GPU. Although GPU execution enjoys fast
computation due to massive parallelism, it also incurs the
overhead of moving data between CPU memory and GPU
memory. As we have shown in Figure 2, the MapReduce
jobs can be classi�ed into compute-bound and I/O-bound.
For the I/O-bound jobs, GPU execution may be slower than
CPU execution as the bene�t of fast computation may not
outweigh the data movement overhead. To judiciously place
each job on the right device, we devise cost models by jointly
considering the data, job and hardware.

Denote the execution time of a job 𝐽 on CPU and GPU as
𝑇𝐶 (𝐽 ) and𝑇𝐺 (𝐽 ), respectively. The job placement strategy of
GHive is simple—execute job 𝐽 on GPU only if 𝐽 runs signif-
icantly faster on GPU than on CPU. Formally, GHive places
job 𝐽 on GPU when

𝑇𝐶 (𝐽 ) −𝑇𝐺 (𝐽 )
𝑇𝐶 (𝐽 )

≥ 𝜃,

where 𝜃 is set to 0.2 by default (meaning that the GPU exe-
cution time needs to be less than 80% of the CPU execution
time) and tunable by users. Thus, the key is to estimate𝑇𝐶 (𝐽 )
and 𝑇𝐺 (𝐽 ) accurately.
Cost model for CPU execution. For the CPU execution
time 𝑇𝐶 (𝐽 ), we only consider the operator processing time.
This is because other time comsuptions, e.g., loading data
from disk and sending data over network, are the same for
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GPU execution. As introduced in Section 2, a job 𝐽 consists
of a sequence of operators, and thus we model 𝑇𝐶 (𝐽 ) as

𝑇𝐶 (𝐽 ) =
∑︁

∀𝑜𝑝𝑖 ∈𝐽
𝑓 (𝑜𝑝𝑖 , 𝑛𝑖 ), (1)

where 𝑜𝑝𝑖 is an operator in job 𝐽 , 𝑓 (𝑜𝑝𝑖 , 𝑛𝑖 ) is the execu-
tion time of operator 𝑜𝑝𝑖 , and 𝑛𝑖 is the input data size for
𝑜𝑝𝑖 . Thus, the problem becomes modeling 𝑓 (𝑜𝑝𝑖 , 𝑛𝑖 ). Fig-
ure 10(a) reports the execution time of some operators on
CPUwith di�erent input data size. We use the example query
in Figure 1(a) and data from the SSB benchmark, and the
experiment is conducted on our Cluster B (see the details
in Section 5). The results show that the execution time of
the operators are almost linear w.r.t input data size. This is
because linear cost model matches Hive’s execution pattern.
In particular,Hive usesMapJoin andMergeJoin to join the ta-
bles; the building and probing phases of MapJoin and merge
phase of MergeJoin have linear complexity. Hive executes
sorting by �rst processing each segment and then merging
the segments, which also yields approximately linear com-
plexity. We pro�led other operators and many queries, and
found that the linear trend is consistent.

Thus, we estimate the CPU execution time of each opera-
tor using standard linear regression, i.e., 𝑓 (𝑜𝑝, 𝑛𝑖 ) = 𝑘𝑜𝑝𝑛𝑖 +
𝑏𝑜𝑝 , where 𝑘𝑜𝑝 and 𝑏𝑜𝑝 are the coe�cient and intercept, re-
spectively. Before handling queries, we obtain 𝑘𝑜𝑝 and 𝑏𝑜𝑝
by �tting the input data size and operator execution time
measured in trials. Note that di�erent operators use di�erent
models with separate parameters. To estimate the execution
time for an operator, we use its operator type 𝑜𝑝𝑖 and esti-
mated input data size 𝑛𝑖 (given by the query optimizer) to
invoke the linear models.
Costmodel for GPU execution. The cost of GPU-based job
execution in GHive has three components: (1) moving data
from CPU to GPU, (2) executing the operators on GPU, and
(3) reconstruct the output data of the job for our indexing-
based processing model and convert the data back to the
VectorizedRowBatch data model. Thus, we model the GPU
execution time as

𝑇𝐺 (𝐽 ) = 𝑇𝑝𝑟𝑒 (𝐽 ) +𝑇𝑒𝑥𝑒𝑐 (𝐽 ) +𝑇𝑝𝑜𝑠𝑡 (𝐽 ). (2)

(1) 𝑇𝑝𝑟𝑒 is the time to move input data from the address
space of Java programs on CPU to GPU memory.

(2) 𝑇𝑒𝑥𝑒𝑐 is the time to execute the GPU-based operators.
(3) 𝑇𝑝𝑜𝑠𝑡 is the time to generate output data for the job.

We model the three components separately as follows.
Estimating 𝑇𝑝𝑟𝑒 : The data preparation time 𝑇𝑝𝑟𝑒 includes
step 1 (transforming data from VectorizedRowBatch model
to gTablemodel) and step 2 (moving data from CPU memory
to GPU memory) in Figure 6. Step 1 copies data in CPU
memory and step 2 transfers consecutive data via PCIe bus,
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Figure 11: Comparison of operator execution time

and thus the costs of both steps are linear w.r.t data size.
Thus, we model 𝑇𝑝𝑟𝑒 as

𝑇𝑝𝑟𝑒 (𝐽 ) =
∑

∀𝑐 𝑗 ∈C( 𝐽 ) ℎ(𝑐𝑖 )
𝛼

+
∑

∀𝑐 𝑗 ∈C′ ( 𝐽 ) ℎ(𝑐𝑖 )
𝛽

, (3)

where 𝛼 and 𝛽 are bandwidth of main memory and PCIe
bus, respectively, and we obtain them via micro benchmark
experiments. 𝑐 𝑗 is a column in the input tables for the job,
set C(𝐽 ) contains all the columns while C′(𝐽 ) includes only
the columns that are moved to GPU memory. ℎ(𝑐 𝑗 ) is the
data size for column 𝑐 𝑗 .
Estimating 𝑇𝑒𝑥𝑒𝑐 (𝐽 ):We model 𝑇𝑒𝑥𝑒𝑐 (𝐽 ) as

𝑇𝑒𝑥𝑒𝑐 (𝐽 ) =
∑︁

∀𝑜𝑝𝑖 ∈𝐽
𝑔(𝑜𝑝𝑖 , 𝑛𝑖 ), (4)

where 𝑔(𝑜𝑝𝑖 , 𝑛𝑖 ) is the GPU execution time of operator 𝑜𝑝𝑖
and𝑛𝑖 is the input data size. The same as CPU-based operator
execution, we use a linear model to estimate 𝑔(𝑜𝑝𝑖 , 𝑛𝑖 ). In
Figure 10(b), we pro�le the GPU execution time of some
operators by using the same experiment con�gurations as
Figure 10(a). The results show that the execution time has
a linear trend w.r.t input data size, and thus using a linear
model is reasonable.
Estimating 𝑇𝑝𝑜𝑠𝑡 : After executing a job on GPU, GHive
needs an extra step to obtain the result table due to our
indexing-based processing model. Speci�cally, we iterate
over the indexing-based results and fetch the required rows
from the data tables. Thus, we model 𝑇𝑝𝑜𝑠𝑡 as

𝑇𝑝𝑜𝑠𝑡 = 𝛾 · |𝑅 |, (5)
where |𝑅 | is the cardinality of result table and 𝛾 is the time
to fetch a result row and concatenate it to the result table.
To estimate𝑇𝑝𝑜𝑠𝑡 , |𝑅 | is obtained from the cardinality estima-
tions provided by the query optimizer, and 𝛾 is measured by
micro benchmark experiments (for di�erent data sizes).

To validate the accuracy of our cost models, in Figure 11,
we report the estimated and actual execution time of some
jobs sampled from SSB. These jobs vary in the scale of in-
volved data and complexity (from one group by to three
joins). Note thatHive jobs are usually not complex as a query
is decomposed into multiple jobs for execution and each job
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Table 2: CPU and GPU information of two clusters

Hardware Cluster A Cluster B
CPU Intel Xeon E5-2640 v4 Intel Xeon Gold 5122
CPU number 2 2
Core number 40 16
CPU memory 64GB 512GB
GPU NVIDIA Tesla T4 NVIDIA TITAN Xp
GPU memory 16GB 12GB

typically contains only several operators. Figure 11 shows
that the points scatter around the diagonal line, indicating
good prediction accuracy. In particular, de�ning the relative
error 𝜖 =

|𝑇𝑝𝑟𝑒𝑑−𝑇𝑒𝑥𝑎𝑐𝑡 |
𝑇𝑒𝑥𝑎𝑐𝑡

, the median errors of our cost models
for CPU and GPU are 10.0% and 21.0%, respectively. We �nd
that large errors in cost estimation are caused by large errors
in the cardinality estimations of intermediate results, and
we use the cardinality estimations provided by Hive’s query
optimizer. This echos the observation that linear cost models
work well if the cardinality estimations are accurate [36],
and we note that improving cardinality estimation is beyond
the scope of this paper.

5 EXPERIMENTAL EVALUATION
In this section, we compare Hive and GHive for both query
processing speed and operating cost. Speci�cally, Section 5.1
conducts overall performance evaluation using di�erent clus-
ter con�gurations, queries and data scales. Section 5.2 ana-
lyzes the execution process of two representative queries on
Hive and GHive to verify the bene�ts of GPU execution and
the e�ectiveness of our designs.
Experiment settings:We used the SSB benchmark [42] for
our experiments, which contains 5 tables organized in star
schema and is widely used in related researches [21, 45, 47,
57]. There are 13 queries in SSB and they involve most of the
commonly used SQL operators such as selection, projection,
join, sorting and aggregation. By default, we set the scale
factor of the data to 50. To test the generality of GHive on
di�erent hardware platforms, we conducted the experiments
on two clusters, each consisting of 4 homogeneous nodes.

In both clusters, the nodes are connected via 10 Gbps Eth-
ernet, and the CPU and GPU on the same node are connected
via PCIe 3.0 with x16 bandwidth. The CPU and GPU informa-
tion of the two clusters is shown in Table 2. The version of
NVIDIA driver, CUDA, Hadoop, Hive and Tez are 460.32.03,
11.2, 3.2.1, 3.1.0 and 0.10.1 respectively. To model the disk
I/O overhead in big data analytics, we stored the tables in
ORC format on HDFS when conducting the experiments.

5.1 Overall Performance Evaluation
Table 3 and Table 4 report the query execution time of Hive
and GHive on Cluster A and Cluster B, respectively. We also

include the GPU utilization of GHive in the query execution
process, and the speedup of GHive over Hive. The cost ratio
is the overall power consumed by GHive for query execu-
tion compared to that of Hive, and a value smaller than 1
indicates that GHive has a smaller operating cost than Hive.
Speci�cally, the cost ratio is de�ned as

𝜇 =
𝑇GHive · (𝑃𝐶𝑃𝑈GHive + 𝑃𝐺𝑃𝑈

GHive)
𝑇Hive · 𝑃𝐶𝑃𝑈Hive

, (6)

where𝑇GHive (resp. 𝑃𝐶𝑃𝑈GHive) and𝑇Hive (resp. 𝑃
𝐶𝑃𝑈
Hive ) are the query

execution time (resp. average CPU power in the query execu-
tion period) for GHive and Hive. 𝑃𝐺𝑃𝑈

GHive is the average GPU
power for GHive. We measured CPU power using the RAPL
tool [30] provided by Intel, and GPU power using the NVML
library of NVIDIA [11]. We use power consumption as the
operating expense because the machines are deployed and
power bills dominate the costs for us as a cloud provider.
Table 3 and Table 4 show that GHive outperforms Hive

for all queries in terms of both query processing time and
operating cost. In addition, the performance advantage of
GHive is consistent for the two clusters. The speedup can be
over 2x and is large for all queries except for Q1.1, Q1.2, and
Q1.3. This is because these queries contain few computation-
intensive operators, and thus the gain of GPU execution is
not signi�cant. In contrast, Q4.1, Q4.2, and Q4.3 are more
complex (having four joins, one aggregation, and one sort-
ing), and thus the speedups of GHive are close to 2x. We note
that the performance gain of GHive is remarkable as some
important overheads, such as disk I/O and network commu-
nication cannot be reduced with GPU execution. As we will
show in the case studies in Section 5.2, for the computation
time of individual operators jobs, GHive can speedup Hive
by orders of magnitude.
The results also show that GHive consistently achieves

lower operating cost thanHive, and the maximum cost reduc-
tion can be over 25%. This is appealing for big organizations
like Huawei as we have many routine Hive applications and
are paying huge electricity bills for large clusters. As reported
in the tables, the low operating cost of GHive is attributed
to two reasons, i.e., shorter CPU running time by using GPU
for acceleration and low GPU utilization. Note that the GPU
utilization in Table 3 and Table 4 are overestimated as we
regard a GPU as entirely occupied by GHive even if the ac-
tual device utilization rate is usually low. When considering
actual device utilization1, the GPU utilization of GHive is
below 5% for all queries. The low GPU utilization of GHive

1In this case, GPU utilization is calculated by integrating actual device
utilization over time.
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Table 3: Performance comparison between Hive and GHive on Cluster A

Queries Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
Hive time (s) 16.57 13.15 14.71 95.81 83.15 70.98 96.48 88.23 76.25 25.90 124.08 108.19 110.59
GHive time (s) 16.08 13.03 14.10 48.28 41.68 40.60 67.87 45.01 43.62 17.57 64.62 60.24 64.24
GPU utilization 7.02% 7.41% 13.28% 13.26% 14.88% 14.29% 5.50% 13.33% 14.21% 23.34% 9.90% 15.27% 15.10%
Speedup over Hive 1.03 1.01 1.04 1.98 2.00 1.75 1.42 1.96 1.75 1.47 1.92 1.80 1.72
Cost ratio (𝜇) 0.93 1.00 0.95 0.73 0.74 0.78 0.88 0.72 0.83 0.96 0.77 0.80 0.86

Table 4: Performance comparison between Hive and GHive on Cluster B

Queries Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
Hive time (s) 15.33 15.48 12.33 97.54 87.62 79.71 97.25 90.75 83.68 22.05 124.54 109.84 109.04
GHive time (s) 14.30 14.72 11.83 43.57 45.59 41.83 59.90 40.76 41.17 16.17 60.47 59.98 63.05
GPU utilization 20.92% 18.62% 14.09% 17.67% 11.41% 12.91% 2.65% 14.48% 14.33% 24.74% 11.01% 11.17% 13.01%
Speedup over Hive 1.07 1.05 1.04 2.24 1.92 1.91 1.62 2.23 2.03 1.36 2.06 1.83 1.73
Cost ratio (𝜇) 0.91 0.94 0.92 0.77 0.78 0.77 0.91 0.74 0.78 0.94 0.76 0.86 0.85
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Figure 12: Performance comparison between Hive and GHive under di�erent scale factors

makes it easy to share GPU resource with other applications
to boost resource utilization using tools such as MPS [10].
Results under di�erent data scales: Figure 12 compares
the query processing time of Hive and GHive by varying
the scale factor of SSB from 2 to 64. We choose 3 represen-
tative queries, i.e., Q1.3 for simple queries, Q2.2 and Q4.3
for complex queries. The results show that GHive (dashed
lines) always outperforms Hive (solid lines) under all scale
factors on both Cluster A (red) and Cluster B (blue). However,
query processing time increases slowly with scale factor for
Q1.3 but much more rapidly for Q2.2 and Q4.3. This is be-
cause Q1.3 has only one join operator and it is optimized as
a relatively simple mapjoin2 by Hive. In contrast, Q2.2 and
Q4.3 has 3 and 4 join operators, respectively, and involve
more complex merge join. Figure 12 also shows that for more
complex queries, the performance gain of GHive over Hive
is large and increases with data sizes. This is favorable for
us as we have many complex queries over large-scale data.

2Mapjoin joins a big table with a small one by hashing the small table, and
thus each row in the big table only needs to check a few entries

(a) Query processing on vanilla Hive, total cost: 112.24s

(b) UDF on GHive, total cost: 55.80s
Figure 13: SSB Q4.3, scale factor 50

5.2 Case Study
To understand the superior performance of GHive over Hive,
we analyze two queries as case study. One query is the Q4.3
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Figure 14: Comparison of operator execution time

(a) Query processing on vanilla Hive, total cost: 248.66s

(b) Query processing on GHive, total cost: 42.56s
Figure 15: Production query with decryption

of SSB and the other is the query of production. The results
are obtained on Cluster B.

Figure 13 shows the query processing of Q4.3 on Hive and
GHive, where each bar corresponds to a job and the x-axis
represents time. For each job, the gray part indicates the time
for data preparation (e.g., disk I/O, network) while the blue
part indicates the time for computation (involving moving
data to/from GPU in the case of GHive). The results show
that Hive and GHive have the same job DAG, which consists
of 5 map jobs and 5 reducer jobs. This is because GHive uses
the vectorized physical plan generated by Hive. However,
Q4.3 takes 111.24 seconds on Hive but only 55.80 seconds on
GHive, yielding a 2x speedup. Closer inspection �nds that
this is because GHive signi�cantly reduces the running time
of Reducer 2 and Reducer 3 by placing them on GPU, and the
two jobs dominate the query execution time for Hive. For
Reducer 3, the computation time is long on Hive but almost
negligible on GHive.
In Figure 14, we pro�le the execution time of the most

computation-intensive operators in Q4.3 on Hive and GHive.
The results show that on the operator level, GPU execution
provides orders of magnitude speedup, which veri�es the
e�ciency of our GPU-based operator library Panda. Note
that in our pro�ling, we count the time for upstream sorting
towards the execution time for MergeJoin and sort-based
GroupBy. If a job is to be executed on GPU, we disable up-
stream sorting on CPU to save computation as our GPU
operators do not require sorted input.

Figure 15 shows the execution process of the production
query containing an UDF that conducts decryption. Note
that we use encryption to protect sensitive information, and
can only be accessed by authorized users with the private key.
Figure 15(a) shows that Hive takes a long time to executeMap
1, which conducts decryption. This is because the decryption
process involves heavy arithmetic operations and is compute
intensive. Figure 15(b) shows that it can be signi�cantly
accelerated by GPUs. As a result, GHive speedups Hive by
5.8x for the production query.

6 RELATEDWORK
In this section, we discuss relevant works on enhancements
for Apache Hive and GPU-accelerated data management.
Apache Hive. There are many works that enhance Hive in
di�erent aspects. For example, YSmart [34] optimizes the
translation from SQL query to MapReduce jobs by consider-
ing the correlation among the operators. Huai et al. [31] sum-
marizemajor improvements toHive from 2010 to 2014, which
includes a new �le format named optimized record colum-
nar �le (OCR �le), advanced query optimization techniques,
and vectorized query execution model. Calcite [16], an op-
timizer that supports both rule-based optimization (RBO)
and cost-based optimization (CBO), is used by Hive for logi-
cal execution plan optimization. Hortonworks Inc improves
Hive in transaction processing, query optimizer, runtime,
and the ability to federate across di�erent systems. For the
execution engine, Hivemoves from Hadoop MapReduce [24]
to Apache Tez [46], which has smaller data persistence over-
head and is more �exible in implementing applications. Our
GHive extends Hive by supporting CPU-GPU heterogeneous
computation. This is important as many organizations have
GPUs in their clusters and GHive not only accelerates com-
plex queries but also helps to fully utilize GPU resources.
GPU-accelerated data management. Some works study
GPU-based SQL operator implementations. Paul et al. [44]
survey works on GPU hash join and conduct a comprehen-
sive performance evaluation for them. Sioulas et al. [48] pro-
pose a family of partitioning-based join algorithms that con-
sider the limited memory capacity and slow PCIe bandwidth
of GPU. Karnagel et al. [33] compare and analyze sort-based
and hash-based GPU implementations for grouping and ag-
gregation operators, and design a heuristic optimizer for the
algorithms and parameters. By integrating di�erent opera-
tors, several GPU-based SQL operator libraries are developed.
Crystal provides a set of well-optimized primitives for imple-
menting SQL operators on GPU [47]. However, substantial ef-
forts are required to implement SQL operators using Crystal,
for example, handling hash collisions and supporting string
data type. cuDF [9] is a GPU DataFrame library that supports
loading, joining, aggregating, and �ltering data. It provides
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GPU-based implementations for common SQL operators,
and is used by RAPIDS[13]. Many implementation details of
the operators in our Panda library are motivated by existing
works. However, Panda comes with an indexing-based pro-
cessing model to reduce the data movement between CPU
and GPU. Moreover, we set generality and extendibility as
�rst-class objectives when developing Panda, which makes
it possible to integrate Panda into other big data systems
such as Spark and Flink [2].

Many systems uses GPU as a co-processor for CPU in SQL
query processing. GPUQP [25] targets a single machine and
designs a cost model to place each operator on either CPU
or GPU by considering computation and PCIe data transfer.
Ocelot [28] is a hardware-oblivious extension of MonetDB
that can run on di�erent computation devices, which also
supports GPU-based query processing. HetExchange [22]
designs a framework to generate code for heterogeneous
CPU-GPU platform using just-in-time (JIT) compilation and
supports query execution with multiple CPUs and GPUs. As
a GPU-based database system, OmniSciDB [12] keeps hot
data in GPU memory for fast access during query execution.
OurGHive di�ers from these works as it considers CPU-GPU
heterogeneous computing for a distributed system.
Attempts have also been made to integrate GPU into big

data systems [8, 19, 20, 56]. For example, FlinkCL [19] inte-
grates GPU into FLink using JIT and provides a Java interface
for writing GPU codes. There are also works exploiting other
hardware characteristics to improve performance. For in-
stance, Hippogri�DB [39] directly transfers data from NVMe
SSD to GPU and designs a GPU-friendly data compression
mechanism to reduce data transfer. Our GHive is a system-
atic solution that acceleratesHive using GPU, and its designs
mainly consider performance and generality. We will inte-
grate more techniques and extend our implementation to
other big data systems in the future.

7 CONCLUSIONS AND FUTUREWORKS
In this work, we present GHive, an extension of Hive that
utilizes GPU to accelerate OLAP query processing. GHive
comes with threemain technical components, i.e., data model
gTable, GPU-based operator library Panda, and a cost-based
job scheduler. gTable stores tables in column-based format
and ensures that each column is consecutive in memory
for e�cient CPU-GPU data movement. Panda reduces the
data movement overhead with an indexing-based processing
model and achieves generality and extendibility with sensible
implementations. The scheduler utilizes cost models moti-
vated by pro�ling results to make judicious job placement
decisions. Experiment results show that GHive outperforms
vanilla Hive in both query processing time and operating
cost, especially for computation intensive queries. As an ini-
tial attempt to utilize CPU-GPU heterogeneous computation,

the outcomes of theGHive project are encouraging. However,
we still pan to improve GHive in the following aspects.
Consider GPU execution in query optimization. Cur-
rently, we use the optimizers in Hive, which do not consider
CPU-GPU heterogeneous computation. A GPU-aware opti-
mizer may avoid grouping computation intensive operators
and I/O intensive operators into the same job such that the
resulting jobs are more suitable for GPU execution. The opti-
mizer should also reduce the amount of data transfer between
CPU executed jobs and GPU executed jobs.
Dynamic Scheduling. Dynamic scheduling, which makes
the decision to place jobs on CPU or GPU at runtime, can be
used to adapt to the availability of GPUs. Dynamic schedul-
ing also helps to handle large errors in cardinality estimation—
cardinality estimation can bemademore accuratewhen some
jobs are executed and the job placement decisions (made by
the cost models) will be more sensible using the updated
estimations at runtime.
More �exible execution patterns. GHivemoves data back
to CPU memory after executing a job on GPU even if its
downstream jobs are also executed on GPU. Although this
design simpli�es data management, letting the downstream
jobs continue on the loaded data is more e�cient. In addition,
GHive imposes a barrier for each GPU executed job as the
job only starts when all input data are collected. To pipeline
the jobs, a GPU executed job may receive and process input
data in batches as the CPU executed jobs in Hive.
Data compression. The data movement overhead is a ma-
jor obstacle for reaping the bene�ts of GPU execution. The
column-based format of gTable enables simple and e�ective
data compression schemes such as delta encoding and run-
length encoding, and there are researches developing SQL
operators that work on directly compressed data.
Extend to more data analytics systems. Besides Hive, we
also run other data analytics systems such as Flink and Spark.
The success of GHive motivates us to support CPU-GPU
heterogeneous computation in these systems. The generality
of Panda makes it easy to run the tasks of these systems on
GPU but the interaction between CPU and GPU needs to be
carefully designed for high e�ciency.
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